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Abstract

This paper deals with the modelling of vehicular traffic flow by methods of the
discrete mathematical kinetic theory. The discretization is developed in the velocity
space by a grid adapted to the local density. The discretization overcomes, at least in
part, some technical difficulties related to the selection of the correct representation
scale, while the adaptative grid allows an improved description of various phenomena
related to vehicular traffic flow. Specific models are proposed and a qualitative and
computational analysis is developed to show the properties of the model and their
ability to describe real flow conditions. A critical analysis, proposed in the last part
of the paper, outlines suitable research perspectives.

Key words: traffic flow; kinetic theory; nonlinear sciences; multiscale modelling.

1 Introduction

Methods of the mathematical kinetic theory have been developed, after the
pioneer book by Prigogine and Hermann [29], to model vehicular traffic flow
on roads and networks of roads. Prigogine’s ideas have motivated research
activity in the field by several authors, among others Paveri Fontana [28],
Klar and Wegener [24], Nelson [27], Sopasakis [30], Lo Schiavo [26], Delitala
[17], Coscia [12], Bellomo and Coscia [7], Darbha and Rajagopal [14], [15], [16].
The existing literature is reported in various review papers [20], [23], [25], [4],
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focused on different aspects: modelling, physics, development of computational
schemes, analytic problems. A recent note by Delitala [17] suggests to use
methods of the discrete mathematical kinetic theory [19] to model complex
phenomena of vehicular traffic flow, taking also advantage of the methods of
the generalized kinetic theory [1], [2]. As pointed out by Gatignol [19], the
discrete Boltzmann equation is a model of the mathematical kinetic theory
suitable to describe the behavior of a diluite gas of particles which can attain
only a finite number of velocities. This general idea applied to traffic flow
modelling rests on the assumption that vehicles move on the road with a
finite number of velocities only. Moreover, methods of the generalized kinetic
theory allow to include in the model, in addition to the usual variables related
to the microscopic state of the interacting objects, also a number of variables
related to a somehow self-organized behavior. Recent studies in the field are
documented in the collection of surveys [5], as well as in some recent papers.

The idea of discretizing the velocity variable appears worth to be developed,
not only because vehicles often move in clusters identified by a discrete set
of velocities [22], but also considering that experiments developed to identify
the parameters of the models can be effectively performed looking at groups
of vehicles with the same velocity. The assessment of models is a necessary
step to go through to get models which are effectively useful for applications,
including flow of vehicles on roads with variable conditions [10], or networks
of roads [3], [21].

The modelling of traffic flow phenomena can be developed, as detailed in [4],
at different representation scales:

Microscopic modelling corresponds to model the dynamics of each single
vehicle under the action of the surrounding vehicles;

Statistical description, in a framework close to the one of the kinetic theory
of gases, consists in the derivation of an evolution equation for the distribution
function on the position and velocity of the vehicle along the road;

Macroscopic description, analogous to the one of fluid dynamics, refers to
the derivation, on the basis of conservation equations and material models, of
an evolution equation for the mass density, linear momentum and energy.

It is also well understood that none of the above representation scales is con-
sistent with physical reality. Indeed, continuity assumptions cannot be applied
to vehicular flows considering that the inter-vehicular distances cannot be ne-
glected, while methods of mathematical kinetic theory need a number of par-
ticles much greater than those involved in the road. Finally, the vehicle-driver
system cannot be dealt with as a particle in classical mechanics, but, following
the definitions adopted in [6], as active particle or agent. The above rea-
soning is supported by the sharp critical analysis proposed by Daganzo [13].
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Extracting some specific ideas:

i) Experiments are generally developed in steady state conditions. On the
other hand, modelling needs information in unsteady conditions.

ii) Measurements corresponding to repeated experiments provide different
results with fluctuations around a certain mean value or most probable
value. The output of experimental results can be regarded as a random
variable with non negligible variance.

iii) Experiments related to gross quantities, such as density and mass velocity,
are obtained, as it is explained in Section 2, by an averaging process,
either in space or in time, of microscopic measurements. This procedure
unavoidably generates errors.

Modelling by equations of the mathematical kinetic theory appears to be a
rather natural way of approaching the problem as already suggested by Pri-
gogine, [29]. However, it is worth going again back to some ideas posed by
Daganzo:

iv) The width of a traffic shock only encompasses a few vehicles, and un-
like molecules, vehicles have a personality (e.g. aggressive or timid) that
remain unchanged by motion.

v) A fluid particle responds to stimuli from the front and from behind, but
a car is an anisotropic particle that mostly responds to frontal stimuli.

