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Metatheoretical findings regarding the decidability, generative capacity, and recognition complexity 

of several syntactic theories are surveyed. These include context-free, transformational, lexical-func- 

tional, generalized phrase structure, tree adjunct, and stratificational grammars. The paper concludes 

with a discussion of the implications of these results with respect to linguistic theory. 

1. In t roduc t ion  

The development of new formalisms for expressing 

linguistic theories has been accompanied, at least since 

Chomsky and Miller's early work on context-free 

languages, by the study of their metatheory. In particular, 

numerous results on the decidability, generative capacity, 

and, more recently, the recognition complexity of these 

formalisms have been published (and rumored!). This 

paper surveys some of these results and discusses their 

significance for linguistic theory. However, we will avoid 

entirely the issue of whether one theory is more descrip- 

tively adequate than another. We will consider context- 

• free, transformational, lexical-functional, generalized 

phrase structure, tree adjunct, and stratificational 

grammars) 

Although this paper focuses on metatheoretic results 

as arbiters among theories as models of human linguistic 

capacities, they may have other uses as well. Complexity 

results could be utilized for making decisions about the 

implementation of parsers as components of computer- 

based language-understanding systems. However, as 

Stanley Peters has pointed out, no one should underesti- 

mate"the pleasure to be derived from ferreting out these 

results! 3 

2. Preliminary Definitions 

We assume that the reader is familiar with the basic defi- 

nitions of regular, context-free (CF), context-sensitive 

(CS), recursive, and recursively enumerable (r.e.) 

languages, as well as with their acceptors (see Hopcroft  

and Ullman 1979). We will be much concerned with the 

problem of recognizing whether a string is contained in a 

given language (the recognition problem) and with that of 

l This research was sponsored in part by the National Science and 

Engineering Research Council of Canada under Grant  A9285. It was 

made possible in part by a gift from the Systems Development Founda-  

tion. An earlier version of this paper appeared in the Proceedings of the 

21st Annual Meeting of the Association for Computational Linguistics, 
Cambridge, MA, June 1983. 

I would like to thank Bob Berwick, Alex Borgida, Jim Hoover, 

Aravind Joshi, Lauri Kart tunen,  Fernando Pereira, Stanley Peters, Peter 

Sells, Hans Uszkoreit, and the referees for their suggestions. 

ZAlthough we will not examine them here, formal studies of other 

syntactic theories have been undertaken: e.g. Warren (1979) for 

Montague 's  PTQ (1973). Pereira and Shieber (1984) use techniques 

from the denotational semantics of programming languages to investi- 

gate the feature systems of several unification-based theories. 

3It may be worth pointing out that the introduction of formal argumen- 

tation in linguistics has not always been beneficial. Some pseudoformal 

arguments against rival theories were unquestionably accepted by an 

audience that did not always have the mathematical sophistication to be 

critical. For example, Postal 's claim (1964b) that two-level stratifica- 

tional grammars generated only context-free languages was based on an 

imprecise definition by its proponents,  as well as by the failure to see 

that among the more precise definitions were many very powerful ones. 
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generating one (or all) derivations of the string (the pars- 
ing problem). 

Some elementary definitions from complexity theory 

may be useful. Further details may be found in Aho et 

al. (1974). Complexity theory is the study of the 

resources required by algorithms, usually space and time. 

Let f(x) be a function, say, the recognition function for a 

language L. The most interesting results we could obtain 

regarding f would be a lower bound on the resources 

needed to compute f on a machine of a given architec- 

ture, say, a v o n  Neumann computer or a parallel array of 

neurons. These results over whole classes of machines 

are very difficult to obtain, and none of any significance 

exist for parsing problems. 

Restricting ourselves to a specific machine model and 

an algorithm M for f, we can ask about the cost (e.g., in 

time or space) c(x) of executing M on a specific input x. 

Typically, c is too fine-grained to be useful: what one 

studies instead is a function c w whose argument is an 

integer n denoting the size of the input to M, and which 

gives some measure of the cost of processing inputs of 

length n. Complexity theorists have been most interested 

in the asymptotic behaviour of Cw, i.e., the behaviour of 

c w as n gets large. 

If one is interested in upper bounds on the behaviour 

of M, one usually defines Cw(n) as the maximum of c(x) 

over all inputs x of size n. This is called the worst-case 

complexity function for M. Other definitions are possi- 

ble: for example, one can define the expected complexity 

function Ce(n) for M as the average of c(x) over all inputs 

of length n. c e might be more useful than c w if one had an 

idea as to the distribution of possible inputs to M. Not 

only are realistic distributions rarely available, but the 

introduction of probabilistic considerations makes the 

study of expected complexity technically more difficult 

than that of worst-case complexity. For a given problem, 

expected and worst-case measures may be quite 

different. 4 

It is quite difficult to get detailed descriptions of Cw; 

for many purposes, however, a cruder estimate is suffi- 

cient. The next abstraction involves ".lumping". classes 

of c w functions into simpler ones that demonstrate their 

asymptotic behaviour more clearly and are easier to 

manipulate. This is the purpose of O-notation (read "big- 

oh notation"). Let f(n) and g(n) be two functions. Func- 

tion f is said to be O(g) if a constant multiple of g is an 

upper bound for f ,  for all but a finite number of values of 

n. More precisely, f is O(g) if there is are constants K 

and n o such that for all n > no, fin) < K * g(n). 

Given an algorithm M, we will say that M is TIME(g)  

or, equivalently, that its worst-case time complexity is 

O(g) if the worst-case time cost function Cw(n) for M is 

O(g). 5 This merely says that almost all inputs to M of size 

n can be processed in time at most a constant times g(n). 

It does not say that all inputs require g(n) time, or Ruzzo 

machine that implements f. Also, if two algorithms A i 

and A 2 a r e  available for a function f,  and if their worst- 

case complexity can be given respectively as O(g)  and 

O(g),  and gl <- g2, it may still be true that for a large 

number of cases (maybe even all those likely to be 

encountered in practice), A 2 will be the preferable algo- 

rithm simply because the constant K 1 for gl may be much 

larger than is K 2 for g2" A parsing-related example is 

given in Section 3. 

In examining known results pertaining to the recogni- 

tion complexity of various theories, it is useful to consid- 

er how robust they are in the face of changes in the 

machine model from which they were derived. These 

models can be divided into two classes: sequential and 

parallel. Sequential models (Aho et al. 1974) include the 

familiar single- and multitape Turing machines (TM) as 

well as random-access machines (RAM) and random-ac- 

cess stored-program machines (RASP). A RAM is like a 

TM except that its working memory is random-access 

rather than sequential. A RASP is like a RAM but stores 

its program in its memory. Of all these models, the RASP 

is most like a yon Neumann computer. 

