
On the Mathematical Properties

of Linguistic Theories I

C. Raymond Perrault

Artificial Intelligence Center
SRI International

Menlo Park, CA 94025
and

Center for the Study of Language and Information
Stanford University

Metatheoretical findings regarding the decidability, generative capacity, and recognition complexity

of several syntactic theories are surveyed. These include context-free, transformational, lexical-func-

tional, generalized phrase structure, tree adjunct, and stratificational grammars. The paper concludes

with a discussion of the implications of these results with respect to linguistic theory.

1. In t roduc t ion

The development of new formalisms for expressing

linguistic theories has been accompanied, at least since

Chomsky and Miller's early work on context-free

languages, by the study of their metatheory. In particular,

numerous results on the decidability, generative capacity,

and, more recently, the recognition complexity of these

formalisms have been published (and rumored!). This

paper surveys some of these results and discusses their

significance for linguistic theory. However, we will avoid

entirely the issue of whether one theory is more descrip-

tively adequate than another. We will consider context-

• free, transformational, lexical-functional, generalized

phrase structure, tree adjunct, and stratificational

grammars)

Although this paper focuses on metatheoretic results

as arbiters among theories as models of human linguistic

capacities, they may have other uses as well. Complexity

results could be utilized for making decisions about the

implementation of parsers as components of computer-

based language-understanding systems. However, as

Stanley Peters has pointed out, no one should underesti-

mate"the pleasure to be derived from ferreting out these

results! 3

2. Preliminary Definitions

We assume that the reader is familiar with the basic defi-

nitions of regular, context-free (CF), context-sensitive

(CS), recursive, and recursively enumerable (r.e.)

languages, as well as with their acceptors (see Hopcroft

and Ullman 1979). We will be much concerned with the

problem of recognizing whether a string is contained in a

given language (the recognition problem) and with that of

l This research was sponsored in part by the National Science and

Engineering Research Council of Canada under Grant A9285. It was

made possible in part by a gift from the Systems Development Founda-

tion. An earlier version of this paper appeared in the Proceedings of the

21st Annual Meeting of the Association for Computational Linguistics,
Cambridge, MA, June 1983.

I would like to thank Bob Berwick, Alex Borgida, Jim Hoover,

Aravind Joshi, Lauri Kart tunen, Fernando Pereira, Stanley Peters, Peter

Sells, Hans Uszkoreit, and the referees for their suggestions.

ZAlthough we will not examine them here, formal studies of other

syntactic theories have been undertaken: e.g. Warren (1979) for

Montague 's PTQ (1973). Pereira and Shieber (1984) use techniques

from the denotational semantics of programming languages to investi-

gate the feature systems of several unification-based theories.

3It may be worth pointing out that the introduction of formal argumen-

tation in linguistics has not always been beneficial. Some pseudoformal

arguments against rival theories were unquestionably accepted by an

audience that did not always have the mathematical sophistication to be

critical. For example, Postal 's claim (1964b) that two-level stratifica-

tional grammars generated only context-free languages was based on an

imprecise definition by its proponents, as well as by the failure to see

that among the more precise definitions were many very powerful ones.

Copyright 1985 by the Association for Computational Linguistics. Permission to copy without fee all or part of this material is granted provided that

the copies are not made for direct commercial advantage and the CL reference and this copyright notice are included on the first page. To copy

otherwise, or to republish, requires a fee and / o r specific permission.

0362-613X/84/030165-12503.00

Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984 165

C. Raymond Perrault On the Mathematical Properties of Linguistic Theories

generating one (or all) derivations of the string (the pars-
ing problem).

Some elementary definitions from complexity theory

may be useful. Further details may be found in Aho et

al. (1974). Complexity theory is the study of the

resources required by algorithms, usually space and time.

Let f(x) be a function, say, the recognition function for a

language L. The most interesting results we could obtain

regarding f would be a lower bound on the resources

needed to compute f on a machine of a given architec-

ture, say, a v o n Neumann computer or a parallel array of

neurons. These results over whole classes of machines

are very difficult to obtain, and none of any significance

exist for parsing problems.

Restricting ourselves to a specific machine model and

an algorithm M for f, we can ask about the cost (e.g., in

time or space) c(x) of executing M on a specific input x.

Typically, c is too fine-grained to be useful: what one

studies instead is a function c w whose argument is an

integer n denoting the size of the input to M, and which

gives some measure of the cost of processing inputs of

length n. Complexity theorists have been most interested

in the asymptotic behaviour of Cw, i.e., the behaviour of

c w as n gets large.

If one is interested in upper bounds on the behaviour

of M, one usually defines Cw(n) as the maximum of c(x)

over all inputs x of size n. This is called the worst-case

complexity function for M. Other definitions are possi-

ble: for example, one can define the expected complexity

function Ce(n) for M as the average of c(x) over all inputs

of length n. c e might be more useful than c w if one had an

idea as to the distribution of possible inputs to M. Not

only are realistic distributions rarely available, but the

introduction of probabilistic considerations makes the

study of expected complexity technically more difficult

than that of worst-case complexity. For a given problem,

expected and worst-case measures may be quite

different. 4

It is quite difficult to get detailed descriptions of Cw;

for many purposes, however, a cruder estimate is suffi-

cient. The next abstraction involves ".lumping". classes

of c w functions into simpler ones that demonstrate their

asymptotic behaviour more clearly and are easier to

manipulate. This is the purpose of O-notation (read "big-

oh notation"). Let f(n) and g(n) be two functions. Func-

tion f is said to be O(g) if a constant multiple of g is an

upper bound for f , for all but a finite number of values of

n. More precisely, f is O(g) if there is are constants K

and n o such that for all n > no, fin) < K * g(n).

Given an algorithm M, we will say that M is TIME(g)

or, equivalently, that its worst-case time complexity is

O(g) if the worst-case time cost function Cw(n) for M is

O(g). 5 This merely says that almost all inputs to M of size

n can be processed in time at most a constant times g(n).

It does not say that all inputs require g(n) time, or Ruzzo

machine that implements f. Also, if two algorithms A i

and A 2 a r e available for a function f, and if their worst-

case complexity can be given respectively as O(g) and

O(g), and gl <- g2, it may still be true that for a large

number of cases (maybe even all those likely to be

encountered in practice), A 2 will be the preferable algo-

rithm simply because the constant K 1 for gl may be much

larger than is K 2 for g2" A parsing-related example is

given in Section 3.

In examining known results pertaining to the recogni-

tion complexity of various theories, it is useful to consid-

er how robust they are in the face of changes in the

machine model from which they were derived. These

models can be divided into two classes: sequential and

parallel. Sequential models (Aho et al. 1974) include the

familiar single- and multitape Turing machines (TM) as

well as random-access machines (RAM) and random-ac-

cess stored-program machines (RASP). A RAM is like a

TM except that its working memory is random-access

rather than sequential. A RASP is like a RAM but stores

its program in its memory. Of all these models, the RASP

is most like a yon Neumann computer.

All these sequential models can simulate one another

in ways that do not require great changes in time

complexity. For example, a k-tape Turing Machine that

runs in time O(t) can be simulated by a RAM in time

O(t log0, conversely, a RAM running in O(t) can be simu-

lated by a k-tape TM in time O(t2).. In fact, all the famil-

iar sequential models are polynomially related: they can

simulate one another with at most a polynomial loss in

efficiency. 6 Thus, if a syntactic model is known to have a

difficult recognition problem when implemented on one

sequential model, execution of an equivalent algorithm

on another sequential machine will not be much easier.