Actually, the reasoning reported in (i)–(iii) is quite general and may possibly
be applied to a large variety of equations of mathematical physics. On the other
hand, items (iv) and (v) deal with specific features of the complex system we
are dealing with. The analysis proposed in this paper will attempt to provide,
at least in part, an answer to the above remarks. Indeed the discretization
method with an adaptative grid contributes to weaken the above criticized
continuity assumptions. Moreover, vehicles are considered as active, rather
than classical, particles: interactions are modelled by a table of games[9] rather
than by laws of points mechanics. This paper deals with the above mentioned
topics with the objective of designing a new class of traffic flow models based
on the idea of discretizing the velocity space in a way suitable to capture
relevant aspects of the traffic flow complexity [22].

The paper is developed through six more sections which follow the above
introduction. The first part of the paper refers to modelling, in details:

Section 2 deals with some essential features of the continuous and discrete
distribution function. Furthermore the concept of adaptative grid on the ve-
locity is introduced. The discretization is such that the number of collocation
points is constant and the step grid of the velocity variable depends on the
local density of vehicles.
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Section 3 deals with the modelling of vehicular traffic flow in the presence
of negligible density gradients. The evolution equation refers to a discrete
distribution function which corresponds to the discrete velocities depending
on time, but constant in space (space uniform). The model is derived by a mass
balance equation implemented by suitable models of microscopic interactions.
The model is stated in terms of a system of ordinary differential equations
corresponding to the distribution function in the collocation points of the
velocity space.

Section 4 deals with the modelling in the case of spatial gradients. The model
describes the evolution in terms of a system of partial differential equations
corresponding to the distribution function, depending on time and space, in
the collocation points of the velocity.

The second part of the paper refers to the qualitative and computational
analysis of the mathematical problems generated by the application of the
model to real flow conditions. Some research perspectives will also be brought
to the attention of the reader. In details:

Section 5 develops a qualitative analysis (wellposedness and stability proper-
ties) of the model proposed in Section 3 in spatially homogeneous conditions.
Some numerical simulations are reported which allow to define the asymptotic
equilibrium distribution function and, moreover, to show how the model can
describe the velocity distribution in steady space uniform flow conditions and
its trend toward equilibrium.

Section 6 develops some simulations of the non homogeneous model proposed
in Section 4, visualizing some pertinent physical phenomena described by the
model.

Section 7, finally, proposes a critical analysis of the contents of the paper and
indicates some research perspectives, with special attention to the development
of models.

2 Discrete Statistical Distribution Function

The statistical representation particles system by methods of the mathemati-
cal kinetic theory is defined by a probability distribution over the microscopic
state of particles. This paper is based, as already mentioned, on a representa-
tion by a discrete probability distribution over the velocity state of vehicles.
This section is organized in two subsections. The first one briefly recalls the es-
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sentials of the continuous distribution functions; the second one, the essentials
of the discrete velocity distribution function.

2.1 Continuous distribution function

Consider the one dimensional and one directional flow of vehicles on a one
lane road, and define the following quantities:

• ` is the length of the road;

• nM is the maximum number density of vehicles corresponding to bump-to-
bump conditions;

• vM is the maximum mean velocity corresponding to free flow of vehicles;

• T is the characteristic time chosen according to the condition vMT = `,
that means that T is the time necessary to cover the whole road length at the
maximum mean velocity in free flow vM .

• t = tr/T is the dimensionless time variable referred to the characteristic
time T , where tr is the real time.

The state, at the time t, of each vehicle, regarded as a geometrical point, is
identified by the following variables:

• x = xr/` is the dimensionless position referred to the characteristic length
of the road `, where xr is the real dimensional space;

• V = Vr/vM is the dimensionless velocity of vehicles referred to the maximum
mean velocity vM , where Vr is the real velocity of the single vehicle;

Moreover gross mean quantities, useful in the analysis developed in what fol-
lows, are:

• u = n/nM is the dimensionless density referred to the maximum density
nM ;

• q is the dimensionless linear mean flux referred to the maximum admissible
mean flux qM = nMvM .

The above quantities have to be regarded as functions of time and space with
values in the interval [0, 1]:

u = u(t, x) , q = q(t, x) , x ∈ [0, 1] , u ∈ [0, 1] , q ∈ [0, 1[ ,
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while V can be larger than 1 considering that isolated vehicles can attain a
velocity larger than vM . This means that there exist a limit velocity such that

V ∈ [0, 1 + µ], µ > 0, (1)

where µ is a parameter to be defined from experimental data.