All these sequential models can simulate one another 

in ways that do not require great changes in time 

complexity. For example, a k-tape Turing Machine that 

runs in time O(t) can be simulated by a RAM in time 

O(t log0, conversely, a RAM running in O(t) can be simu- 

lated by a k-tape TM in time O(t2).. In fact, all the famil- 

iar sequential models are polynomially related: they can 

simulate one another with at most a polynomial loss in 

efficiency. 6 Thus, if a syntactic model is known to have a 

difficult recognition problem when implemented on one 

sequential model, execution of an equivalent algorithm 

on another sequential machine will not be much easier. 

Transforming a sequential algorithm to one on a paral- 

lel machine with a fixed number K of processors provides 

at most a factor K improvement in speed. More interest- 

ing results are obtained when the number of processors is 

allowed to grow with the size of the problem, e.g., with 

the length of the string to be parsed. These processors 

can be viewed as connected together in a circuit, with 

inputs entering at one end and outputs being produced at 

the other. The depth of the circuit, or the maximum 

number of processors that data must be passed through 

from input to output, corresponds to the parallel time 

required to complete the computation. A problem that 

has a solution on a sequential machine in polynomial time 

and in space s will have a solution on a parallel machine 

with a polynomial number of processors and circuit depth 

(and hence parallel time) O(s2). This means that algo- 

rithms with sequential solutions requiring small space 

(such as deterministic CSLs) have fast parallel solutions. 

4 Hoare's Quicksort algorithm, for example, has expected time complex- 

ity of O(n logn) and worst-case complexity of O(n2), using notation 

defined in the next paragraph. 

Similarly, let M be SPACE(g) if the worst-case space complexity of M 

is O(g). 

6 RAMs and RASPs are allowed to store arbitrarily large numbers in 

their registers. These results assume that the cost of performing 

elementary operations on those numbers is proportional to their length, 

i.e. to their logarithm. 
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For a comprehensive survey of parallel computation, see 

Cook (1981). 

3. Context-Free Languages 

Recognition techniques for context-free languages are 

well known (Aho and Ullman 1972). The so-called CKY 

or "dynamic programming" method is attributed by Hays 

(1962) to J. Cocke; it was discovered independently by 

Kasami (1965) and Younger (1967), who showed it to 

be O(n3). It requires the grammar to be in Chomsky 

Normal Form, and putting an arbitrary grammar in CNF 

may square its size. Berwick and Weinberg (1982) point 

out that, since the complexity of parsing algorithms is 

generally at least linearly dependent on the size of the 

grammar, this requirement may make CKY less than opti- 

mal for parsing short sentences. 

Earley's algorithm recognizes strings in arbitrary CFGs 

in time O(n 3) and space O(n2), and in time O(n e) for 

unambiguous CFGs. Graham, Harrison, and Ruzzo 

(1980) offer an algorithm that unifies CKY and Earley's 

algorithm (1970), and discuss implementation details. 

Valiant (1975) showed how to interpret the CKY algo- 

rithm as the finding of the transitive closure of a matrix 

and thus reduced CF recognition to matrix multiplication, 

for which subcubic algorithms exist. Because of the 

enormous constants of proportionality associated with 

this method, it is not likely to be of much practical use, 

either an implementation method or as a "psychologically 

realistic" model. 

Ruzzo (1979) has shown how CFLs can be recognized 

by Boolean circuits of depth O(log(n)2), and therefore 

that parallel recognition can be accomplished in time 

O(log(n)2). The required circuit size is polynomial in n. 

So as not to be mystified by the upper bounds on CF 

recognition, it is useful to remember that no known CFL 

requires more than linear time, nor is there even a 

nonconstructive proof of the existence of such a 

language. 

This is also a good place to recall the difference 

between recognition and parsing: if parsing requires that 

distinct structures be produced for all parses, it will be 

TIME(2n), since in some grammars sentences of length n 

may have 2 n parses (Church and Patil 1982). For an 

empirical comparison of various parsing methods, see 

Slocum (1981). 

4. Transformational Grammar 

From its earliest days, discussions of transformational 

grammar (TG) have included consideration of matters 

computational. 

Peters and Ritchie (1973a) provided some the first 

nontrivial results regarding the generative power of TGs. 

Their model reflects the Aspects version quite faithfully, 

including transformations that move and add constitu- 

ents, and delete them subject to recoverability. All trans- 

formations are obligatory, and applied cyclically from the 

bot tom up. They show that every r.e. set can be gener- 

ated by applying a set of transformations to a context- 

sensitive base. The proof is quite simple: the right-hand 

sides of the type-0 rules that generate the r.e. set are 

padded with a new "blank" symbol to make them at least 

as long as their left-hand sides. Rules are added to allow 

the blank symbols to commute with all others. These 

context-sensitive rules are then used as the base of a TG 

whose only transformation deletes the blank symbols. 

Thus, if the transformational formalism itself is 

supposed to characterize the grammatical strings of possi- 

ble natural languages, then the only languages being 

excluded by the formalism are those that are not enumer- 

able under any model of computation. The characteriza- 

tion assumption is further discussed in Section 9. 

At the expense of a considerably more intricate argu- 

ment, the previous result can be strengthened (Peters and 

Ritchie 1971) to show that every r.e. set can be gener- 

ated by a context-free based TG, as long as a filter - an 

intersection with a regular set - can be applied to the 

phrase-markers produced by the transformations. In 

fact, the base grammar can be independent of the 

language being generated. The proof involves the simu- 

lation of a TM by a TG. The transformations first gener- 

ate an "input tape" for the TM being simulated, then 

apply the TM productions, one per cycle of the grammar. 

The filter ensures that the base grammar will generate 

just as many S nodes as necessary to generate the input 

string and do the simulation. In this case too, if the 

transformational formalism is supposed to characterize 

the possible natural languages, the universal base hypoth- 

esis (Peters and Ritchie 1969), according to which all 

natural languages can be generated from the same base 

grammar, is empirically vacuous: any recursively enumer- 

able language can. 