Transforming a sequential algorithm to one on a paral-

lel machine with a fixed number K of processors provides

at most a factor K improvement in speed. More interest-

ing results are obtained when the number of processors is

allowed to grow with the size of the problem, e.g., with

the length of the string to be parsed. These processors

can be viewed as connected together in a circuit, with

inputs entering at one end and outputs being produced at

the other. The depth of the circuit, or the maximum

number of processors that data must be passed through

from input to output, corresponds to the parallel time

required to complete the computation. A problem that

has a solution on a sequential machine in polynomial time

and in space s will have a solution on a parallel machine

with a polynomial number of processors and circuit depth

(and hence parallel time) O(s2). This means that algo-

rithms with sequential solutions requiring small space

(such as deterministic CSLs) have fast parallel solutions.

4 Hoare's Quicksort algorithm, for example, has expected time complex-

ity of O(n logn) and worst-case complexity of O(n2), using notation

defined in the next paragraph.

Similarly, let M be SPACE(g) if the worst-case space complexity of M

is O(g).

6 RAMs and RASPs are allowed to store arbitrarily large numbers in

their registers. These results assume that the cost of performing

elementary operations on those numbers is proportional to their length,

i.e. to their logarithm.

166 Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984.

C. Raymond Perrault On the Mathematical Properties of Linguistic Theories

For a comprehensive survey of parallel computation, see

Cook (1981).

3. Context-Free Languages

Recognition techniques for context-free languages are

well known (Aho and Ullman 1972). The so-called CKY

or "dynamic programming" method is attributed by Hays

(1962) to J. Cocke; it was discovered independently by

Kasami (1965) and Younger (1967), who showed it to

be O(n3). It requires the grammar to be in Chomsky

Normal Form, and putting an arbitrary grammar in CNF

may square its size. Berwick and Weinberg (1982) point

out that, since the complexity of parsing algorithms is

generally at least linearly dependent on the size of the

grammar, this requirement may make CKY less than opti-

mal for parsing short sentences.

Earley's algorithm recognizes strings in arbitrary CFGs

in time O(n 3) and space O(n2), and in time O(n e) for

unambiguous CFGs. Graham, Harrison, and Ruzzo

(1980) offer an algorithm that unifies CKY and Earley's

algorithm (1970), and discuss implementation details.

Valiant (1975) showed how to interpret the CKY algo-

rithm as the finding of the transitive closure of a matrix

and thus reduced CF recognition to matrix multiplication,

for which subcubic algorithms exist. Because of the

enormous constants of proportionality associated with

this method, it is not likely to be of much practical use,

either an implementation method or as a "psychologically

realistic" model.

Ruzzo (1979) has shown how CFLs can be recognized

by Boolean circuits of depth O(log(n)2), and therefore

that parallel recognition can be accomplished in time

O(log(n)2). The required circuit size is polynomial in n.

So as not to be mystified by the upper bounds on CF

recognition, it is useful to remember that no known CFL

requires more than linear time, nor is there even a

nonconstructive proof of the existence of such a

language.

This is also a good place to recall the difference

between recognition and parsing: if parsing requires that

distinct structures be produced for all parses, it will be

TIME(2n), since in some grammars sentences of length n

may have 2 n parses (Church and Patil 1982). For an

empirical comparison of various parsing methods, see

Slocum (1981).

4. Transformational Grammar

From its earliest days, discussions of transformational

grammar (TG) have included consideration of matters

computational.

Peters and Ritchie (1973a) provided some the first

nontrivial results regarding the generative power of TGs.

Their model reflects the Aspects version quite faithfully,

including transformations that move and add constitu-

ents, and delete them subject to recoverability. All trans-

formations are obligatory, and applied cyclically from the

bot tom up. They show that every r.e. set can be gener-

ated by applying a set of transformations to a context-

sensitive base. The proof is quite simple: the right-hand

sides of the type-0 rules that generate the r.e. set are

padded with a new "blank" symbol to make them at least

as long as their left-hand sides. Rules are added to allow

the blank symbols to commute with all others. These

context-sensitive rules are then used as the base of a TG

whose only transformation deletes the blank symbols.

Thus, if the transformational formalism itself is

supposed to characterize the grammatical strings of possi-

ble natural languages, then the only languages being

excluded by the formalism are those that are not enumer-

able under any model of computation. The characteriza-

tion assumption is further discussed in Section 9.

At the expense of a considerably more intricate argu-

ment, the previous result can be strengthened (Peters and

Ritchie 1971) to show that every r.e. set can be gener-

ated by a context-free based TG, as long as a filter - an

intersection with a regular set - can be applied to the

phrase-markers produced by the transformations. In

fact, the base grammar can be independent of the

language being generated. The proof involves the simu-

lation of a TM by a TG. The transformations first gener-

ate an "input tape" for the TM being simulated, then

apply the TM productions, one per cycle of the grammar.

The filter ensures that the base grammar will generate

just as many S nodes as necessary to generate the input

string and do the simulation. In this case too, if the

transformational formalism is supposed to characterize

the possible natural languages, the universal base hypoth-

esis (Peters and Ritchie 1969), according to which all

natural languages can be generated from the same base

grammar, is empirically vacuous: any recursively enumer-

able language can.

Following Peters and Ritchie's work, several attempts

were made to find a restricted form of the transforma-

tional model that is descriptively adequate, yet whose

generated languages are recursiVe (see, for example,

LaPointe 1977). Since a key part of the proof in Peters

and Ritchie (1971) involves the user of a filter on the

final derivation trees, Peters and Ritchie (1973c) exam-

ined the consequences of forbidding final filtering. They

show that, if S is the recursive symbol in the CF base, the

generated language L is predictably enumerable and expo-
nentially bounded. A language L is predictably enumerable

if there is an "easily" computable function t(n) that gives

an upper bound on the number of tape squares needed

by its enumerating TM to enumerate the first n elements

of L. L is exponentially bounded if there is a constant K

such that, for every string x in L, there is another string
t .

x m L whose length is at most K times the length of x.

The class of nonfiltering languages is quite unusual,

including all the CFLs (obviously), but also properly

intersecting the CSLs, the recursive languages, and the

r.e. languages.

The source of nonrecursivity in transformationally

generated languages is that transformations can delete

large parts of the tree, thus producing surface trees that

are arbitrarily smaller than the deep structure trees they

Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984 167

C. Raymond Perrault On the Mathematical Properties of Linguistic Theories

were derived from. This is what Chomsky's

"recoverability of deletions" condition was meant to

avoid. In his thesis, Petrick (1965) defines the following

condition on transformational derivations: a derivation

satisfies the terminal-length-increasing condition if the

length of the yield of any subtree u, resulting from the

application of the transformational cycle to a subtree t, is

greater than the length of the yield of any subtree u r

resulting from the application of the cycle to a subtree t r

of t.

Petrick shows that, if all recursion in the base gram-

mar "passes through S" and all derivations satisfy the

terminal-length-increasing condition, then the generated

language is recursive. Using a slightly more restricted

model of transformations Rounds (1973) strengthens this

result by showing that the resulting languages are in fact

context-sensitive.

In an unpublished paper, Myhill shows that, if

Petrick's condition is weakened to terminal-length-non-

decreasing, the resulting languages can be recognized in

space that is at most exponential in the length of the

input. This implies that recognition can be done in at

most double-exponential time, but Rounds (1975) proves

that not only can recognition be done in exponential time,

but that every language recognizable in exponential time

can be generated by a TG satisfying the terminal-length-

nondecreasing condition and recoverability of deletions.

This is a very strong result, because of the closure

properties of the class of exponential-time languages> To

see why this is so requires a few more definitions.

Let P be the class of all languages that can be recog-

nized in polynomial time on a deterministic TM, and NP

the class of all languages that can be recognized in polyn-

omial time on a nondeterministic TM. P is obviously

contained in NP, but the converse is not known, although

there is much evidence that it is false.