As known, the overall distribution of vehicles in mathematical kinetic theory
[29], is described by the distribution function:

f = f(t, x, V ) : IR+ × [0, 1]× IR+ → IR+ , (2)

such that fdxdV is the number of vehicles which at the time t are in the
element of the state space [x, x + dx]× [V, V + dV ].

Macroscopic observable quantities can be obtained, under suitable integrabil-
ity assumptions, as momenta of the distribution f , normalized with respect
to the maximum density nM so that all the derived variables such as density,
flux etc. will be given in a dimensionless form. Specifically, the dimensionless
local density is given by

u(t, x) =

1+µ∫

0

f(t, x, V ) dV , (3)

and the flux of vehicles at the time t is given by

q(t, x) =

1+µ∫

0

V f(t, x, V ) dV , (4)

while the dimensionless mean velocity is:

v(t, x) =
q(t, x)

u(t, x)
. (5)

An experimental information which is useful for the modelling developed in
what follows refers to the experimental identification of the dimensionless equi-
librium velocity which depends, in steady space uniform flow conditions, on
the local density, [8]. Specifically, the following expression for the equilibrium
mean velocity ve(u) can be used:

ve = ve(u) = exp
{
−α

u

1− u

}
, (6)
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where α is a constant depending on the road and environmental conditions.
The identification proposed in [8] shows that α takes values in the range [1, 3],
where lower values correspond to favorable flow conditions: drivers tend to
keep high speeds even when the density increases. On the other hand, difficult
road and weather conditions oblige to reduce the velocity on a relatively larger
amount when the density increases.

An oversimplification of the above model is the following:

ve = ve(u) = 1− u , (7)

which is supposed to provide a rough description of dependence of ve on the
density.

Of course, the maximum of the distribution function defines the most proba-
ble velocity Vp, and the distance between Vp and the mean velocity ve is an
interesting information, as critically analyzed later in this paper; nevertheless
the difficulty of setting experiments does not allow to assess it precisely.

2.2 Discrete velocity distribution function

As already mentioned in Section 1, this paper deals with the modelling in the
framework of the discrete mathematical theory. This means that the velocity
variable can attain a finite number of velocities. The discretization dealt with
in what follows uses a fixed number of velocities with a size depending on
the local density. In particular, the size of each velocity step decreases with
increasing density in a way that when u → 1, than all velocities tend to zero.

Bearing this in mind, consider the following discretization of the velocity vari-
able:

IV = {V1 = 0 , . . . , Vi , . . . , Vn = ve , . . . , V2n−1 = (1 + µ)ve} , (8)

where ve is the dimensionless mean velocity which may be delivered by Model
(6), or even (7).

Assuming, for the sake of simplicity, µ = 1, we get a symmetric grid which
will be used in the sequel:

IV = {V1 = 0, . . . , Vi, . . . , Vn = ve, . . . , V2n−1 = 2ve}, Vi =
i− 1

n− 1
ve(u) .(9)

The corresponding discrete representation is obtained by linking to each Vi
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the discrete distribution functions:

fi = fi(t, x) : IR+ × [0, 1] → IR+ i = 1, . . . , 2n− 1 . (10)

Remark 1 The above discretization naturally implies that the number of ve-
hicles with a velocity larger than (1 + µ)ve can be disregarded. In other words,
it is technically assumed that the presence of vehicles with velocity much larger
than the maximum mean velocity corresponding to the given density is negli-
gible.

Remark 2 In view of the dependence of ve = Vn on the density u, the con-
tinuous velocity interval is discretized in steps of different size depending on
the density. The number of nodes is fixed, and the grid width stretches at low
density while, for large density, it shrinks as ve goes to zero.

According to the above discretization, the following gross quantities are ob-
tained by weighted sums:

u(t, x) =
2n−1∑

i=1

fi(t, x) , (11)

and

q(t, x) =
2n−1∑

i=1

Vifi(t, x) , v(t, x) =
q(t, x)

u(t, x)
· (12)

We also define, following the gas kinetic theory, two quantities that can give
important information about the vehicles flux: the temperature (i.e. the vari-
ance of velocities) and the H function.

Θ(t, x) = σ(t, x) =
1

u(t, x)

2n−1∑

i=1

(Vi − v(t, x))2 fi(t, x). (13)

H(t, x) =
2n−1∑

i=1

fi(t, x) log fi(t, x). (14)

The above discretization, as it will be discussed later in the paper, can be
technically modified assuming that vM depends not only on the density, but
also on the local space gradients as suggested in [18].
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3 Models for Steady Uniform Flow Conditions

This section deals with the modelling of traffic flow phenomena for flow con-
ditions such that the space gradients of the number density u = u(t, x) are
negligible.