Following Peters and Ritchie's work, several attempts 

were made to find a restricted form of the transforma- 

tional model that is descriptively adequate, yet whose 

generated languages are recursiVe (see, for example, 

LaPointe 1977). Since a key part of the proof in Peters 

and Ritchie (1971) involves the user of a filter on the 

final derivation trees, Peters and Ritchie (1973c) exam- 

ined the consequences of forbidding final filtering. They 

show that, if S is the recursive symbol in the CF base, the 

generated language L is predictably enumerable and expo- 
nentially bounded. A language L is predictably enumerable 

if there is an "easily" computable function t(n) that gives 

an upper bound on the number of tape squares needed 

by its enumerating TM to enumerate the first n elements 

of L. L is exponentially bounded if there is a constant K 

such that, for every string x in L, there is another string 
t . 

x m L whose length is at most K times the length of x. 

The class of nonfiltering languages is quite unusual, 

including all the CFLs (obviously), but also properly 

intersecting the CSLs, the recursive languages, and the 

r.e. languages. 

The source of nonrecursivity in transformationally 

generated languages is that transformations can delete 

large parts of the tree, thus producing surface trees that 

are arbitrarily smaller than the deep structure trees they 
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were derived from. This is what Chomsky's  

"recoverability of deletions" condition was meant to 

avoid. In his thesis, Petrick (1965) defines the following 

condition on transformational derivations: a derivation 

satisfies the terminal-length-increasing condition if the 

length of the yield of any subtree u, resulting from the 

application of the transformational cycle to a subtree t, is 

greater than the length of the yield of any subtree u r 

resulting from the application of the cycle to a subtree t r 

of t. 

Petrick shows that, if all recursion in the base gram- 

mar "passes through S" and all derivations satisfy the 

terminal-length-increasing condition, then the generated 

language is recursive. Using a slightly more restricted 

model of transformations Rounds (1973) strengthens this 

result by showing that the resulting languages are in fact 

context-sensitive. 

In an unpublished paper, Myhill shows that, if 

Petrick's condition is weakened to terminal-length-non- 

decreasing, the resulting languages can be recognized in 

space that is at most exponential in the length of the 

input. This implies that recognition can be done in at 

most double-exponential time, but Rounds (1975) proves 

that not only can recognition be done in exponential time, 

but that every language recognizable in exponential time 

can be generated by a TG satisfying the terminal-length- 

nondecreasing condition and recoverability of deletions. 

This is a very strong result, because of the closure 

properties of the class of exponential-time languages> To 

see why this is so requires a few more definitions. 

Let P be the class of all languages that can be recog- 

nized in polynomial time on a deterministic TM, and NP 

the class of all languages that can be recognized in polyn- 

omial time on a nondeterministic TM. P is obviously 

contained in NP, but the converse is not known, although 

there is much evidence that it is false. 

There is a class of problems, the so-called NP-eomplete 

problems, which are in NP and "as difficult" as any other 

problems in NP in the following sense: if any of them 

could be shown to be in P, all the problems in NP would 

also be in P. One way to show that a language L is 

NP-complete is to show that L is in NP and that every 

other language L o in NP can be polynomially transformed 

into L, - i.e., that there is a deterministic TM, operating 

in polynomial time, that will transform an input w to L 

into an input w o to L o such that w is in L if and only if w o 

is in L o. In practice, to show that a language is 

NP-complete, one shows that it is in NP and that some 

already known NP-complete language can be polynomial- 

ly transformed into it. 

All the known NP-complete languages can be recog- 

nized in exponential time on a deterministic machine, 

and none have been shown to be recognizable in less 

than exponential time. Thus, since the restricted trans- 

formational languages of Rounds characterize the expo- 

nential languages, if all of them were to be in P, P would 

be equal to NP. Putting it another way, if P is not equal 

to NP, some transformational languages (even those 

satisfying the terminal-length-nonincreasing condition) 

have no "tractable" (i.e., polynomial-time) recognition 

procedures on any deterministic TM. It should be noted 

that this result also holds for all the other known sequen- 

tial models of computation, as they are all polynomially 

related, and even for parallel machines with as many as a 

polynomial number of processors. 

All the results outlined so far in this section are 

inspired by the model of transformational grammar 

presented in Aspects. More recent versions of the theory 

are substantially different, primarily in that most of the 

constructions handled in terms of deletions from the base 

trees are now handled using traces (i.e., constituents with 

no lexical material) indexed to other constituents. In his 

contribution to this issue (p. 189), Berwick presents a 

formalization of the theory of Government  and Binding 

(GB) and some of its consequences. The formalization is 

unusual in that it reduces grammaticality to well-formed- 

ness conditions on what he calls annotated surface struc- 

tures. From these conditions, two results follow. One is 

that for every GB grammar G there is a constant K such 

that for every string w in L(G) and for every annotated 

surface structure s whose yield is w, the number  of nodes 

in s is bounded by K*length(w). This, of course, ensures 

that the L(G) is recursive. The second result is that GB 

languages all have the linear growth or arithmetic growth 

property: for every sufficiently long string w in a GB 

language L there is another string w p in L which is at 

most K symbols shorter than w. 

A few comments  about Berwick's formalization and 

results are in order. To begin with, the formalization is 

clearly a quite radical simplification of current practice 

among GB practitioners, as it does not reflect 

D-structure, LF, or PF, nor case theory, the theta-eriter- 

ion, and control theory. Thus, in its current form, the 

formalization does not include the machinery necessary 

to account for passives and raising. It also assumes that 

X-bar theory limits the base to trees generated by CFGs 

with no useless nonterminals and no cycles, except 

presumably through the S and N P  nodes. This excludes 

accounts of stacked adjectives, as in the white speckled 

shaggy Pekingese, and of stacked relative clauses. 

We suspect that most of these features could be added 

to the formalization without affecting either result, and 

that it is extremely useful to have even a first approxi- 

mation of one to work with. Although Berwick is mute 

on the subject, we conjecture that recognition in the 

model he gives can be done in polynomial time. What  is 

less clear is what will happen to recognition complexity 

under models that include the other constraints. 

Berwick's result about the linear growth property has 

no immediate functional consequence for complexity or 

even for weak generative capacity. It is presented as a 

property that natural languages seem to have and thus 

that should be predicted by the linguistic model. 
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5. LexicaI-Functional Grammar 

In part, transformational grammar seeks to account for a 

range of constraints or dependencies within sentences. 

Of particular interest are subcategorization, predicate-ar- 

gument dependencies, and long-distance dependencies, 

such as wh-movement. Several recent theories suggest 

different ways of accounting for these dependencies, but 

without making use of transformations. We examine 

three of these in the next several sections: lexical-func- 

tional grammar, generalized phrase structure grammar, 

and tree adjunct grammar. 

