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Abstract— Since the fourth fundamental element (Memristor)
became a reality by HP labs, and due to its huge potential, its
mathematical models became a necessity. In this paper, we pro-
vide a simple mathematical model of Memristors characterized
by linear dopant drift for sinusoidal input voltage, showing a high
matching with the nonlinear SPICE simulations. The frequency
response of the Memristor’s resistance and its bounding condi-
tions are derived. The fundamentals of the pinched i-v hysteresis,
such as the critical resistances, the hysteresis power and the
maximum operating current, are derived for the first time.

I. INTRODUCTION

The Memristor (M ) is believed to be the fourth fundamental

two terminals passive element, beside the Resistor (R), the

Capacitor (C) and the Inductor (L). The existence of such

element was postulated by Leon Chua in the seventies [1].

Recently a practical implementation of the Memristor using

partially doped TiO2 was presented by Hewlett-Packard [2] as

shown in Fig. 1, where w ∈ (0, D). When the applied potential

is removed the dopant boundary will remain at its location

which will be the initial value for any later movements.

According to [2] the memristive property naturally appears

in nanoscale devices, so the understanding of Memristance will

improve the studying and modeling of nanodevices character-

istic, which includes the current-voltage hysteresis behavior

observed in many nanodevices. The invention of the Memristor

was the key for postulating new elements by Chua such as the

Memcapacitors and the Meminductors [3].

The Memristor found application in memory [4], biol-

ogy [5], and spintronic [6]. Recently the Memristor was

modeled using a linearized model of the pinched i-v hysteresis

as in [7] or qualitatively as in [8], [9]. However these efforts

failed to capture many of its characteristics. A Memristors

model for DC, square and triangular signals is presented

in [10]. This model is used in the analysis of Memristor-based

Wien-family oscillators [11].

The instantaneous resistance R of the Memristor is given

by [2],

R = x ·Ron + (1− x)Roff (1)

where x = w/D, Ron is the resistance of the completely

doped Memristor, and Roff is for the undoped Memristor.

The speed dopant movement is defined as,

dx

dt
= k · i (t) · f (x) (2)
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Fig. 1. The abstract structure of the HP’s Memristor [2], current versus
time, and current and resistance versus input voltage are plotted for sinusoidal
wave input voltage of 1Hz frequency and −1.5V peak voltage. Memristor’s
Parameters: Roff = 38kΩ, Ron = 100Ω, Ri = 4kΩ and p = 10.

where f (x) = 1 − (2x − 1)2p is the window function for

nonlinear dopant drift given in [12], and k = µv · Ron/D
2.

Fig. 1 shows some basic relationships between the current,

voltage, and resistance for the HP’s Memristor.

In this paper the frequency response of the Memristor’s

resistance is studied in the case of linear dopant drift for

sinusoidal waveform for the first time. A condition on the ratio

of (vo/f ) to maintain unsaturated resistance is introduced.

A simple implicit equation for the pinched i-v hysteresis is

derived, showing its general fundamentals such as critical

resistances, maximum current magnitude and location, and

the power under and inside this hysteresis. All mathematical

equations are compared with the nonlinear Memristor’s SPICE

model given in [12], showing perfect matching.

II. THE FREQUENCY RESPONSE OF THE MEMRISTOR’S

RESISTANCE

The instantaneous resistance of the Memristor subjected to

a sinusoidal input can be derived from equations (3) and (2),

for linear dopant f (x), and can be simplified as,

R2 = R2

i −
2VokRd

πf
sin2 (πft) , R ∈ (Ron, Roff ) (3)

where k = µv ·Ron/D
2, µv is dopant drift mobility, f is the

frequency of the input sinusoidal waveform, Ri is the initial

Memristor resistance at t = 0, and Rd = Roff − Ron is



Fig. 2. Memristor’s resistance versus time −Vo plane for 1Hz sinusoidal
waveform with f = 1Hz, Roff = 16kΩ, Ron = 100Ω, and Ri = 6kΩ.

the difference between the boundary resistances. However, the

instantaneous resistance must be bounded by Ron and Roff .

The range of R depends on the sign of Vo. Hence R ∈
[Ri, Roff ) in case of Vo < 0 or (Ron, Ri] for Vo > 0. For any

sinusoidal signal starting with a zero voltage, the Memristor’s

resistance reaches its maximum or minimum value at t =
(2n+ 1)T/2; n = 0, 1, 2, · · · , such that,

R2

M = R2

i −
2VokRd

πf
, RM ∈ (Ron, Roff ) (4)

The magnitude of RM , whether maximum or minimum, de-

pends on the sign of Vo. However, at t = nT ,n = 0, 1, 2, · · · ,

the resistance returns to its initial value, R = Ri. Fig. 2

shows the 3D surfaces of the Memristor’s resistance versus

t-Vo plane.