In general, the model consists in a set of evolution equations for the densities
fi linked to the velocities Vi. The mathematical structure of the evolution
equations in the spatially homogeneous case, is, according to [9], the following:

dfi

dt
=

2n−1∑

h=1

2n−1∑

k=1

ηhkA
i
hkfhfk − fi

2n−1∑

k=1

ηikfk , (15)

for i = 1, . . . , 2n− 1, where:

• ηhk is the encounter rate (number of interactions per unit time) of vehicles
with velocities Vh and Vk;

• Ai
hk is the probability density that a vehicle with velocity Vh, the test

vehicle, reaches the velocity Vi after the interaction with the vehicle with
velocity Vk, the field vehicle.

The above terms have the property of a discrete probability density:

2n−1∑

i=1

Ai
hk = 1 , ∀h, k = 1, . . . , 2n− 1 . (16)

Reversibility, which is a typical feature of classical particles, is not here claimed.
Indeed the output of the interaction depends on the ability of drivers to orga-
nize the dynamics of the vehicle.

The derivation of the model, consistently with the above framework, means
modelling the encounter rates and the transition probability densities according
with specific phenomenological behavior of the system we are dealing with.

Modelling the encounter rate is a matter of mechanical calculations. This
quantity depends on the relative velocity though a dimensional parameter γ:

ηhk = γ|Vh − Vk| , (17)

and we choose for technical calculations γ = 1.

9
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On the other hand, the modelling of the terms Ai
hk which, according to the

terminology proposed in [9], define the table of games, needs a mathematical
interpretation of the microscopical phenomenology of the system. The mod-
elling proposed in this section is based on the idea that the terms Ai

hk may
depend on the distribution functions fi through the local number density. In
fact, drivers adjust the dynamics of the vehicle according to the local den-
sity conditions. The specific assumptions which generate the model are the
following:

Assumption 3.1 Interactions modify the velocity of the test and field vehicles
only if Vh and Vk are sufficiently close:

Ai
hk = 0 if |h− k| > 1 ; i = 1, .., 2n− 1 . (18)

Assumption 3.2 The test vehicle can modify its velocity only by jumping to
a neighboring velocity value.

Ai
hk = 0 if |i− h| > 1 for k = h− 1 , h , h + 1 . (19)

According to the above stated assumptions, we are lead to consider only the
non null terms of matrices Ai

hk,

Ai=h−1
h h−1 , Ai=h

h h−1 , Ai=h+1
h h−1 , Ai=h+1

h h+1 , Ai=h
h h+1 , Ai=h−1

h h+1 . (20)

Assumption 3.3 We distinguish the case h < n and h > n. In fact, when
h < n, the test vehicle is slower than the equilibrium velocity and the driver
has tendency to increase his speed when he/she interacts with a “fast” ve-
hicle, while no changes occurs if he/she interacts with a slower vehicle. The
opposite trend (acceleration) is expected when the test vehicle, faster than the
equilibrium velocity, h > n, interacts with a slower vehicle.

According to the above notations, the following table of games provides a

10
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mathematical interpretation of the phenomenology of the system:

if h ≤ n and k = h + 1 Ah+1
hh+1 = εa Ah

hh+1 = 1− εa ,

if h ≥ n and k = h− 1 Ah−1
hh−1 = εd Ah

hh−1 = 1− εd ,

if |h− k| > 1 or k = h Ah
hk = 1,

otherwise Ai
hk = 0,

(21)

for (i, h = 1, . . . , 2n− 1 ; k = h− 1 , h , h + 1).

We distinguish between the accelerating probability εa and the slowing down
probability εd. These coefficients represent the reactivity of vehicles to different
events and in principle may assume different values, if one of the events is
more effective, e.g. braking usually has a shorter reaction time with respect
to acceleration. It is useful to rewrite them as

εa = ε and εb = ν ε, (22)

to identify a basic reaction probability ε and a measure of its asymmetry ν.

The above assumption models the fact that slow vehicles have a trend to
reach the mean velocity when “motivated” by fast vehicles, while the opposite
behavior is observed for fast vehicles which are “motivated” to decelerate by
the presence of slow vehicles. The interaction is supposed to be effective only
when the velocity distance is not too large.

It is worth stressing that, due to the adaptive grid, interactions are related to
the local density considering that the velocity distribution is compressed for
increasing density.

The above model is identified only by five parameters: µ, γ, n, ε and ν.

• µ as defined in (1) is a parameter that identifies the maximum velocity of
the single vehicle, an can be directely identified from experimental data. In
the sequel, we will choose µ = 1.