In the lexical-functional grammar (LFG) of Kaplan 

and Bresnan (1982), two levels of syntactic structure are 

postulated: constituent and functional. All the work 

done previously by transformations is instead encoded 

both in the lexicon and in links established between 

nodes in the constituent and functional structures. 

The languages generated by LFGs, or LFLs, are CSLs 

and properly include the CFLs (Kaplan and Bresnan 

1982). Berwick (1982) shows that a set of strings whose 

recognition problem is known to be NP-complete, name- 

ly, the set of satisfiable Boolean formulas, is an LFL. 

Therefore, as was the case for Rounds's  restricted class 

of TGs, if P is not equal to NP, then some languages 

generated by LFGs do not have polynomial-time recogni- 

tion algorithms. Indeed only the "basic" parts of the 

LFG mechanism are necessary to the reduction. This 

includes mechanisms necessary for feature agreement, 

for forcing verbs to take certain cases, and for allowing 

lexical ambiguity. Thus, no simple change in the formal- 

ism is likely to avoid the combinatorial consequences of 

the full mechanism. It should be noted that the c-struc- 

tures and f-structures necessary to make satisfiable 

Boolean formulas into an LFL are not much larger than 

the strings themselves; the complexity comes in finding 

the assignment of truth-values to the variables. In his 

paper in this issue (p. 189), Berwick argues that the 

complexity of LFLs stems from their ability to unify trees 

of arbitrary size, and that such a mechanism does not 

exist in GB. However,  the recognition complexity of GB 

languages, as formalized in Berwick (1984) or in more 

"faithful" models, remains open, and may arise from 

other constraints. 

Both Berwick and Roach have examined the relation 

between LFG and the class of languages generated by 

indexed grammars (Aho 1968), a class known to be a 

proper subset of the CSLs, but including some 

NP-complete languages (Rounds 1973). They claim 

(personal communication) that the indexed languages are 

a proper subset of the LFLs. 

6. Generalized Phrase Structure Grammar 

In a series of papers, Gerald Gazdar  and his colleagues 

(1982) have argued for a joint account of syntax and 

semantics that is like LFG in eschewing the use of trans- 

formations, but unlike it in positing only one level of 

syntactic description. The syntactic apparatus is based 

on a nonstandard interpretation of phrase-structure rules 

and on the use of metarules. The formal consequences 

of both these devices have been investigated. 

6.1. Node admissibility 

There are two ways of interpreting the function of CF 

rules. The first, and most common, is to treat them as 

rules for rewriting strings. Derivation trees can then be 

seen as canonical representatives of classes of derivations 

producing the same string, differing only in the order in 

which the same productions are applied. 

The second interpretation of CF rules is as constraints 

on derivation trees: a legal derivation tree is one in which 

each node is "admitted '  by a rule, i.e., each node domi- 

nates a sequence of nodes in a manner sanctioned by a 

rule. For CF rules, the two interpretations obviously 

generate the same strings and the same set of trees. 

Following a suggestion of McCawley's ,  Peters and 

Ritchie (1973b) showed that, if one considered context- 

sensitive rules from the node-admissibility point of view, 

the languages defined were still CF. Thus, for example, 

the use of CS rules in the base to impose subcategori- 

zation restrictions does not increase the weak generative 

capacity of the base component.  (For some different 

restrictions of context-sensitive rules that guarantee that 

only CFLs will be generated, see Baker (1972).) 

Rounds (1970b) gives a simpler proof of Peters and 

Ritchie's node admissibility result, using the techniques 

from tree-automata theory, a generalization to trees of 

finite state automata theory for strings. Just as a finite- 

state automaton (FSA) accepts a string by reading it one 

character at a time, changing its state at each transition, a 

finite-state tree automaton (FSTA) traverses trees, propa- 

gating states. The top-down FSTA "at taches"  a starting 

state (from a finite set) to the root of the tree. Transi- 

tions are allowed by productions of the form 

(q, a, n) = >  (q, ..... q,,) 

such that if state q is being applied to a node labeled a 

and dominating n descendants, then state qi should be 

applied to its ith descendant. Acceptance occurs if all 

leaves of the tree end up labeled with states in the 

accepting subset. The bottom-up FSTA is similar: start- 

ing states are attached to the leaves of the tree and the 

productions are of the form 

(a, n, (q, ..... q )  = >  q) 

indicating that, if a node labeied a dominates n descend- 

ants, each labeled with states ql to q,e then node a gets 

labeled with state q. Acceptance occurs when the root is 

labeled by a state from the subset of accepting states. 

As is the case with FSAs, FSTAs of both varieties can 

be either deterministic or nondeterministic. A set of 

trees is said to be recognizable if it is accepted by a 

nondeterministic bot tom-up FSTA. Once again, as with 

FSAs, any set of trees accepted by a nondeterministic 

bot tom-up FSTA is accepted by a deterministic bot tom- 

up FSTA, but the result does not hold for top-down 
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FSTA, even though the recognizable sets are exactly the 

languages recognized by nondeterministic top-down 

FSTAs. 

A set of trees is local if it is the set of derivation trees 

of a CF grammar. Clearly, every local set is recognizable 

by a one-state bottom-up FSTA that checks at each node 

to verify that it satisfies a CF production. Furthermore, 

the yield of a recognizable set of trees (the set of strings 

it generates) is CF. Not all recognizable sets are local: an 

example is the set of trees that satisfies the constraints of 

X-bar theory and the 0-criterion. However, they can all 

be mapped into local sets by a simple homomorphic 

mapping. 7 Rounds's proof (1970a) that CS rules under 

node admissibility generate only CFLs involves showing 

that the set of trees accepted by the rules is recognizable 

- i.e., that there is a nondeterministic bottom-up FSTA 

that can check at each node that some node admissibility 

condition holds there. This requires confirming that the 

"strictly context-free" part of the rule holds and that a 

proper analysis of the tree passing through the node 

satisfies the "context-sensitive" part of the rule. 

Joshi and Levy (1977) strengthened Peters and 

Ritchie's result by showing that the node admissibility 

conditions could also include arbitrary Boolean combina- 

tions of dominance conditions: a node could specify a 

bounded set of labels that must occur either immediately 

above it along a path to the root, or immediately below it 

on a path to the frontier. 

In general, the CF grammars constructed in the proof 

of weak equivalence to the CS grammars under node 

admissibility are much larger than the original, and not 

useful for practical recognition. Joshi, Levy, and Yueh 

(1981), however, show how Earley's algorithm can be 

extended to a parser that uses the local constraints direct- 

ly. 