There is a class of problems, the so-called NP-eomplete

problems, which are in NP and "as difficult" as any other

problems in NP in the following sense: if any of them

could be shown to be in P, all the problems in NP would

also be in P. One way to show that a language L is

NP-complete is to show that L is in NP and that every

other language L o in NP can be polynomially transformed

into L, - i.e., that there is a deterministic TM, operating

in polynomial time, that will transform an input w to L

into an input w o to L o such that w is in L if and only if w o

is in L o. In practice, to show that a language is

NP-complete, one shows that it is in NP and that some

already known NP-complete language can be polynomial-

ly transformed into it.

All the known NP-complete languages can be recog-

nized in exponential time on a deterministic machine,

and none have been shown to be recognizable in less

than exponential time. Thus, since the restricted trans-

formational languages of Rounds characterize the expo-

nential languages, if all of them were to be in P, P would

be equal to NP. Putting it another way, if P is not equal

to NP, some transformational languages (even those

satisfying the terminal-length-nonincreasing condition)

have no "tractable" (i.e., polynomial-time) recognition

procedures on any deterministic TM. It should be noted

that this result also holds for all the other known sequen-

tial models of computation, as they are all polynomially

related, and even for parallel machines with as many as a

polynomial number of processors.

All the results outlined so far in this section are

inspired by the model of transformational grammar

presented in Aspects. More recent versions of the theory

are substantially different, primarily in that most of the

constructions handled in terms of deletions from the base

trees are now handled using traces (i.e., constituents with

no lexical material) indexed to other constituents. In his

contribution to this issue (p. 189), Berwick presents a

formalization of the theory of Government and Binding

(GB) and some of its consequences. The formalization is

unusual in that it reduces grammaticality to well-formed-

ness conditions on what he calls annotated surface struc-

tures. From these conditions, two results follow. One is

that for every GB grammar G there is a constant K such

that for every string w in L(G) and for every annotated

surface structure s whose yield is w, the number of nodes

in s is bounded by K*length(w). This, of course, ensures

that the L(G) is recursive. The second result is that GB

languages all have the linear growth or arithmetic growth

property: for every sufficiently long string w in a GB

language L there is another string w p in L which is at

most K symbols shorter than w.

A few comments about Berwick's formalization and

results are in order. To begin with, the formalization is

clearly a quite radical simplification of current practice

among GB practitioners, as it does not reflect

D-structure, LF, or PF, nor case theory, the theta-eriter-

ion, and control theory. Thus, in its current form, the

formalization does not include the machinery necessary

to account for passives and raising. It also assumes that

X-bar theory limits the base to trees generated by CFGs

with no useless nonterminals and no cycles, except

presumably through the S and N P nodes. This excludes

accounts of stacked adjectives, as in the white speckled

shaggy Pekingese, and of stacked relative clauses.

We suspect that most of these features could be added

to the formalization without affecting either result, and

that it is extremely useful to have even a first approxi-

mation of one to work with. Although Berwick is mute

on the subject, we conjecture that recognition in the

model he gives can be done in polynomial time. What is

less clear is what will happen to recognition complexity

under models that include the other constraints.

Berwick's result about the linear growth property has

no immediate functional consequence for complexity or

even for weak generative capacity. It is presented as a

property that natural languages seem to have and thus

that should be predicted by the linguistic model.

168 Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984

C. Raymond Perrault On the Mathematical Properties of Linguistic Theories

5. LexicaI-Functional Grammar

In part, transformational grammar seeks to account for a

range of constraints or dependencies within sentences.

Of particular interest are subcategorization, predicate-ar-

gument dependencies, and long-distance dependencies,

such as wh-movement. Several recent theories suggest

different ways of accounting for these dependencies, but

without making use of transformations. We examine

three of these in the next several sections: lexical-func-

tional grammar, generalized phrase structure grammar,

and tree adjunct grammar.

In the lexical-functional grammar (LFG) of Kaplan

and Bresnan (1982), two levels of syntactic structure are

postulated: constituent and functional. All the work

done previously by transformations is instead encoded

both in the lexicon and in links established between

nodes in the constituent and functional structures.

The languages generated by LFGs, or LFLs, are CSLs

and properly include the CFLs (Kaplan and Bresnan

1982). Berwick (1982) shows that a set of strings whose

recognition problem is known to be NP-complete, name-

ly, the set of satisfiable Boolean formulas, is an LFL.

Therefore, as was the case for Rounds's restricted class

of TGs, if P is not equal to NP, then some languages

generated by LFGs do not have polynomial-time recogni-

tion algorithms. Indeed only the "basic" parts of the

LFG mechanism are necessary to the reduction. This

includes mechanisms necessary for feature agreement,

for forcing verbs to take certain cases, and for allowing

lexical ambiguity. Thus, no simple change in the formal-

ism is likely to avoid the combinatorial consequences of

the full mechanism. It should be noted that the c-struc-

tures and f-structures necessary to make satisfiable

Boolean formulas into an LFL are not much larger than

the strings themselves; the complexity comes in finding

the assignment of truth-values to the variables. In his

paper in this issue (p. 189), Berwick argues that the

complexity of LFLs stems from their ability to unify trees

of arbitrary size, and that such a mechanism does not

exist in GB. However, the recognition complexity of GB

languages, as formalized in Berwick (1984) or in more

"faithful" models, remains open, and may arise from

other constraints.

Both Berwick and Roach have examined the relation

between LFG and the class of languages generated by

indexed grammars (Aho 1968), a class known to be a

proper subset of the CSLs, but including some

NP-complete languages (Rounds 1973). They claim

(personal communication) that the indexed languages are

a proper subset of the LFLs.

6. Generalized Phrase Structure Grammar

In a series of papers, Gerald Gazdar and his colleagues

(1982) have argued for a joint account of syntax and

semantics that is like LFG in eschewing the use of trans-

formations, but unlike it in positing only one level of

syntactic description. The syntactic apparatus is based

on a nonstandard interpretation of phrase-structure rules

and on the use of metarules. The formal consequences

of both these devices have been investigated.

6.1. Node admissibility

There are two ways of interpreting the function of CF

rules. The first, and most common, is to treat them as

rules for rewriting strings. Derivation trees can then be

seen as canonical representatives of classes of derivations

producing the same string, differing only in the order in

which the same productions are applied.

The second interpretation of CF rules is as constraints

on derivation trees: a legal derivation tree is one in which

each node is "admitted ' by a rule, i.e., each node domi-

nates a sequence of nodes in a manner sanctioned by a

rule. For CF rules, the two interpretations obviously

generate the same strings and the same set of trees.

Following a suggestion of McCawley's , Peters and

Ritchie (1973b) showed that, if one considered context-

sensitive rules from the node-admissibility point of view,

the languages defined were still CF. Thus, for example,

the use of CS rules in the base to impose subcategori-

zation restrictions does not increase the weak generative

capacity of the base component. (For some different

restrictions of context-sensitive rules that guarantee that

only CFLs will be generated, see Baker (1972).)

Rounds (1970b) gives a simpler proof of Peters and

Ritchie's node admissibility result, using the techniques

from tree-automata theory, a generalization to trees of

finite state automata theory for strings. Just as a finite-

state automaton (FSA) accepts a string by reading it one

character at a time, changing its state at each transition, a

finite-state tree automaton (FSTA) traverses trees, propa-

gating states. The top-down FSTA "at taches" a starting

state (from a finite set) to the root of the tree. Transi-

tions are allowed by productions of the form

(q, a, n) = > (q, q,,)

such that if state q is being applied to a node labeled a

and dominating n descendants, then state qi should be

applied to its ith descendant. Acceptance occurs if all

leaves of the tree end up labeled with states in the

accepting subset. The bottom-up FSTA is similar: start-

ing states are attached to the leaves of the tree and the

productions are of the form

(a, n, (q, q) = > q)

indicating that, if a node labeied a dominates n descend-

ants, each labeled with states ql to q,e then node a gets

labeled with state q. Acceptance occurs when the root is

labeled by a state from the subset of accepting states.