• γ as in (17) is a dimensional parameter which will be included in the time
variable and set equal to one.

• n defines the number of nodes.
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• ε corresponds to the tendency of the driver to modify his/her velocity when
interacting with a vehicle with a velocity in the above defined interacting
velocity range.

• ν takes into account the different tendency in accelerating or braking of
driver. We will see in the sequel that the choice of ν heavily affects the shape
of the equilibrium distribution. This is the reason we can suggest some re-
quirements (inequalities) for ν to be satisfied.

Following the remarks of Section 5, we claim that suitable experimental in-
formation on the most probable velocity provides estimates useful for the
identification of parameters n, ε and ν.

Assumptions 3.1 and 3.2 and Eq. (17) allow us to rewrite Eq. (15) as follows:

dfi

dt
=

i+1∑

h=i−1

h+1∑

k=h−1

ηhkA
i
hkfhfk − fi

h+1∑

k=h−1

ηikfk , (23)

for i = 1, . . . , 2n− 1

Remark 3 It worth pointing out that the parameter n defining the number of
nodes is not a mere discretization parameter since, as stated in the introduc-
tion, the discretization not only reduces the computational complexity but it is
justified from the modelling viewpoint.
In particular, n defines a velocity range of sensitivity, in which interactions
are effective. Indeed, bearing in mind the adaptative grid (9), Assumptions
3.1 and 3.2, n defines both the interacting velocity ranges to which the drivers
are sensitive to changing their velocity, and the width of the velocity jumps of
vehicles when braking or accelerating. Therefore the above model is consistent
only if n is finite and not too large.

4 Models for Unsteady Flow Conditions

The modelling method proposed in Section 3 can be technically generalized
to the analysis of models in the presence of density gradients. In this case the
reference framework, still according to [9], is the following:

∂fi

∂t
+

∂

∂x
(Vi fi) =

2n−1∑

h=1

2n−1∑

k=1

ηhkA
i
hkfhfk − fi

2n−1∑

k=1

ηikfk , (24)

for i = 1, . . . , 2n− 1.
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This is a nonhomogeneous system of hyperbolic first order equations with a
quadratic right-hand-side term in the unknowns. Moreover, since the velocity
Vi depends on u following (9), i.e. on the fi, the left term is non linear too.
Interactions between vehicles are modelled both explicitly by the table of
games and implicitly by the empirical equation ve(u), which instantaneously
adapts the velocity grid to the density.

Choosing, as a particular case, to deal with the relatively simpler model

ve(u) = 1− u, (25)

the system particularizes as follows:

∂fi

∂t
+

∂

∂x

(
i− 1

n− 1

(
1−

2n−1∑

i=1

fi

)
fi

)
=

2n−1∑

h=1

2n−1∑

k=1

ηhkA
i
hkfhfk − fi

2n−1∑

k=1

ηikfk,

(26)

for i = 1 . . . 2n− 1.

Equation (26) can be rewritten in vector nonconservative as follows

∂f

∂t
+ A(u)

∂f

∂x
= R[f ], (27)

where

f = (fi) ,

A(u) =

(
∂qi

∂fl

)
=

d Vi(u)

d u
fi + Viδil,

and

R[f ] =
2n−1∑

h=1

2n−1∑

k=1

ηhkA
i
hkfhfk − fi

2n−1∑

k=1

ηikfk.

Equation (27) has positive characteristic velocities, the eigenvalues of A(u),
which control the velocity propagation of the perturbations. The total mass,
i.e. the number of vehicles n, is conserved.

13
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5 Qualitative and Computational Analysis of the Model for Steady
Uniform Flow Conditions

This section deals with a qualitative analysis of the initial value problem for
the discrete velocity traffic flow model proposed in Section 3. The analysis is
first finalized to show the wellposedness of the initial value problem. Then, in
some simple case, equilibrium solutions are found and their stability properties
partially analyzed. Finally, the numerical approach highlights the trend of
solutions to equilibrium and their shape for different densities.

5.1 Qualitative Analysis

The mathematical statement of the problem is as follows:





dfi

dt
= Ji[f ]

2n−1∑

i=1

fi0 = u0 with fi0 = fi(t = 0) ,

(28)

where Ji is defined by the right-hand-side term of Eq. (23), and the transition
densities Ai

hk are defined by the table of games reported in (21).