6.2. M e t a r u l e s  

The second important mechanism used by Gazdar 

(1982) is metarules, or rules that apply to rules to 

produce other rules. Using standard notation for CF 

rules, one example of a metarule that could replace the 

Apects transformation known as "particle movement" is 

V-~ V N P t X  = >  V-~ VPtN[-PRO]X 

The symbol X here behaves like variables in structural 

analyses of Aspects transformations. If such variables are 

restricted to being used as abbreviations, that is, if they 

are allowed to range only from a finite subset of strings 

over the vocabulary, then closing the grammar under the 

metarules produces only a finite set of derived rules; and 

thus the generative power of the formalism is not 

increased. If, on the other hand, X is allowed to range 

over strings of unbounded length, as are the essential vari- 

ables of transformational theory, then the consequences 

are less clear. It is well known, for example, that, if the 

7 This mapping is a bottom-up finite-state tree transducer that simply 
labels each node with the state the recognizing bottom-up FSTA would 
have been in at that node. 

right-hand sides of phrase structure rules are allowed to 

be arbitrary regular expressions, the generated languages 

are still context-free. Might something like this not be 

happening with essential variables in metarules? It turns 

out that such is not the case. 

The formal consequences of the presence of essential 

variables in metarules depend on the presence of another 

device, the so-called phantom categories. It may be 

convenient in formulating metarules to allow, in the left- 

hand sides of rules, occurrences of syntactic categories 

that are never introdu~ced by the grammar, i.e., that never 

appear in the right-hand sides of rules. In standard CFLs, 

these are called useless categories," rules containing them 

can simply be dropped, with no change in weak genera- 

tive capacity. Not so with metarules: it is possible for 

metarules to be used to rewrite rules containing phantom 

categories into rules without them. Such a device was 

proposed at one time as a way to implement passives in 

the GPSG framework. 

Uszkoreit and Peters (1983) have shown that essential 

variables in metarules are powerful devices indeed: CF 

grammars with metarules that use at most one essential 

variable and allow phantom categories can generate all 

recursively enumerable sets. Even if phantom categories 

are banned, some nonrecursive sets can be generated as 

long as the use of at least one essential variable is 

allowed. 

Two constraints on metarules have been proposed to 

restrict the generative capacity of metarule systems. 

Gazdar (1982) has suggested replacing essential vari- 

ables by abbreviative ones, i.e. variables that can only 

range over a finite set of (predetermined) alternatives. 

Shieber et al. (1983) argue that a generalization is lost in 

so doing, in the sense that the class of instantiations of 

the variable must be defined bye extension rather than by 

intension. Given the alternative, this seems a small price 

to pay. 

The other constraint, suggested by Gazdar and Pullum 

(1982), is finite closure of the metarule derivation proc- 

ess: no metarule is allowed to apply more than once in 

the derivation of a rule. Shieber et al. (1983) present 

several examples, namely the treatment of discontinuous 

noun phrases in Walpiri, adverb distribution in German, 

and causatives in Japanese, that cannot be handled under 

the finite closure constraint. 

It should be noted that other ways of using one gram- 

mar to generate the rules of another have been proposed. 

VanWijngaarden (1969), for example, presented a 

scheme in which one grammar's sentences are the rules of 

another. Greibach (1974) gives some of its properties. 

7. T ree  A d j u n c t  G r a m m a r  

The tree adjunct grammars (TAG) of Joshi and his 

colleagues (1982, 1984) provide a different way of 

accounting for syntactic dependencies. A TAG consists 

of two finite sets of finite trees, the centre trees and the 

adjunct trees. 
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The centre trees correspond to the surface structures 

of the "kernel"  sentences of the languages. The root of 

the adjunct trees is labelled with a nonterminal symbol 

that also appears exactly once on the frontier of the tree. 

All other frontier nodes are labelled with terminal 

symbols. Derivations in TAGs are defined by repeated 

application of the adjunction operation. If c is a centre 

tree containing an occurrence of a nonterminal A, and a 

• is an adjunct tree whose root (and one node n on the 

frontier) is labelled A, then the adjunction of a to c is 

performed by "detaching" from c the subtree t rooted at 

A, attaching a in its place, and reattaching t at node n. 

Adjunction may then be seen as a tree analogue of a 

context-free derivation for strings (Rounds 1970a). The 

string languages obtained by taking the yields of the tree 

languages generated by TAGs are called tree adjunct 

languages (TAL). 

In TAGs, all long-distance dependencies are the result 

of adjunctions separating nodes that at one point in the 

derivation were "close". Both crossing and noncrossing 

dependencies can be represented (Joshi 1983)). The 

formal properties of TALs are fully discussed by Joshi, 

Levy, and Takahashi (1975); Joshi and Levy (1982); 

and Yokomori and Joshi (to appe~ar). Of particular inter- 

est are the following. 

TALs properly contain the CFLs and are properly 

contained in the indexed languages, which in turn are 

properly contained in the CSLs. Although the indexed 

languages contain NP-complete languages, TALs are 

much better behaved: Joshi and Yokomori report 

(personal communication) an O(n 4) recognition algorithm 

and conjecture that an O(n 3) bound may be possible. 

8. Stratificational Grammar 

The constituent and functional structures of LFG, the 

metarules of GPSG, the constraints on deep and surface 

structures in TG, and the two-level grammars of van 

Wijngaarden are all different ways in which syntactic 

constraints can be distributed across more than one 

structure. The Stratificational Grammar  (SG) of Lamb 

and Gleason (Lamb 1966, Gleason 1964) is yet another. 

SG postulates the existence of several coupled compo- 

nents, known as strata; phonology, morphology, syntax, 

and semology are examples of linguistic strata. Each 

stratum specifies a set of correct structures, and an utter- 

ance has a representative structure at each stratum. The 

strata are linearly ordered and constrained b.9 a realiza- 

tion relation. 

Following Gleason's model, Borgida (1983) defines 

the realization relation so that it couples the application 

of specific pairs of productions (or sequences of 

productions) in the different grammars. Note that this is 

a generalization of the pairing of syntactic and semantic 

rules suggested by Montague, for example. 

With any derivation in a rewrite grammar, one can 

associate a string of the productions used in the deriva- 

tion. If a canonical order is imposed on the derivations - 

for example, that the leftmost nonterminal must be the 

next one to be expanded - a unique string of 

productions can be associated with each derivation tree. 