As is the case with FSAs, FSTAs of both varieties can

be either deterministic or nondeterministic. A set of

trees is said to be recognizable if it is accepted by a

nondeterministic bot tom-up FSTA. Once again, as with

FSAs, any set of trees accepted by a nondeterministic

bot tom-up FSTA is accepted by a deterministic bot tom-

up FSTA, but the result does not hold for top-down

Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984 169

C. Raymond Perrault On the Mathematical Properties of Linguistic Theories

FSTA, even though the recognizable sets are exactly the

languages recognized by nondeterministic top-down

FSTAs.

A set of trees is local if it is the set of derivation trees

of a CF grammar. Clearly, every local set is recognizable

by a one-state bottom-up FSTA that checks at each node

to verify that it satisfies a CF production. Furthermore,

the yield of a recognizable set of trees (the set of strings

it generates) is CF. Not all recognizable sets are local: an

example is the set of trees that satisfies the constraints of

X-bar theory and the 0-criterion. However, they can all

be mapped into local sets by a simple homomorphic

mapping. 7 Rounds's proof (1970a) that CS rules under

node admissibility generate only CFLs involves showing

that the set of trees accepted by the rules is recognizable

- i.e., that there is a nondeterministic bottom-up FSTA

that can check at each node that some node admissibility

condition holds there. This requires confirming that the

"strictly context-free" part of the rule holds and that a

proper analysis of the tree passing through the node

satisfies the "context-sensitive" part of the rule.

Joshi and Levy (1977) strengthened Peters and

Ritchie's result by showing that the node admissibility

conditions could also include arbitrary Boolean combina-

tions of dominance conditions: a node could specify a

bounded set of labels that must occur either immediately

above it along a path to the root, or immediately below it

on a path to the frontier.

In general, the CF grammars constructed in the proof

of weak equivalence to the CS grammars under node

admissibility are much larger than the original, and not

useful for practical recognition. Joshi, Levy, and Yueh

(1981), however, show how Earley's algorithm can be

extended to a parser that uses the local constraints direct-

ly.

6.2. M e t a r u l e s

The second important mechanism used by Gazdar

(1982) is metarules, or rules that apply to rules to

produce other rules. Using standard notation for CF

rules, one example of a metarule that could replace the

Apects transformation known as "particle movement" is

V-~ V N P t X = > V-~ VPtN[-PRO]X

The symbol X here behaves like variables in structural

analyses of Aspects transformations. If such variables are

restricted to being used as abbreviations, that is, if they

are allowed to range only from a finite subset of strings

over the vocabulary, then closing the grammar under the

metarules produces only a finite set of derived rules; and

thus the generative power of the formalism is not

increased. If, on the other hand, X is allowed to range

over strings of unbounded length, as are the essential vari-

ables of transformational theory, then the consequences

are less clear. It is well known, for example, that, if the

7 This mapping is a bottom-up finite-state tree transducer that simply
labels each node with the state the recognizing bottom-up FSTA would
have been in at that node.

right-hand sides of phrase structure rules are allowed to

be arbitrary regular expressions, the generated languages

are still context-free. Might something like this not be

happening with essential variables in metarules? It turns

out that such is not the case.

The formal consequences of the presence of essential

variables in metarules depend on the presence of another

device, the so-called phantom categories. It may be

convenient in formulating metarules to allow, in the left-

hand sides of rules, occurrences of syntactic categories

that are never introdu~ced by the grammar, i.e., that never

appear in the right-hand sides of rules. In standard CFLs,

these are called useless categories," rules containing them

can simply be dropped, with no change in weak genera-

tive capacity. Not so with metarules: it is possible for

metarules to be used to rewrite rules containing phantom

categories into rules without them. Such a device was

proposed at one time as a way to implement passives in

the GPSG framework.

Uszkoreit and Peters (1983) have shown that essential

variables in metarules are powerful devices indeed: CF

grammars with metarules that use at most one essential

variable and allow phantom categories can generate all

recursively enumerable sets. Even if phantom categories

are banned, some nonrecursive sets can be generated as

long as the use of at least one essential variable is

allowed.

Two constraints on metarules have been proposed to

restrict the generative capacity of metarule systems.

Gazdar (1982) has suggested replacing essential vari-

ables by abbreviative ones, i.e. variables that can only

range over a finite set of (predetermined) alternatives.

Shieber et al. (1983) argue that a generalization is lost in

so doing, in the sense that the class of instantiations of

the variable must be defined bye extension rather than by

intension. Given the alternative, this seems a small price

to pay.

The other constraint, suggested by Gazdar and Pullum

(1982), is finite closure of the metarule derivation proc-

ess: no metarule is allowed to apply more than once in

the derivation of a rule. Shieber et al. (1983) present

several examples, namely the treatment of discontinuous

noun phrases in Walpiri, adverb distribution in German,

and causatives in Japanese, that cannot be handled under

the finite closure constraint.

It should be noted that other ways of using one gram-

mar to generate the rules of another have been proposed.

VanWijngaarden (1969), for example, presented a

scheme in which one grammar's sentences are the rules of

another. Greibach (1974) gives some of its properties.

7. T ree A d j u n c t G r a m m a r

The tree adjunct grammars (TAG) of Joshi and his

colleagues (1982, 1984) provide a different way of

accounting for syntactic dependencies. A TAG consists

of two finite sets of finite trees, the centre trees and the

adjunct trees.

170 Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984

C. Raymond Perrault On the Mathematical Properties of Linguistic Theories

The centre trees correspond to the surface structures

of the "kernel" sentences of the languages. The root of

the adjunct trees is labelled with a nonterminal symbol

that also appears exactly once on the frontier of the tree.

All other frontier nodes are labelled with terminal

symbols. Derivations in TAGs are defined by repeated

application of the adjunction operation. If c is a centre

tree containing an occurrence of a nonterminal A, and a

• is an adjunct tree whose root (and one node n on the

frontier) is labelled A, then the adjunction of a to c is

performed by "detaching" from c the subtree t rooted at

A, attaching a in its place, and reattaching t at node n.

Adjunction may then be seen as a tree analogue of a

context-free derivation for strings (Rounds 1970a). The

string languages obtained by taking the yields of the tree

languages generated by TAGs are called tree adjunct

languages (TAL).

In TAGs, all long-distance dependencies are the result

of adjunctions separating nodes that at one point in the

derivation were "close". Both crossing and noncrossing

dependencies can be represented (Joshi 1983)). The

formal properties of TALs are fully discussed by Joshi,

Levy, and Takahashi (1975); Joshi and Levy (1982);

and Yokomori and Joshi (to appe~ar). Of particular inter-

est are the following.

TALs properly contain the CFLs and are properly

contained in the indexed languages, which in turn are

properly contained in the CSLs. Although the indexed

languages contain NP-complete languages, TALs are

much better behaved: Joshi and Yokomori report

(personal communication) an O(n 4) recognition algorithm

and conjecture that an O(n 3) bound may be possible.

8. Stratificational Grammar

The constituent and functional structures of LFG, the

metarules of GPSG, the constraints on deep and surface

structures in TG, and the two-level grammars of van

Wijngaarden are all different ways in which syntactic

constraints can be distributed across more than one

structure. The Stratificational Grammar (SG) of Lamb

and Gleason (Lamb 1966, Gleason 1964) is yet another.

SG postulates the existence of several coupled compo-

nents, known as strata; phonology, morphology, syntax,

and semology are examples of linguistic strata. Each

stratum specifies a set of correct structures, and an utter-

ance has a representative structure at each stratum. The

strata are linearly ordered and constrained b.9 a realiza-

tion relation.

Following Gleason's model, Borgida (1983) defines

the realization relation so that it couples the application

of specific pairs of productions (or sequences of

productions) in the different grammars. Note that this is

a generalization of the pairing of syntactic and semantic

rules suggested by Montague, for example.