It is useful to introduce the following scaled variables:

gi(t) =
1

u0

fi(t) , gi0 =
1

u0

fi0 . (29)

In this way, the system (28) writes:





dgi

dt
+ giLi[g] = Qi[g]

2n−1∑

i=1

gi0 = 1 with gi0 = gi(t = 0) ,

(30)

where

Qi[g] =
i+1∑

h=i−1

n+1∑

k=h−1

ηhkA
i
hkgh(t)gk(t) , (31)
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and

Li[g](t) =
2n−1∑

k=1

ηikgk(t) . (32)

The well posedness is assured by the following Theorem:

Theorem 4 The solution g(t) = (g1(t), . . . , g2n−1(t)) of the initial value pro-
blem (30) (satisfying (16)) exists, is unique, and is positive defined, for all
t ∈ [0, +∞), for any given set {gi0}i=1,...,2n−1 with gi0 ≥ 0. Moreover, solu-
tions are continuously dependent on the initial conditions.

In particular, one has

∀t ≥ 0 : gi(t) ≥ 0 for any i = 1, . . . , n and
2n−1∑

i=1

gi(t) = 1 . (33)

Proof: Using the same reasoning of [9], the right-hand-side in System (30) is
of class C1 (actually, C∞) on IRn, and hence locally Lipschitz. This guarantees
existence and uniqueness of solutions, {gi(t)}i=1,..,2n−1 ∈ C∞ (IRn, [0, t∗)) of the
Cauchy problem, as well as their continuous dependence on the initial data,
for some t∗ > 0. Moreover, the a priori estimates (33), that result from direct
computation using the hypotheses on the initial conditions, imply that |gi(t)|
is bounded for any t > 0 (i = 1, .., 2n − 1). This is sufficient in order the
problem (30) to be globally well posed.

Theorem 4 makes us confident in using numerical schemes on our model.

On the other hand, a crucial point in the qualitative analysis of the model is to
look at its equilibrium points, if any, and their stability properties. In steady
uniform flow conditions, the evolution of the “vector” distribution function
g = (gi, .., g2n−1) corresponding to a prescribed initial data g0 = (g01 , .., g02n−1)
can be regarded as the flow g(g0, t) of the autonomous dynamical system
generated by problem (30), where the normalization condition in (30)2 reduces
the number of unknowns to 2n− 2. The equilibrium points are solutions to:

Ji[g] = Qi[g]− giLi[g] = 0 i = 1, .., 2n− 1 (34)

In view of the difficulty to treat the general case with n arbitrary we consider
some particular value of the discretization index, starting with n = 2. In this
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case equation (15) reads:





dg1

dt
= VM(εd − εa)g1g2

dg2

dt
= VM(εa − εd)g2(g1 − g3)

dg3

dt
= −VM(εd − εa)g2g3.

(35)

If εd = εa, then any “position” P = (g∗1, g
∗
2, g

∗
3) satisfying condition (30)2 is an

equilibrium point that, consequently, is trivially stable.

If εd 6= εa we have two equilibrium solutions, P0 = (0, 1, 0) and P1 = (a, 0, 1−
a), 0 < a < 1. We limit ourselves to investigate the stability of such solu-
tions with respect to “small” perturbations. Looking at the eigenvalues of the
jacobian matrix:

J = VM(εd − εa)




g2 g1 0

−g2 g3 − g1 g2

0 −g3 −g2




,

we deduce that P0 is unstable, while P1 is stable provided:

(2a− 1)(εa − εd) < 0,

that is, provided the velocity distribution is asymmetric, with a prevalence of
slow vehicles if εa < εd, and a prevalence of fast vehicles in the opposite case
εa > εd. It is worth to remark that since P1 is not an isolated, but a line of,
equilibrium points (J has in P1 a multiplicity-2 zero eigenvalue), its stability
is, strictly speaking, marginal.
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The picture is a bit more rich when n = 3. In this case (15) becomes:





dg1

dt
= −1

2
VM εa g1 g2

dg2

dt
=

1

2
VM g2 (εa (g1 − g3) + εd g3)

dg3

dt
=

1

2
VM (εa − εd) g3 (g2 − g4),

dg4

dt
=

1

2
VM g4 (εa g3 + εd (−g3 + g5)) ,

dg5

dt
= −1

2
VM εd g4 g5.

(36)

The results, obtained in a way similar as outlined above, are summarized in
the following way:

Let n = 3. If εa 6= εd, the equation (34) has solutions:

• P0 = (a, 0, 1− a− b, 0, b)
• P1 = (0, c, 0, 1− c, 0)
• P2 = (0, d, 0, 0, 1− d)
• P3 = (e, 0, 0, 1− e, 0).