A two-level stratifieational grammar consists of two 

rewrite grammars G 1 and G 2, called tactics, with sets of 

productions Pi and P2, respectively, and a realization 

relation R, which is a finite set of pairs, each consisting 

of a string of productions of P1 and a string of 

productions of P2. A derivation D~ in G~ is realized by a 

derivation D 2 in G 2 if the strings of productions sz and s 2 

associated with D~ and D 2 can be decomposed into 

substrings s~=ur.u" and s2=vr..ve respectively, such that 

R(u,,v,), for all i from 1 to n. The language generated by 

a two-level SG is the set of string generated derivations in 

G 2 that realize derivations in Grextended to more than 

two strata. 

Because the realization relation binds derivations, it is 

the strong generative capacity of the tactics that deter- 

mines the languages generated. Borgida (1983) studied 

the languages of two-level SGs as the strong generative 

capacity of the tactics is systematically varied. Some of 

his results are unexpected. All r.e. languages can be 

generated by two-level SGs with CF tactics. On the other 

hand, if the upper tactics are restricted to being right-re- 

cursive, only CFLs can be generated, even with type 0 

lower tactics. If the grammars are restricted to have no 

length-decreasing rules, the languages describable by SGs 

lie in the class of quasi-real time languages, defined as 

recognizable by nondeterministic TMs in linear time. 

The principal feature of SGs that accounts for high 

generative power is the presence of left recursion in the 

tactics: to escape from the regular languages, one needs 

left recursion on at least one stratum; to escape context- 

free languages, two non-right-recursive strata are needed. 

These results apply to SGs with arbitrary number of stra- 

ta. 

9. Seeking Significance 

How, then, can metatheoretical results be useful in 

selecting among syntactic theories? The obvious route, 

of course, is to claim that the computationally most 

restrictive theory is preferable. However,  this compar-  

ison is useful only if the theories to be compared rest on 

a number of shared assumptions and observations 

concerning the scope of the syntax, the computational 

properties of the human processor and the relation 

between the processor and the syntactic theory. 

In this section, we first briefly consider the assumption 

of common syntactic coverage and the computational 

consequences of theory decomposition. We then ask 

how metatheoretical results can be used first as lower 

bounds and then as upper bounds on acceptable theories. 

9.1. Coverage 

Competing linguistic theories must obviously agree on 

the burden of their respective syntactic components.  We 

consider here one example of a constraint for which two 

analyses have been presented, one purportedly 

completely syntactic, and the other partly semantic. The 
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problem at hand is the distribution of the so-called polari- 

ty-sensitive items, such as any and the metaphorical sense 

of lift a finger. Simply put, these terms need to appear 

within the scope of a polarity reverser, such as not, or 

rarely. The question is: how are scope and polarity rever- 

ser defined? In Linebarger 's  syntactic analysis (1980), 

the scope relation is defined on the logical forms of the 

government and binding theory (GB): 

An item is in the immediate scope of NOT if (1) it 
occurs only in the proposition which is the entire scope of 

NOT and (2) within the proposition there are no logical 

elements intervening between it and NOT. 

In this analysis, scope and intervening must be defined 

configurationally, and one assumes that logical element is 

defined in the lexicon. Note that not is the only lexical 

element that can be a license. L inebarger  assumes that 

all other cases are, strictly speaking, ill formed and 

salvaged only by the availability of an implicature which 
can be formalized to contain the polarity items in the 

appropriate relation to NOT. (Ladusaw 1983) 

Ladusaw's analysis (1979), within the framework of 

Montague grammar, is in three parts: 

1. A negative polarity item will be acceptable only if it 

is in the scope of a polarity-reversing expression. 

2. For any two expressions a and /3, constituents of a 

sentence S, a is in the scope of/3 with respect to a 

composition structure of S, S t, iff the interpretation 

of a is used in the formulation of the argument of/3's 

interpretation in S t . 

3. An expression D is a polarity reverser with respect to 

an interpretation function ,~ if and only if, for all 

expressions X and y,s 

q~(X) _c (~(y) = > ck(d(y)) c ck(d(S)) 

In (1), "acceptable"  is predicated of negative polarity 

items; these are clearly parts of surface structures, and 

thus syntactic objects. The condition on acceptability is 

in terms of scope and polarity-reversing expression. In (3), 

polarity reverser is applied to syntactic objects and 

defined in terms of their denotations. In (2) a is in the 

scope of/3. is defined again of syntactic objects a and/3, 

but in terms of the function that interprets the structure 

they occur in, not of their denotations. So the condition 

applies to syntactic structures, but is defined in terms of 

the denotations of parts of that structure and in terms of 

the interpretation function itself. Although it would be 

satisfying to do so, there appears to be no natural way to 

recast Ladusaw's constraint as one that is fully semantic, 

namely, by making the interpretation function partial 

(i.e., in a way that allows John knows anything to be 

grammatical but uninterpretable) because the definition 

of scope is in terms of the interpretation function, not the 

denotations themselves. We seem condemned to straddle 

the fence on this one. 

Thus we have here one theory that deals, completely 

within the syntactic domain, only with the license not, 

and another that accounts for a much broader range of 

licenses by imposing on syntactic structures conditions 

defined in terms of their interpretations and of the inter- 

pretation function itself. They are computationally 

incomparable. 

We close this section with an aside on the separation 

of constraints. Constraint separation can occur in two 

ways. In the case of polarity-sensitive items, it takes 

place across the syntax-semantics boundary. In several 

syntactic theories, such as GB and LFG, it can also occur 

within the syntactic theory itself: grammaticality in LFG, 

for example, is defined in terms of the existence of pairs 

of appropriately related constituent and functional struc- 

tures. 

In general, the class resulting from the intersection of 

the separated classes will be at least as large as either of 

them: e.g., the intersection of two CFLs is not always a 

CFL. More interesting is the fact that separation some- 

times has beneficial computational effects. Consider, for 

example, the constraint in many programming languages 

that variables can only occur in the scope of a declara- 

tion for them. This constraint cannot be imposed by a 

CFG but can be by an indexed grammar, at the cost of a 

dramatic increase in recognition complexity. In practice, 

however, the requirement is simply not checked by the 

parser, which only recognizes CFLs. The declaration 

conditions are checked separately by a process that trav- 

erses the parse tree. In this case, the overall recognition 

complexity remains some low-order polynomial. It is not 

clear to me whether one wants to consider the declara- 

tion requirement syntactic or not. The point is that, in 

this case, the "unified account" is more general, and 

computationally more onerous, than the modular one. 