With any derivation in a rewrite grammar, one can

associate a string of the productions used in the deriva-

tion. If a canonical order is imposed on the derivations -

for example, that the leftmost nonterminal must be the

next one to be expanded - a unique string of

productions can be associated with each derivation tree.

A two-level stratifieational grammar consists of two

rewrite grammars G 1 and G 2, called tactics, with sets of

productions Pi and P2, respectively, and a realization

relation R, which is a finite set of pairs, each consisting

of a string of productions of P1 and a string of

productions of P2. A derivation D~ in G~ is realized by a

derivation D 2 in G 2 if the strings of productions sz and s 2

associated with D~ and D 2 can be decomposed into

substrings s~=ur.u" and s2=vr..ve respectively, such that

R(u,,v,), for all i from 1 to n. The language generated by

a two-level SG is the set of string generated derivations in

G 2 that realize derivations in Grextended to more than

two strata.

Because the realization relation binds derivations, it is

the strong generative capacity of the tactics that deter-

mines the languages generated. Borgida (1983) studied

the languages of two-level SGs as the strong generative

capacity of the tactics is systematically varied. Some of

his results are unexpected. All r.e. languages can be

generated by two-level SGs with CF tactics. On the other

hand, if the upper tactics are restricted to being right-re-

cursive, only CFLs can be generated, even with type 0

lower tactics. If the grammars are restricted to have no

length-decreasing rules, the languages describable by SGs

lie in the class of quasi-real time languages, defined as

recognizable by nondeterministic TMs in linear time.

The principal feature of SGs that accounts for high

generative power is the presence of left recursion in the

tactics: to escape from the regular languages, one needs

left recursion on at least one stratum; to escape context-

free languages, two non-right-recursive strata are needed.

These results apply to SGs with arbitrary number of stra-

ta.

9. Seeking Significance

How, then, can metatheoretical results be useful in

selecting among syntactic theories? The obvious route,

of course, is to claim that the computationally most

restrictive theory is preferable. However, this compar-

ison is useful only if the theories to be compared rest on

a number of shared assumptions and observations

concerning the scope of the syntax, the computational

properties of the human processor and the relation

between the processor and the syntactic theory.

In this section, we first briefly consider the assumption

of common syntactic coverage and the computational

consequences of theory decomposition. We then ask

how metatheoretical results can be used first as lower

bounds and then as upper bounds on acceptable theories.

9.1. Coverage

Competing linguistic theories must obviously agree on

the burden of their respective syntactic components. We

consider here one example of a constraint for which two

analyses have been presented, one purportedly

completely syntactic, and the other partly semantic. The

Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984 171

C. Raymond Perrault On the Mathematical Properties of Linguistic Theories

problem at hand is the distribution of the so-called polari-

ty-sensitive items, such as any and the metaphorical sense

of lift a finger. Simply put, these terms need to appear

within the scope of a polarity reverser, such as not, or

rarely. The question is: how are scope and polarity rever-

ser defined? In Linebarger 's syntactic analysis (1980),

the scope relation is defined on the logical forms of the

government and binding theory (GB):

An item is in the immediate scope of NOT if (1) it
occurs only in the proposition which is the entire scope of

NOT and (2) within the proposition there are no logical

elements intervening between it and NOT.

In this analysis, scope and intervening must be defined

configurationally, and one assumes that logical element is

defined in the lexicon. Note that not is the only lexical

element that can be a license. L inebarger assumes that

all other cases are, strictly speaking, ill formed and

salvaged only by the availability of an implicature which
can be formalized to contain the polarity items in the

appropriate relation to NOT. (Ladusaw 1983)

Ladusaw's analysis (1979), within the framework of

Montague grammar, is in three parts:

1. A negative polarity item will be acceptable only if it

is in the scope of a polarity-reversing expression.

2. For any two expressions a and /3, constituents of a

sentence S, a is in the scope of/3 with respect to a

composition structure of S, S t, iff the interpretation

of a is used in the formulation of the argument of/3's

interpretation in S t .

3. An expression D is a polarity reverser with respect to

an interpretation function ,~ if and only if, for all

expressions X and y,s

q~(X) _c (~(y) = > ck(d(y)) c ck(d(S))

In (1), "acceptable" is predicated of negative polarity

items; these are clearly parts of surface structures, and

thus syntactic objects. The condition on acceptability is

in terms of scope and polarity-reversing expression. In (3),

polarity reverser is applied to syntactic objects and

defined in terms of their denotations. In (2) a is in the

scope of/3. is defined again of syntactic objects a and/3,

but in terms of the function that interprets the structure

they occur in, not of their denotations. So the condition

applies to syntactic structures, but is defined in terms of

the denotations of parts of that structure and in terms of

the interpretation function itself. Although it would be

satisfying to do so, there appears to be no natural way to

recast Ladusaw's constraint as one that is fully semantic,

namely, by making the interpretation function partial

(i.e., in a way that allows John knows anything to be

grammatical but uninterpretable) because the definition

of scope is in terms of the interpretation function, not the

denotations themselves. We seem condemned to straddle

the fence on this one.

Thus we have here one theory that deals, completely

within the syntactic domain, only with the license not,

and another that accounts for a much broader range of

licenses by imposing on syntactic structures conditions

defined in terms of their interpretations and of the inter-

pretation function itself. They are computationally

incomparable.

We close this section with an aside on the separation

of constraints. Constraint separation can occur in two

ways. In the case of polarity-sensitive items, it takes

place across the syntax-semantics boundary. In several

syntactic theories, such as GB and LFG, it can also occur

within the syntactic theory itself: grammaticality in LFG,

for example, is defined in terms of the existence of pairs

of appropriately related constituent and functional struc-

tures.

In general, the class resulting from the intersection of

the separated classes will be at least as large as either of

them: e.g., the intersection of two CFLs is not always a

CFL. More interesting is the fact that separation some-

times has beneficial computational effects. Consider, for

example, the constraint in many programming languages

that variables can only occur in the scope of a declara-

tion for them. This constraint cannot be imposed by a

CFG but can be by an indexed grammar, at the cost of a

dramatic increase in recognition complexity. In practice,

however, the requirement is simply not checked by the

parser, which only recognizes CFLs. The declaration

conditions are checked separately by a process that trav-

erses the parse tree. In this case, the overall recognition

complexity remains some low-order polynomial. It is not

clear to me whether one wants to consider the declara-

tion requirement syntactic or not. The point is that, in

this case, the "unified account" is more general, and

computationally more onerous, than the modular one.

Some arguments of this kind can be found in Berwick

and Weinberg (1982).

9.2. Metatheoret ical results as lower bounds

The first use of formal results is to argue that a theory

should be rejected if it is insufficiently powerful to

account for observed constraints. Chomsky used this

strategy initially against finite-state grammars 9 and then

against CFGs. It obviously first requires extracting from

empirical observation (and decisions about idealization)

what the minimal generative capacity and recognition

complexity of actual languages are. Several arguments

have been made against the weak generative adequacy of

CFGs. The best known of these are Bar-Hillel 's claim

(1961) based on the occurrence of respectively and

Postal 's (1964a) on nominalization in Mohawk. Higgin-

botham (1984) claims non-context-freeness for English

8 Following Faueonnier, Ladusaw's denotation functions take as their

values sets, ordered as usual. Sentences, for example, get as deno-

tations the set of all worlds in which they are true.

9 There has always been interest in finite-state grammars to account for

some perceptual constraints on sentence recognition, such as the diffi-

culty of center-embedded sentences - e.g., "The rat that the cat that

the dog chase ate died" (Langendoen 1975, Church 1981, Langendoen

and Langsam 1984). They have also provided useful models in

morphology (Kay 1983, Koskenniemi 1983) and phonology (Church

1983),

172 Computational Linguistics, Volume 10, Numbers 3-4, July-D~cember 1984

C. Raymond Perrault On the Mathematical Properties of Linguistic Theories

on the basis of sentences containing such that. Postal

and Langendoen (this issue, p. 177) do so with cases of

sluicing• Pullum and Gazdar (1982) (convincingly, I

believe) refute the first two cases by claiming that the

constraints on which they are based do not in fact hold.