with a, b > 0, 0 < a + b < 1, 0 < c < 1, 0 < d < 1 and 0 < e < 1. These
equilibrium solutions are unstable except P1, which is linearly (marginally)
stable provided (2c − 1)(εa − εd) < 0, (cf. the case n = 2). Otherwise, if
εa = εd, the equilibrium solutions are:

• P0 = (a, 0, g0
3, 0, 1− a)

• P1 = (0, c, g0
3, 1− c, 0)

• P2 = (0, d, g0
3, 0, 1− d)

• P3 = (e, 0, g0
3, 1− e, 0).

with f 0
3 , a, c, d, e > 0, 0 < a + g0

3 < 1, 0 < c + g0
3 < 1, 0 < d + g0

3 < 1 and
0 < e + g0

3 < 1. As before, all these solutions are unstable except P1, which is
linearly unconditionally marginally stable.

As n increases, the problem becomes formally more and more involved. How-
ever, the general behavior outlined in the simple cases n = 2 and n = 3 is
preserved. In particular, we still observe concentration toward central values,
alternation of vanishing and non vanishing values, asymmetry (in the case
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εa 6= εd) as well as, when εa = εd, the conservation in time on the “central”
component gn. This aspect, as well as the general behavior depicted in this
section, will be actually observed in the numerical simulations.

5.2 Computational Analysis

Based upon the above analytical background, some simulations can be devel-
oped to visualize the model’s trend toward equilibrium distribution.

Simulations are developed with the aim of showing that the stationary picture
expected from the model is similar to the experimentally observed one. We
notice that the system actually tends to reach an equilibrium distribution.
As we have seen, asymptotic states do not depend on ε, but on ν. Moreover,
these equilibrium solutions are not isolated points in the space of solutions,
but regions of points of some hyperplanes. Indeed, there are some “degrees of
freedom” in the system, where the dependence of the solution on the initial
condition remains: the system keeps a memory of its initial conditions.

The main features of these equilibria are concentration toward the central
values and alternation between zero and nonzero values. This feature, which
comes directly from Assumptions 3.1, is physically expected and seems to
mimic the physical phenomenon of packing of vehicles with similar velocity.

Specifically, we consider initial conditions which are uniform with respect to
the discrete velocity variable:

gi0 =
1

2n− 1
. (37)

The result of simulations is shown in Figures 1 and 2, visualizing the asymp-
totic (in time) distribution and the initial uniform distribution. We notice that
if ν 6= 1 i.e. the reactivity is asymmetric, there is a trend to asymmetry, which
eventually superposes to the asymmetry of the initial data.

It is worth to remark that, in the simulations, the equilibrium solution corre-
sponds to a minimum of the functions H and Θ defined in (13) and (14).

We should also remark that the most probable velocity VP is assumed in Vn−1

or Vn+1, depending on the value of ν. This fact, joined with the meaning of n
(see Remark 3), could be used to identify the parameter by experimental data
showing the above feature.

It is interesting pointing out that the discretization is such that the numerical
equilibrium distribution has the same shape for all densities u0, while it is
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Fig. 1. Initial uniform ( ) and equilibrium (¦) discrete distributions for ν = 1.
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Fig. 2. Initial uniform ( ) and equilibrium (¦) discrete distributions for ν = 1.1.

0.25 0.5 0.75 1 1.25 1.5 1.75
V
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0.02

0.03

0.04

f

Fig. 3. Polynomial fit of the equilibrium discrete distributions for different densities:
u0 = .05, u0 = .1, u0 = .3, u0 = .5.

compressed toward small velocities when the density increases. This is visu-
alized in Figure 3, which shows a polynomial fit of the discrete equilibrium
distribution.

As visualized in Figures 4 and 5, we also get a good agreement with the
qualitative picture of the velocity and fundamental diagrams, [4], describing
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the mean velocity and the flux as functions of density.

0.2 0.4 0.6 0.8 1
u0

0.05

0.1

0.15

0.2

q Flux

Fig. 4. Equilibrium flux versus density. n = 11, ν = .9.

0.2 0.4 0.6 0.8 1
u0

0.2

0.4

0.6

0.8

1

v Equilibrium Mean Velocity

Fig. 5. Equilibrium velocity versus density. n = 11, ν = .9.

6 Simulations for Unsteady Flow Conditions

We have already mentioned in Section 4 that solutions, in the general case,
are characterized by a nonlinear propagation, leading to generation of shocks.
This implies that the corresponding hyperbolic equation has to be solved using
a method designed for conservation laws. As an example, in this Section we
present some numerical simulations related to the evolution of the system from
different specific initial conditions obtained by a first-order up–wind method.
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We consider the initial value problem:





∂fi

∂t
+

∂

∂x
(Vi fi) = J [f ]

fi(t = 0, x) = fi0(x)

fi(t, x = 0) = fi(t, x = 1)

(38)

corresponding to vehicles on a ring road. According to three case studies we
consider different initial conditions fi0(x) and thus different initial density and
mean velocity profiles.