Some arguments of this kind can be found in Berwick 

and Weinberg (1982). 

9.2. Metatheoret ical  results as lower bounds 

The first use of formal results is to argue that a theory 

should be rejected if it is insufficiently powerful  to 

account for observed constraints. Chomsky used this 

strategy initially against finite-state grammars 9 and then 

against CFGs. It obviously first requires extracting from 

empirical observation (and decisions about idealization) 

what the minimal generative capacity and recognition 

complexity of actual languages are. Several arguments 

have been made against the weak generative adequacy of 

CFGs. The best known of these are Bar-Hillel 's claim 

(1961) based on the occurrence of respectively and 

Postal 's (1964a) on nominalization in Mohawk. Higgin- 

botham (1984) claims non-context-freeness for English 

8 Following Faueonnier, Ladusaw's denotation functions take as their 

values sets, ordered as usual. Sentences, for example, get as deno- 

tations the set of all worlds in which they are true. 

9 There has always been interest in finite-state grammars to account for 

some perceptual constraints on sentence recognition, such as the diffi- 

culty of center-embedded sentences - e.g., "The rat that the cat that 

the dog chase ate died" (Langendoen 1975, Church 1981, Langendoen 

and Langsam 1984). They have also provided useful models in 

morphology (Kay 1983, Koskenniemi 1983) and phonology (Church 

1983), 
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on the basis of sentences containing such that. Postal 

and Langendoen (this issue, p. 177) do so with cases of 

sluicing• Pullum and Gazdar  (1982) (convincingly, I 

believe) refute the first two cases by claiming that the 

constraints on which they are based do not in fact hold. 

Similarly, Pullum (this issue, p. 182) argues against Postal 

and Langendoen, and against Higginbotham, again on 

the basis of the linguistic facts• Pullum and Gazdar  also 

consider the case of verb and noun-phrase ordering in 

Dutch; although they show that no evidence has been 

given suggesting that the weak generative capacity of 

Dutch is greater than context-free, the phrase structure 

trees generated by their fragment are not obviously 

adequate for a compositional semantic analysis. This 

point is also made by Bresnan et al. (1982). 

The most convincing evidence so far against the weak 

context-freeness of natural languages comes from Swiss- 

German• Shieber (1984) shows that, like Dutch, Swiss- 

German allows cross-serial order in subordinate clauses 

but also requires that objects be marked for case, as in 

German. Given that the verb hdlfed 'hell ~' takes a dative 

object while aastriiche 'paint '  and lo'nd ' let '  take accusa- 

tive objects, we get the following subordinate clauses, 

which can be made into complete sentences by prefixing 

them with Jan sdit das ' Jan says that'• 

• . .  mer em Hans es huus h~ilfed aastriiche 

• . .  we Hans-DAT the house-ACC helped paint 

• . .  we helped Hans paint the house 

• . .  *me em Hans es huus 16nd aastriiche 

• . .  we Hans-DAT the house-ACC let paint 

• . .  we let Hans paint the house 

• . .  mer d'chind em Hans es huus ltind h~ilfed 

aastriiche 

• . .  we the children-ACC Hans-DAT the house-ACC 

let help paint 

• . .  we let the children help Hans paint the house 

• . .  *mer d'chind de Hans es huus ltmd h~ilfed 

aastriiche 

• . .  we the children-ACC Hans-ACC the house-ACC 

let help paint 

• . .  we let the children help Hans paint the house 

The proof that Swiss-German (SG) is not context-free 

is classic: intersect SG with the following regular 

language: 

Jan s~iit das mer (d'chind)*(em Hans)* 

es huus htind wele (laa)*(hfilfe)* aastriche. 

With some care, Shieber argues from the data that SG 

13 L is the language 

Jan s~iit das mer (d'chind) m (em Hans) m 

es huus h~ind wele (laa) m (h~ilfe) m aastriche. 

which is not context-free. Since context-free languages 

are closed under intersection with regular languages, 

Swiss-German is not context-free either. 

Hintikka (1977) claims that English is not recursive, 

let alone context-free, based on the distribution of the 

words any and every. His account of why John knows 

everything is grammatical while John knows anything is 

not, is that any can appear only in contexts where replac- 

ing it with every changes the meaning• If equivalence of 

meaning is taken to be logical equivalence, this means 

that gramm~/ticality is dependent on the determination of 

equivalence of logical formulas, an undecidable problem• 

Several responses could be made to Hintikka's claim• 

One is to argue, as did Ladusaw (1979), that the 

constraint is semantic, not syntactic• Another route, 

followed by Chomsky (1980), is to claim that a simpler 

solution is available, namely, one that replaces logical 

equivalence with syntactic identity of some kind of 

logical form. This is the basis for Linebarger 's  analysis. 

9.3. Meta theore t ica l  results as upper bounds 

In the preceding section, we discussed ways in which 

formal results about syntactic theories can be used 

against them on the grounds that they show them to be 

insufficiently powerful to account for the observed data. 

Now, given a theory that is powerful enough, can its 

formal properties be used against it on the basis that it 

fails to exclude impossible languages? 

The classic case of an argument of this form is Peters 

and Ritchie's argument against the TG model, discussed 

in Section 4. 

More generally, the premises are the following: 

1. The possible languages are decidable. 

2. The correct syntactic theory must generate exactly 

the possible languages• 

3. The correct syntactic theory is T. 

4. The class Of languages C generated by T is a priori 

too large to be the class of possible languages• 

One conclusion from this argument is that theory T is 

incorrect, i.e., that assumption (3) fails• Chomsky rejects 

assumption (1) instead, insisting that the possible 

languages are those that can be learned, t° 

Although Chomsky also claims that the class of possi- 

ble languages is finite, tt the crucial concern here is that, 

finite or not, the class of possible languages could contain 

languages that are not recursive, or even not recursively 

enumerabie. For example, let L be a non-recursive 

language and L r its complement (also non-recursive). 

Let s be some string of L and s p some string of L r. The 

procedure by which the subject chobses L if s is encount- 

ered before s r and L r otherwise will learn one of L or L ~. 

10 Learning algorithms can be compared along several dimensions. For 

a mathematical framework for learnability theory, see Osherson et al. 

(1983). 