Similarly, Pullum (this issue, p. 182) argues against Postal

and Langendoen, and against Higginbotham, again on

the basis of the linguistic facts• Pullum and Gazdar also

consider the case of verb and noun-phrase ordering in

Dutch; although they show that no evidence has been

given suggesting that the weak generative capacity of

Dutch is greater than context-free, the phrase structure

trees generated by their fragment are not obviously

adequate for a compositional semantic analysis. This

point is also made by Bresnan et al. (1982).

The most convincing evidence so far against the weak

context-freeness of natural languages comes from Swiss-

German• Shieber (1984) shows that, like Dutch, Swiss-

German allows cross-serial order in subordinate clauses

but also requires that objects be marked for case, as in

German. Given that the verb hdlfed 'hell ~' takes a dative

object while aastriiche 'paint ' and lo'nd ' let ' take accusa-

tive objects, we get the following subordinate clauses,

which can be made into complete sentences by prefixing

them with Jan sdit das ' Jan says that'•

• . . mer em Hans es huus h~ilfed aastriiche

• . . we Hans-DAT the house-ACC helped paint

• . . we helped Hans paint the house

• . . *me em Hans es huus 16nd aastriiche

• . . we Hans-DAT the house-ACC let paint

• . . we let Hans paint the house

• . . mer d'chind em Hans es huus ltind h~ilfed

aastriiche

• . . we the children-ACC Hans-DAT the house-ACC

let help paint

• . . we let the children help Hans paint the house

• . . *mer d'chind de Hans es huus ltmd h~ilfed

aastriiche

• . . we the children-ACC Hans-ACC the house-ACC

let help paint

• . . we let the children help Hans paint the house

The proof that Swiss-German (SG) is not context-free

is classic: intersect SG with the following regular

language:

Jan s~iit das mer (d'chind)*(em Hans)*

es huus htind wele (laa)*(hfilfe)* aastriche.

With some care, Shieber argues from the data that SG

13 L is the language

Jan s~iit das mer (d'chind) m (em Hans) m

es huus h~ind wele (laa) m (h~ilfe) m aastriche.

which is not context-free. Since context-free languages

are closed under intersection with regular languages,

Swiss-German is not context-free either.

Hintikka (1977) claims that English is not recursive,

let alone context-free, based on the distribution of the

words any and every. His account of why John knows

everything is grammatical while John knows anything is

not, is that any can appear only in contexts where replac-

ing it with every changes the meaning• If equivalence of

meaning is taken to be logical equivalence, this means

that gramm~/ticality is dependent on the determination of

equivalence of logical formulas, an undecidable problem•

Several responses could be made to Hintikka's claim•

One is to argue, as did Ladusaw (1979), that the

constraint is semantic, not syntactic• Another route,

followed by Chomsky (1980), is to claim that a simpler

solution is available, namely, one that replaces logical

equivalence with syntactic identity of some kind of

logical form. This is the basis for Linebarger 's analysis.

9.3. Meta theore t ica l results as upper bounds

In the preceding section, we discussed ways in which

formal results about syntactic theories can be used

against them on the grounds that they show them to be

insufficiently powerful to account for the observed data.

Now, given a theory that is powerful enough, can its

formal properties be used against it on the basis that it

fails to exclude impossible languages?

The classic case of an argument of this form is Peters

and Ritchie's argument against the TG model, discussed

in Section 4.

More generally, the premises are the following:

1. The possible languages are decidable.

2. The correct syntactic theory must generate exactly

the possible languages•

3. The correct syntactic theory is T.

4. The class Of languages C generated by T is a priori

too large to be the class of possible languages•

One conclusion from this argument is that theory T is

incorrect, i.e., that assumption (3) fails• Chomsky rejects

assumption (1) instead, insisting that the possible

languages are those that can be learned, t°

Although Chomsky also claims that the class of possi-

ble languages is finite, tt the crucial concern here is that,

finite or not, the class of possible languages could contain

languages that are not recursive, or even not recursively

enumerabie. For example, let L be a non-recursive

language and L r its complement (also non-recursive).

Let s be some string of L and s p some string of L r. The

procedure by which the subject chobses L if s is encount-

ered before s r and L r otherwise will learn one of L or L ~.

10 Learning algorithms can be compared along several dimensions. For

a mathematical framework for learnability theory, see Osherson et al.

(1983).

11 Actually, finiteness is claimed for the class of core grammars, from

which the possible languages are assumed to be derived. Core

languages and possible languages would be the same only "under ideal-

ized conditions that are never realized in fact in the real world of heter-

ogeneous speech communities Each actual ' language' will

incorporate a periphery of borrowings, historical residues, inventions,

and so on, which we can hardly expect to - and indeed would not want

to - incorporate within a principled theory of UG." (Chomsky 1981: 8)

Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984 173

C. Raymond Perrault On the Mathematical Properties of Linguistic Theories

Chomsky (1980) argues convincingly that there is no

case for natural languages being necessarily recursive.

Nevertheless, languages might just happen to be recur-

sive. Putnam (1961) gives three reasons he claims "point

in this direction":

1. "Speakers can presumably classify sentences as

acceptable or unacceptable, deviant or nondeviant,

et cetera, without reliance on extra-linguistic

contexts. There are of course exceptions to this

rule...",

2. Grammaticality judgments can be made for nonsense

s e n t e n c e s ,

3. Grammars can be learned.

The first reason is most puzzlir~g. The reference to

"extra-linguistic context" is irrelevant; without it, reason

(1) seems to be asse r t ing th~/t acceptability can be

decided except where it cannot be. With respect to the

second reason, the fact that grammaticality judgments

could be made for some nonsense sentences in no way

affects the question of whether they can be made for all

grammatical sentences. Finally, languages could be

learnable without being recursive, as it is possible that all

the rules that need to be acquired could be on the basis

of sentences for which the recognition procedure

succeeds.

Peters and Ritchie (1973a) contains a suggestive but

hardly conclusive case for contingent recursivity:

1. Every TG has an exponentially bounded cycling

function, and thus generates only recursive

languages,

2. Every natural language has a descriptively adequate

T G , a n d

3. The complexity of languages investigated so far is

typical of the class.

If learnability rather than recognizability is the defin-

ing characteristic of possible languages, no claim refuting

a theory on the grounds that it allows difficult languages

will bear any weight, unless it can also be shown that

possible languages are in fact easier to recognize than the

recognizability theory predicts them to be. However, our

everyday experience with language understanding leads

us to think that syntactic recognition is a computationally

efficient process - an observation, of course, that is the

basis for Marcus's claim (1980) that a large part of it can

be done in linear time, if not in real time. How are we to

reconcile this with the O(g)-results we have for most

theories, where g is at least quadratic? t2

These intuitive conclusions are based on observations

(1) of "everyday" sentences, (2) where some nonsyntac-

tic processing is done in parallel, (3) by the human

processor. Each of these points is important.

12 It has already been pointed out that O(g) results are upper bounds,

and showing that a recognition problem, for example, is O(g) does not

mean that, for any Language, it is necessary to reach the upper-bound.

Better upper-bounds can be achieved by tighter proofs, not just by

better algorithms.

Although recognition may appear to be done in real

time for most sentences encountered day to day, the

O-results are asymptotic worst-case measures. It is

therefore essential to obtain measures of recognition

times for a variety of strings of words, whether sentences

or not, and especially see if there are short, difficult ones.