• Evolution of a jam

The jam is originated by an initial concentration of slow vehicles (initial con-
dition). As time goes on, the jam damps and the density and mean velocity
profiles become more uniform. This evolution of the density is showed in the
3D Figure 6.

Density

0.2
0.4

0.6
0.8

1.
x

0.25

0.5

0.75

1.

t

0
0.2

0.4

0.6
u

0.2
0.4

0.6
0.8

1.
x

Fig. 6. Space and time evolution of a density perturbation: total density u(x, t).

• Braking of fast vehicles A jam arises when quicker vehicles reach a cluster
of slower ones and interact with them, as showed in Figure 7.

• Vacuum formation Vacuum arises between fast vehicles running ahead and
slower ones left behind. The density graphs are showed in Figure 8.
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Fig. 7. Space evolution of total density (continuous line), quicker vehicles (dotted
line) and slower ones (dashed line), at different times.
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Fig. 8. Space evolution of total density (continuous line) of slower vehicles behind
(dashed line) and quicker ones (dotted line) in front at different times. Vacuum
occurs.
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7 Conclusion and Perspectives

This paper developed a discrete kinetic theory approach to the modelling of
vehicular traffic flow.

Before proposing a critical analysis of the contents of this paper it is worth
stressing that the discrete velocity approach has not been developed with the
aim of reducing computational complexity, but rather to improve the consis-
tency of the kinetic theory approach to the modelling of the granular flow of
vehicles. Indeed, as already observed by Daganzo [13], methods of the math-
ematical kinetic theory are designed to apply to systems with a large number
of particles, while flow of vehicles involves a small number of particles: in this
case the continuity of the distribution function cannot be claimed. Therefore,
discretization of the velocity space can be regarded as a way to represent the
system without needing artificial continuity assumptions, as well as to involve
a relatively larger number of vehicles in the interactions scheme.

Several interesting problems are left open and can be regarded as challenging
research perspectives.

From the qualitative viewpoint, it might be interesting to develop more pow-
erful tools of analysis, which could be used in general in the class of discrete
statistical models. We mostly think to equilibrium stability methods from
classical dynamics and to a deeper understanding, guided by the mechanical
kinetic theory [11], of the role of Θ and H functions, as suggested from the
physics of traffic [22]. Moreover we have to remember, in order to get a true
insight into the physics, the importance of parameter identification.

¿From the modelling viewpoint, the car-driver system cannot be regarded as a
classical particle. Adopting a commonly used terminology [6], it should rather
be regarded as an active particle, where the skill of the drivers modifies the
laws of classical mechanics. This feature has been somehow taken into account
considering that the table of games describes a behavior which does not derive
from mechanical interactions. On the other hand all microscopic entities have
been assumed to behave in the same manner, that does not correspond to
physical reality where different types of vehicles circulate (from trucks to sport
cars), while the driver may be aggressive or shy [13]. This would lead to allow
in our model more than one population, each with its own properties.

Active particles may be more properly characterized by a microscopic state
which includes, in addition to geometrical and mechanical variables as posi-
tion and velocity, also an additional variable, called activity, related to the
ability of particles to organize their dynamics. This approach has been al-
ready developed in various fields of applied sciences, say social dynamics [9],
immunology [6], living fluid dynamics [31], while various other applications

23



Acc
ep

te
d m

an
usc

rip
t 

are briefly reported in [6].

An interesting research perspective consists in developing this mathematical
approach also in the case of traffic flow modelling. It means introducing an
additional microscopic variable related to the specific characteristic of the
driver-vehicle system. Then, the design of the tables of games must also re-
fer to the above variable. Hopefully, the analysis already developed in this
paper should be regarded as a useful basis to deal with the above outlined
perspective.

An additional improvement can be proposed by introducing, according to [18],
the concept of apparent density related to the actual density u and its gradients
by the phenomenological model proposed in [18]. This model simulates the
behavior of a driver who feels an effective density larger than the real one
in the presence of positive gradients, while the behavior corresponds to a
relatively smaller density in the presence of negative gradients.

In conclusion, the model proposed in this paper can be read as a first effective
implementation of the discrete kinetic framework proposed in [17]. We have
showed that it is able to catch several features of the traffic phenomena and
this observation encourages us to develop this approach following the above
guiding lines.
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