11 Actually, finiteness is claimed for the class of core grammars, from 

which the possible languages are assumed to be derived. Core 

languages and possible languages would be the same only "under ideal- 

ized conditions that are never realized in fact in the real world of heter- 

ogeneous speech communities . . . .  Each actual ' language' will 

incorporate a periphery of borrowings, historical residues, inventions, 

and so on, which we can hardly expect to - and indeed would not want 

to - incorporate within a principled theory of UG." (Chomsky 1981: 8) 
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Chomsky (1980) argues convincingly that there is no 

case for natural languages being necessarily recursive. 

Nevertheless, languages might just happen to be recur- 

sive. Putnam (1961) gives three reasons he claims "point 

in this direction": 

1. "Speakers can presumably classify sentences as 

acceptable or unacceptable, deviant or nondeviant, 

et cetera, without reliance on extra-linguistic 

contexts. There are of course exceptions to this 

rule...", 

2. Grammaticality judgments can be made for nonsense 

s e n t e n c e s ,  

3. Grammars  can be learned. 

The first reason is most puzzlir~g. The reference to 

"extra-linguistic context" is irrelevant; without it, reason 

(1) seems to be asse r t ing  th~/t acceptability can be 

decided except where it cannot be. With respect to the 

second reason, the fact that grammaticality judgments 

could be made for some nonsense sentences in no way 

affects the question of whether they can be made for all 

grammatical sentences. Finally, languages could be 

learnable without being recursive, as it is possible that all 

the rules that need to be acquired could be on the basis 

of sentences for which the recognition procedure 

succeeds. 

Peters and Ritchie (1973a) contains a suggestive but 

hardly conclusive case for contingent recursivity: 

1. Every TG has an exponentially bounded cycling 

function, and thus generates only recursive 

languages, 

2. Every natural language has a descriptively adequate 

T G ,  a n d  

3. The complexity of languages investigated so far is 

typical of the class. 

If learnability rather than recognizability is the defin- 

ing characteristic of possible languages, no claim refuting 

a theory on the grounds that it allows difficult languages 

will bear any weight, unless it can also be shown that 

possible languages are in fact easier to recognize than the 

recognizability theory predicts them to be. However,  our 

everyday experience with language understanding leads 

us to think that syntactic recognition is a computationally 

efficient process - an observation, of course, that is the 

basis for Marcus's claim (1980) that a large part of it can 

be done in linear time, if not in real time. How are we to 

reconcile this with the O(g)-results we have for most 

theories, where g is at least quadratic? t2 

These intuitive conclusions are based on observations 

(1) of "everyday"  sentences, (2) where some nonsyntac- 

tic processing is done in parallel, (3) by the human 

processor. Each of these points is important. 

12 It has already been pointed out that O(g) results are upper bounds, 

and showing that a recognition problem, for example, is O(g) does not 

mean that, for any Language, it is necessary to reach the upper-bound. 

Better upper-bounds can be achieved by tighter proofs, not just by 

better algorithms. 

Although recognition may appear to be done in real 

time for most sentences encountered day to day, the 

O-results are asymptotic worst-case measures. It is 

therefore essential to obtain measures of recognition 

times for a variety of strings of words, whether sentences 

or not, and especially see if there are short, difficult ones. 

There are at least two cases of interest here. The first is 

that of garden-path sentences such as The horse raced 

past the barn fell  and Have the students who failed the 

exam take the supplementary, which are globally unambig- 

uous but locally ambiguous. These appear to be psycho- 

logically difficult. Another case is that of sentences that, 

in most grammars, are ambiguous because of at tachment 

choices, such as those discussed by Church and Patil 

(1982). Finding one parse of these sentences is easy, but 

finding them all may be exponentially difficult. Psycho- 

logical measures show these sentences not to be difficult, 

suggesting that not all parses are constructed o r  that they 

can all be examined in parallel. 

O-results depend on some underlying machine model, 

and most of the results known for language recognition 

have been obtained on RAMs. Can implementation 

changes improve things on relevant range? As 

mentioned above, the sequential models are all polynomi- 

ally related, and no problem not having a polynomial 

time solution on a sequential machine is likely to have 

one on a parallel machine limited to at most a polynomial 

number of processors, at least if P is not equal to NP. 

Both these results restrict the improvement one can 

obtain by changing implementation, but are of little use 

in comparing algorithms of low complexity. Berwick and 

Weinberg (1982) give examples of how algorithms of low 

complexity may have different implementations differing 

by large constant factors. In particular, changes in the 

form of the grammar and in its representation may have 

this effect. 

It is well-known that implementation of machines with 

infinite storage on finite devices leads to a change in 

specification. A context-free parser implemented on a 

machine with finite memory will have a bounded stack 

and therefore recognize only finite-state languages. The 

language recognized by the implemented machine could 

therefore be recognized by another machine in linear 

time. Although one would rarely use this strategy as a 

design principle, a variant of it is more plausible: use a 

restriction of the general method for a subset of the 

inputs and revert to the general method when the special 

case fails. Marcus's  parser (1980) with its bounded look- 

ahead is a good example. Sentences parsable within the 

allowed look-ahead have "quick" parses, but some gram- 

matical sentences, such as "garden path" sentences 

cannot be recognized without an extension to the mech- 

anism that would distort the complexity measures. A 

consequence of the possibility of implementation of this 

character is that observations of their operation ought to 

show "discontinuities" in the processing time, depending 

on whether an input is in or out of the restricted subset. 
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There is obviously much more of this story to be told. 

Al low me to speculate as to how it might go. We may 

end up with a space of linguistic theories, differing in the 

idealization of the data they assume, in the way they 

decompose constraints, and in the procedural specifica- 

tions they postulate. I take it that two theories may 

differ in that the second simply provides more detail than 

the first as to how constraints specified by the first are to 

be used. Our observations, in particular our measure- 

ments of  necessary resources, are drawn from the 

"ultimate implementation", but this does not mean that 

the "ultimately low-level theory" is necessarily the most 

informative, or that less procedural theories are not 

useful stepping stones to more pr6cedural ones. 

It is also not clear that theories of  different computa- 

tional power may not be useful as descriptions of differ- 

ent parts of the syntactic apparatus. For example, it may 

be easier to learn statements of  constraints within the 

framework of a general machine. The constraints once 

learned might then be subjected to transformation to 

produce more efficient special-purpose processors also 

imposing resource limitations. 

Whatever we decide to make of existing formal 

results, it is clear that continuing contact with the 

complexity community is important. The driving prob- 

lems there are the P = NP question, the determination of 

lower bounds, the study of time-space tradeoffs, and the 

complexity of  parallel computations. We still have some 

methodological house-cleaning to do, but I don't see how 

we can avoid being affected by the outcome of their 

investigations. 
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