There are at least two cases of interest here. The first is

that of garden-path sentences such as The horse raced

past the barn fell and Have the students who failed the

exam take the supplementary, which are globally unambig-

uous but locally ambiguous. These appear to be psycho-

logically difficult. Another case is that of sentences that,

in most grammars, are ambiguous because of at tachment

choices, such as those discussed by Church and Patil

(1982). Finding one parse of these sentences is easy, but

finding them all may be exponentially difficult. Psycho-

logical measures show these sentences not to be difficult,

suggesting that not all parses are constructed o r that they

can all be examined in parallel.

O-results depend on some underlying machine model,

and most of the results known for language recognition

have been obtained on RAMs. Can implementation

changes improve things on relevant range? As

mentioned above, the sequential models are all polynomi-

ally related, and no problem not having a polynomial

time solution on a sequential machine is likely to have

one on a parallel machine limited to at most a polynomial

number of processors, at least if P is not equal to NP.

Both these results restrict the improvement one can

obtain by changing implementation, but are of little use

in comparing algorithms of low complexity. Berwick and

Weinberg (1982) give examples of how algorithms of low

complexity may have different implementations differing

by large constant factors. In particular, changes in the

form of the grammar and in its representation may have

this effect.

It is well-known that implementation of machines with

infinite storage on finite devices leads to a change in

specification. A context-free parser implemented on a

machine with finite memory will have a bounded stack

and therefore recognize only finite-state languages. The

language recognized by the implemented machine could

therefore be recognized by another machine in linear

time. Although one would rarely use this strategy as a

design principle, a variant of it is more plausible: use a

restriction of the general method for a subset of the

inputs and revert to the general method when the special

case fails. Marcus's parser (1980) with its bounded look-

ahead is a good example. Sentences parsable within the

allowed look-ahead have "quick" parses, but some gram-

matical sentences, such as "garden path" sentences

cannot be recognized without an extension to the mech-

anism that would distort the complexity measures. A

consequence of the possibility of implementation of this

character is that observations of their operation ought to

show "discontinuities" in the processing time, depending

on whether an input is in or out of the restricted subset.

174 Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984

C. Raymond Perrault On the Mathematical Properties of Linguistic Theories

There is obviously much more of this story to be told.

Al low me to speculate as to how it might go. We may

end up with a space of linguistic theories, differing in the

idealization of the data they assume, in the way they

decompose constraints, and in the procedural specifica-

tions they postulate. I take it that two theories may

differ in that the second simply provides more detail than

the first as to how constraints specified by the first are to

be used. Our observations, in particular our measure-

ments of necessary resources, are drawn from the

"ultimate implementation", but this does not mean that

the "ultimately low-level theory" is necessarily the most

informative, or that less procedural theories are not

useful stepping stones to more pr6cedural ones.

It is also not clear that theories of different computa-

tional power may not be useful as descriptions of differ-

ent parts of the syntactic apparatus. For example, it may

be easier to learn statements of constraints within the

framework of a general machine. The constraints once

learned might then be subjected to transformation to

produce more efficient special-purpose processors also

imposing resource limitations.

Whatever we decide to make of existing formal

results, it is clear that continuing contact with the

complexity community is important. The driving prob-

lems there are the P = NP question, the determination of

lower bounds, the study of time-space tradeoffs, and the

complexity of parallel computations. We still have some

methodological house-cleaning to do, but I don't see how

we can avoid being affected by the outcome of their

investigations.

References

Aho, A.V. 1968 Indexed Grammars: An Extension of the Context-

Free Grammars. JACM 15:647-671.

Aho, A.V.; Hopcroft, J.E.; and Ullman, J.D. 1974 The Design and

Analysis of Computer Algorithms. Addison-Wesley, Reading, Massa-

chusetts.

Aho, A.V. and Ullman, J.D. 1972 The Theory of Parsing, Translation,

and Compiling. Prentice Hall, Englewood Cliffs, New Jersey.

Baker, B.S. 1972 Arbitrary Grammars Generating Context-Free

Languages. Center for Research in Computing Technology,

Harvard University.

Bar-Hillel, Y.; Perlis, M.; and Shamir, E. 1961 On Formal Properties

of Simple Phrase Structure Grammars. Z. Phonetik, Sprach. Komm.

14: 143-172.

Berwick, R.C. and Weinberg, A. 1982 Parsing Efficiency, Computa-

tional Complexity, and the Evaluation of Grammatical Theories.

Linguistic Inquiry 13: 165-191.

Berwick, R.C. 1982 Computational Complexity and Lexical Func-

tional Grammar. American Journal of Computational Linguistics

8(3-4): 97-109.

Berwick, R.C. 1984 Strong Generative Capacity, Weak Generative

Capacity and Modern Linguistic Theories. CL 10(3-4):, 189-203.

Borgida, A.T. 1983 Some Formal Results about Stratificational Gram-

mars and their Relevance to Linguistics. Math. Sys. Th. 16: 29-56.

Bresnan, J.; Kaplan, R.M.; Peters, P.S.; and Zaenen, A. 1982 Cross-

serial Dependencies in Dutch. Ling. lnq. 13.

Chomsky, N. 1980 Rules and Representations. Columbia University

Press, New York, New York.

Chomsky, N. 1981 Lectures on Government and Binding: the Pisa

Lectures. Forts Publications Holland, Dordrecht.

Church, K. 1981 On Memory Limitations in Natural Language Proc-

essing. Master Th., M.I.T.

Church, K. 1983 A Finite-State Parser for Use in Speech Recognition.

Proceedings of 21st Annual Meeting of the ACL. Cambridge, Massa-

chusetts: 91-97.

Church, K. and Patti, R. 1982 Coping with Syntactic Ambiguity or

How to Put the Block on the Table. American Journal of Computa-

tional Linguistics 8(3-4): 139-149.

Cook, S.A. 1981 Towards a Complexity Theory of Synchronous

Parallel Computation. L'Enseignement Mathdmatique 27: 99-124.

Earley, J. 1970 An Efficient Context-Free Parsing Algorithm.

Communications of A CM 13: 94-102.

Gazdar, G. 1982 Phrase Structure Grammar. In Jacobson, P. and

Pullum, G., Eds., The Nature of Syntactic Representation. Reidel,

Dordrecht.

Gazdar, G. and Pullum, G. 1982 Generalized Phrase Structure Gram-

mar: A Theoretical Synopsis. Indiana Univ. Linguistic Club.

Gleason, H.A. Jr, 1964 The Organization of Language: a Stratifica-

tional View. In Monograph Series on Language and Linguistics, no.

21. Georgetown University Press, Washington.

Graham, S.L.; Harrison, M.A.; and Ruzzo, W.L. 1980 An Improved

Context-Free Recognizer. ACM Trans. on Prog. Lang. and Systems

2: 415-462.

Greibach, S.A. 1974 Some Restrictions on W-Grammars. Int. J. of

Comp. and Info. Sc. 3: 415-462.

Hays, D.G. 1962 Automatic Language Data Processing. Prentice Hall,

Englewood Cliffs, New Jersey.

Higginbotham, J. 1984 English Is Not a Context-Free Language.

Ling. Inq. 15: 225-234.

Hintikka, J.K.K. 1977 Quantifiers in Natural Language: Some Logical

Problems. II. Linguistics and Philosophy 2:153-172.

Hopcroft, J.E. and Ullman, J. 1979 Introduction to Automata Theory.

Languages and Computation. Addison Wesley, Reading, Massachu-

setts.

Joshi, A.K. 1983 Factoring Recursion and Dependencies: an Aspect

of Tree Adjoining Grammars and a Comparison of Some Formal

Properties of TAGs. Proceedings of 21st Annual Meeting of the

ACL. Cambridge, Massachusetts: 7-15.

Joshi, A.K. 1984 How Much Context-Sensitivity Is Required to

Provide Reasonable Structual Descriptions: Tree Adjoining Gram-

mars. In Natural Language Processing: Psycholinguistic. Computa-

tional and Theoretical Properties. Cambridge University Press, New

York, New York.