The resistance has the shape of sin2 (·) . However for high

amplitude voltage there is clipping effect due to the bounding

Roff and Ron. As |Vo| increases the effect of the boundary

resistancesRoff , Ron appears as clipping effect.

Fig. 3 shows the Memristor’s resistance versus v (t)-f plane.

Generally, the resistance clipping to Roff exists at lower

frequency (from the upper saturation plane). However, as

frequency increases, the clipping interval decreases in time

until it vanishes at a certain frequency. Any cross-section at

fixed high frequency will show an ellipse shape, and the small

Fig. 3. Memristor’s resistance versus a sinusoidal input and frequency for a
peak input voltage of 3V, Roff = 38kΩ, Ron = 100Ω, and Ri = 11kΩ.
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Fig. 4. Range of Memristor’s resistance versus frequency, for sinusoidal wave
input voltage for different (a) Roff , and (b) peak voltages Vo. Memristor’s
Parameters: Ron = 100Ω, Ri = 4kΩ.
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Fig. 5. Numerical and SPICE simulations in (a) time domain, with
Memristor’s Parameters: Ron = 100Ω, and Ri = 4kΩ (b) frequency domain,
with Memristor’s Parameters: Ron = 100Ω, Ri = 11kΩ and p = 10.

axis of the ellipse area decreases and rotates as frequency

increase.

Fig.4 shows the range of Memristor’s resistance for both

±Vo for two different cases. Fig. 4(a) studies the effect of

Roff on the operating range of resistance. As Roff decreases

the Memristor’s resistance saturates at Roff for wider range

of frequencies but it saturates at Ron for less range of

frequencies. However, for fixed Roff and two different values

of Vo as shown in Fig. 4(b), as Vo increases both ranges of

frequencies increase. Fig. 5(a) shows the the resistance given

by equation (3) compared to the nonlinear Memristor’s SPICE

model given in [12].

Fig. 5(b) shows the maximum resistance of the transient

SPICE simulation results for different frequencies chosen as

6 points/decade, while the solid lines are the calculated maxi-

mum frequencies according to equation (4). These simulations

are repeated for two different cases showing identical matching

with the SPICE model. Both the frequency and the voltage

amplitude affect the resistance range and the rotation of

the pinched i-v hysteresis. The boundaries for non-saturating

resistance are given by,

(Vo/f)off =
π

2kRd

(

R2

i −R2

off

)

< 0 (5a)

(Vo/f)on =
π

2kRd

(

R2

i −R2

on

)

> 0 (5b)

The difference between these boundaries, which is indepen-

dent on Ri, is given by,

|Vo/f |sat =
πD2

2µv

(1 +Roff/Ron) (6)



Fig. 6. Intervals of the Memristor’s resistance versus (Vo/f).

which is independent of Ri. This value is considered as the

minimax ratio |Vo/f | required for the Memristor’s resistance

to reach saturation, either Roff or Ron, when Ri equals to

Ron or Roff respectively as shown in Fig. 6.

According to equation (4), the range of the Memristor’s

resistance depends on the value of RM which is inversely

proportional to the frequency (f ). Thus the resistance range

decreases with the increase of the frequency. Consequently the

Memristor’s current range decreases leading to a shrinkage of

the pinched hysteresis. This will be further elaborated in the

next section.

III. QUALITATIVE STUDY OF THE i-v HYSTERESIS

The 3D pinched i-v hysteresis as a function of frequency

is shown in Fig. 7. As the frequency increases, with same

amplitude voltage, the pinched hysteresis shrinks and rotates.

This figure describes the rotation only in very narrow band

of frequencies from 0.5Hz up to 2Hz. The dotted points in

Fig. 8(a) shows the SPICE model pinched i-v hysteresis for

Vo = −1.5 and f = 1Hz. However the solid line represents

the numerical simulation using the mathematical model at

the same input data, showing the exact matching with the

nonlinear SPICE model. In this section some of the main

characteristics of the pinched i-v hysteresis such as maximum

current, angle of rotation with frequency, and power inside the

hysteresis are derived.

A. Implicit Resistance Equation:

The implicit equations which relate RM as function of v is,

R± =

√

R2

i −
VokRd

πf

(

1±

√

1− (v/Vo)
2

)

(7)

Fig. 7. Memristor’s 3D i-v hysteresis for a sinusoidal input voltage.
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Fig. 8. (a) i-v hysteresis at frequency of 1Hz and peak voltage of −1.5Volt
using Roff = 16kΩ, Ron = 100Ω, Ri = 4kΩ and p = 10. (b) General
schematic of the Memristor’s pinched i-v hysteresis.

where the positive sign is applied when the voltage increases

and the negative when decreases. Thus the rate of change of

v must be known (ie memorize the previous value). Conse-

quently, the implicit equations for the i-v hysteresis is given

by i1,2 = v/R±, which matches the SPICE simulations as

shown in Fig. 8(a).