Joshi, A.K. and Levy, L.S. 1977 Constraints on Structural

Descriptions: Local Transformation. SIAM J. on Computing 6:

272-284.

Joshi, A.K. and Levy, L.S. 1982 Phrase Structure Trees Bear More

Fruit than You Would Have Thought. American Journal of Compu-

tational Linguistics 8(1): 1-11.

Joshi, A.K.; Levy, L.S.; and Takahashi, M. 1975 Tree Adjunct Gram-

mars. J. Comp. and Sys. Sc. 10: 136-163.

Joshi, A.K.; Levy, L.S.; and Yueh, K. 1980 Local Constraints on

Programming Languages, Part 1: Syntax. Th. Comp. Sc. 12:

265-290.

Kaplan R. and Bresnan, J. 1982 LexicakFunctional Grammar: a

Formal System for Grammatical Representation. In Bresnan, J.,

Ed., The Mental Representation o f Grammatical Relations. MIT Press,

Cambridge, Massachusetts: 173-281.

Kasami, T. 1965 An Efficient Recognition and Syntax Algorithm for

Context-Free Languages. AF-CRL-65-758 , Air Force Cambridge

Research Laboratory, Bedford, Massachusetts.

Kay, M. 1983 When Meta-Rules Are Not Meta-Rules. in Sparck-

Jones, K. and Wilks, Y., Eds., Automatic Natural Language Parsing.

John Wiley, New York.

Koskenniemi, K. 1983 Two-Level Model for Morphological Analysis.

Ph.D. Th., Univ. of Helsinki.

Ladusaw, W. 1979 Polarity Sensitivity as Inherent Scope Relations.

Ph.D. Th., University of Texas at Austin.

Ladusaw, W. 1983 Logical Forms and Conditions on Grammaticality.

Ling. and PhiL 6: 373-392.

Lamb, S. 1966 Outline of Stratificational Grammar. Georgetown

University Press, Washington, DC.

Langendoen, D.T. 1975 Finite-State Parsing of Phrase-Structure

Languages and the Status of Readjustment Rules in Grammar.

Ling. lnq. 6(4): 533-554.

Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984 175

C. Raymond Perrault On the Mathematical Properties of Linguistic Theories

Langendoen, D.T. and Langsam, Y. 1984 The Representation of

Constituent Structures for Finite-State Parsing. Proceedings of

COLING-84. Stanford, California: 24-27.

LaPointe, S. 1977 Recursiveness and Deletion. Ling. Anal 3:

227-265.

Linebarger, M. 1980 The Grammar of Negative Polarity. Ph.D. Th.,

MIT.

Marcus, M.P. 1980 A Theory of Syntactic Recognition for Natural

Language. MIT Press, Cambridge, Massachusetts.

Montague, R. 1973 The Proper Treatment of Quantification in Ordi-

nary English. In Hintikka, J.K.K.; Moravcsik, J.; and Suppes, P.,

Eds., Approaches to Natural Language: Proceedings of the 1970 Stan-

ford Workshop on Grammar and Semantics. Reidel, Dordrecht: 221-

242.

Osher~on, D.N.; Stob, M.; and Weinstein, S. 1983 Formal Theories of

Language Acquisition: Practical and Theoretical Perspectives.

Proceedings of 1JCAI-83: 566-572.

Pereira, F.C.N. and Shieber, S. 1984 The Semantics of Grammar

Formalisms Seen as Computer Languages. Proceedings of

COLING-84:123-129.

Peters, P.S. and Ritchie, R.W. 1969 A Note on the Universal Base

Hypothesis. Ling. and Phil 5: 150-152.

Peters, P.S. and Ritchie, R.W. 1971 On Restricting the Base Compo-

nent of Transformational Grammars. Inf. and Control 18: 483-501.

Peters, P.S. and Ritchie, R.W. 1973a On the Generative Power of

Transformational Grammars. Inf. Sc. 6: 49-83.

Peters, P.S. and Ritchie, R.W. 1973b Context-Sensitive Immediate

Constituent Analysis - Context-Free Languages. Math. Sys. Theory

6: 324-333.

Peters, P.S. and Ritchie, R.W. 1973c Non-Filtering and Local Filter-

ing Grammars. In Hintikka, J.K.K.; Moravcsik, J.; and Suppes, P.,

Eds., Approaches to Natural Language. Reidel, Dordrecht: 180-194.

Petrick, S.R. 1965 Recognition Procedure for Transformational Gram-

mars. Ph.D. Th., MIT.

Postal, P.M. 1964a Limitations of phrase-structure grammars. In The

Structure of IL~nguage: Readings in the Philosophy of Language. Pren-

tice Hall, Englewood Cliffs, New Jersey: 137-151.

Postal, P.M. 1964b Constituent Structure: A Study of Contemporary

Models of Syntactic Structure. Int. J. of Amer. Ling. 3.

Postal, P.M. and Langendoen, D.T. 1984 English and the Class of

Context-Free Languages. CL 10(3-4): 177-181.

Pullum, G.K. 1984 On Two Recent Attempts to Show that English Is

Not a CFL. CL 10(3-4): 182-186.

Pullum, G.K. and Gazdar, G. 1982 Natural and Context-Free

Languages. Ling. and Phil 4: 471-504.

Putnam, H. 1961 Some Issues in the Theory of Grammar.

Proceedings, American Math. Soc.

Rounds, W.C. 1970a Mappings and Grammars on Trees. Math. Sys.

Th. 4(3): 257-287.

Rounds, W.C. 1970b Tree-Oriented Proofs of Some Theorems on

Context-Free and Indexed Languages. Second Symp. on Th. Comp.

Sc., ACM: 109-116.

Rounds, W.C. 1973 Complexity of Recognition in Intermediate-Level

Languages. Symp. on Sw. &Aut. Th., IEEE: 145-158.

Rounds, W.C. 1975 A Grammatical Characterization of Exponential-

Time Language. Syrup. on Found. of Comp. Sc., IEEE: 135-143.

Ruzzo, W.L. 1979 Uniform Circuit Complexity. Proceedings o f 20th

Annual ACM Syrup. on Found. of Comp. Sc.: 312-318.

Shieber, S.M. 1984 Evidence Against the Context-Freeness of Natural

Language. TN-330, SRI International, Menlo Park, California. To

appear in Linguistics and Philosophy.

Shieber, S.M.; Stucky, S.U.; Uszkoreit, H.; and Robinson, J.J. 1983

Formal Constraints on Metarules. Proceedings of 21st Annual Meet-

ing of the ACL. Cambridge, Massachusetts: 22-27.

Slocum, J. 1981 A Practical Comparison of Parsing Strategies.

Proceedings of the 19th Annual Meeting of the ACL. Stanford, Cali-

fornia: 1-6.

Uszkoreit, H. and Peters, P.S. 1983 Essential Variables in Metarules.

Technical Note 305, SRI International, Menlo Park, California.

Valiant, L. 1975 General Context-Free Recognition in Less Than

Cubic Time. J. Comp. and Sys. Sc. 10: 308-315.

Van Wijngaarden, A. 1969 Report on the Algorithmic Language

ALGOL 68. Numerische Mathematik 14: 79-218.

Warren, D.S. 1979 Syntax and Semantics of Parsing: An Application

to Montague Grammar. Ph.D. Th., University of Michigan.

Yokomori, T. and Joshi, A.K. to appear Semi-linearity, Parikh-bound-

edness and Tree Adjunct Languages. Inf. Pr. Letters.

Younger, D.H. 1967 Recognition and Parsing of Context-Free

Languages in Time n ~. Inf. and Control 14: 189-208.

176 Computational Linguistics, Volume 10, Numbers 3-4, July-December 1984