B. Location of the peak current:

The peak current, occurring at the point b on the pinched

i-v hysteresis, is given by i∗ = v/R∗, where v∗andR∗ are the

voltage and resistance at point b as shown in Fig. 8(b). Let,

y =

√

1− (v/Vo)
2
, α1 = R2

in −
VokRd

πf
, α1 =

VokRd

πf
(8)

The critical point at which the maximum current occurs can

be obtained by evaluating, ∂i/∂v = (∂i/∂y) (∂y/∂v) = 0,

which can be simplified into the following quadratic equation,

y2 ± 2
α1

α2

y + 1 = 0 (9a)

y = 1−
πfRin (Ri −RM )

VokRd

=
πf (Ri −RM )

2

2VokRd

(9b)

v∗ = Vo

√

1− y2, R∗ =
√

RinRM (9c)

Fig. 9 shows the peak current values i∗ and its location v∗

versus the frequency for unsaturated conditions. The minimum

value of the frequency is calculated by the maximum absolute

value of the equation (5a) and (5b). In this case to avoid Mem-

ristor’s resistance saturation the frequency must be greater than

33.7784Hz, when Vo = 3V, Rin = 3KΩ, Ron = 100Ω, and

Roff = 16KΩ.

C. Angle of the i-v hysteresis at peak voltage

As shown in Fig. 8(b), the angle αm indicates the rotation

of the hysteresis curve and is given by,

αm = cot−1 (Ra) = cot−1
√

RinRM (10)

where Ra is the resistance at the peak voltage v = Vo as,

Ra =
√

(R2

i +R2

M ) /2 (11)

Fig. 10 plots the Memristor’s resistance versus frequency.

This angle depends on the initial resistance Ri and the ratio
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Vo/f as discussed before. The maximum range of this angle

is given by,

cot−1 (Roff ) < αm < cot−1 (Ron) (12)

D. Area enclosed by the i-v hysteresis:

The power under the curves C1 and C2, and the enclosed

area inside the pinched hysteresis is a key characteristic of

the Memristive device. The area inside one loop of the i-v
characteristic of the HP’s Memristor is,

AHysteresis = −

∫

C1

i1d−

∫

C2

i2dv (13)

where the negative signs are due to the counterclockwise

direction of the closed loop. The area under any curves

between v = v1 and v2 can be calculated as,

A1 = −
2π2f2

k2R2

d

r2=Ra
∫

r1=Ri

(

R2

i −
VokRd

πf
− r2

)

dr

=
2π2f2

3k2R2

d

(RM −Ra)
(

RaRM −R2

i

)

(14)

30 40 50 60 70 80 90 100
0

500

1000

1500

2000

2500

3000

3500

Frequency (Hz)

 

 

R
M

 (min)

R
a

R
*

R
in

Fig. 10. The relationship between the initial resistance, resistance at
peak voltage, resistance at peak current, and the minimum resistance versus
frequency when Vo = 3V, Ri = 3kΩ, Ron = 100Ω, and Roff = 16kΩ.

In addition, A2 can be given by,

A2 =
2π2f2

3k2R2

d

(Ra −Ri)
(

R2

M −RiRa

)

(15)

So, the hysteresis power (enclosed by the two curves) is,

AHysteresis = A2 −A1 =
π2f2

3k2R2

d

|Rinitial −RM |
3

(16)

As the frequency increases by small amount, the difference

between the Ri and RM decreases, which compensates the

i-v hysteresis area. This decreasing will be dominant, and this

area at high frequency can be approximated as,

AHysteresis ≈
V 3

o kRd

3πfR3

initial

(

1 +
VokRd

2πfR2

initial

)

(17)

These expressions are valid if and only if R ∈ (Ron, Roff ).

IV. CONCLUSION

In this paper, we present a mathematical model for Memris-

tors characterized by linear dopant drift under sinusoidal input

voltage stimulation. The model describes the Memristor’s

resistance using its voltage and current without the need for

the flux (φ) or charge equations (Q). The frequency response

of the Memristor’s resistance and its bounding conditions

are derived for the first time. A simple implicit equation for

the pinched i-v hysteresis is derived, describing its general

characteristics such as critical resistances, maximum current

magnitude and location, and the power inside this hysteresis.

All the derived formulas are compared with the nonlinear

Memristor’s SPICE model showing perfect matching.
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