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Abstract

We address the max min vertex cover problem, which is the maxi-

mization version of the well studied min independent dominating set

problem, known to be NP-hard and highly inapproximable in polynomial

time. We present tight approximation results for this problem on general

graphs, namely a polynomial approximation algorithm which guarantees

an n
−1/2 approximation ratio, while showing that unless P = NP, the

problem is inapproximable within ratio n
ε−(1/2) for any strictly positive ε.

We also analyze the problem on various restricted classes of graph, on

which we show polynomiality or constant-approximability of the problem.

Finally, we show that the problem is fixed-parameter tractable with re-

spect to the size of an optimal solution, to tree-width and to the size of a

maximum matching.

1 Introduction

In the min independent dominating set problem, also called min indepen-

dent dominating set, given a graph G(V,E), we are asked to determine a
minimum size vertex-subset that is simultaneously independent and dominat-
ing. This problem has been proved to be inapproximable within n1−ε, for any
ǫ > 0, not only in general graphs [15] but also in restricted graph classes as, for
instance, the circle graphs [7]. Also, and probably due to this fact, exact solu-
tion of min independent dominating set in general or in restricted classes of
graphs by moderately exponential algorithms has received a growing attention

∗Research supported by the French Agency for Research under the program TODO, ANR-
09-EMER-010 and by a Lagrange fellowship of the Fondazione CRT, Torino, Italy
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in the past years [14, 13, 4]. This problem has also been tackled using exponen-
tial approximation techniques [4]. Finally, it is shown to be very hard from a
parameterized complexity point of view since it is W[2]-hard [8].

Surprisingly, to the best of our knowledge, the natural symmetric problem,
the max min vertex cover problem, where the goal is to compute a minimal
(for exclusion) vertex cover of maximum size, has not been addressed yet. This
problem obviously has the same characteristics as its minimization counterpart
in terms of NP-hardness and exact computation, but might have different be-
haviours in terms of approximability and parameterized complexity (as in the
case of the pair max independent set - min vertex cover). Indeed, this
seems in a large extent to be the case.

We show in this paper that, while also highly inapproximable, max min

vertex cover is better approximable than its mate, since it can be approxi-
mately solved in polynomial time within ratio n1/2, where n is the size of the
input graph. This result is matched by an inapproximability bound of nε−(1/2)

that can be extended also to an O(1/∆) inapproximability bound, where ∆
is the maximum degree of the input graph. We also match it to an O(3/2∆)
approximation ratio achieved by a natural greedy algorithm. We also prove
that, unlike min independent dominating set, max min vertex cover is
in FPT, the class of fixed-parameter tractable problems not only with respect
to the standard parameter, i.e., the value of the optimum, but also with respect
to the cardinality of a maximum matching (that is smaller than the value of the
optimum). Let us note that both min weighted dominating set and max

weighted independent set are polynomially solvable in graphs with bounded
treewidth [1, 2, 3] (and, actually, fixed parameter tractable with respect to the
treewidth of the input graph [19]). With similar dynamic programming tech-
niques, it can be shown that also both weighted max min vertex cover and
weighted min independent dominating set are fixed parameter tractable
with respect to the treewidth. Since the techniques used for obtaining this result
are quite similar to those in [19], the proof of the result is omitted. We con-
clude the paper by studying complexity of max min vertex cover in interval
graphs.

2 Approximation of max min vertex cover in

general graphs

We give in this section inapproximability upper bounds matched by lower bounds
achieved in polynomial time for max min vertex cover. We first study ratios
functions of n and then functions of ∆.

Proposition 1. For any positive constant ε, max min vertex cover is in-
approximable within ratio O(nε−(1/2)) unless P = NP.

Proof. First, recall that max independent set has been proved to be inap-
proximable within ratio nε−1 for a given ε ∈ (0, 1) [16] unless P = NP. Suppose
that there exists an ε-approximation algorithm A for max min vertex cover.
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Consider an unweighted instance of max independent set given by a
graph G(V,E). Out of this instance of max independent set, we build an
instance H(V ∪ S,E′) of max min vertex cover in the following way: for
each vertex v of V one adds n+ 1 vertices connected only to v in H, while the
inner edges of the set V are left unchanged. In other words, graph H is obtained
by adding an independent set S, of order n2 + n to the initial graph G, and
connecting n+ 1 vertices of the independent set to each vertex v.

Note that the graph H can be built in polynomial time, and has precisely
n2 + 2n vertices. Denote by opt(G) an optimal independent set in G, and
by opt(H) an optimal vertex cover in H.

Consider a vertex cover SOL(H) that has value sol(H) in H. First, notice
that H admits a maximal matching of n edges, that consists of taking, for each
vertex of V , one edge linking this vertex to one of its neighbors in S. Hence,
any vertex cover in H takes at least n vertices, i.e., sol(H) > n

Notice also that, for any vertex v of V that does not belong to SOL(H),
then SOL(H) must take all its neighbors in S, that is n+ 1 vertices. Moreover
the set V \ SOL(H) of vertices of V that do not belong to SOL(H) defines an
independent set in G of weight n− sol(H). In other words, one can assert that
any solution SOL(H) of value sol(H) in H can be easily transformed into an
independent set SOL(G) in G of value:

sol(G) >
sol(H)− n

n
(1)

Conversely, the existence of a maximal independent set of size h in G induces the
existence of a minimal vertex cover of size nh+n in H. It suffices to consider the
following vertex cover: all vertices of V that do not belong in the independent
set (n− h vertices), and all vertices of S linked to a vertex of the independent
set (h(n − 1) vertices). Therefore, it holds that a minimal vertex cover of size
n · opt(G) + n exists in H. In other words, opt(H) > n · opt(G) + n.
Now, for some constant positive ρ < 1, suppose that there exists a polyno-

mial time algorithm A for max min vertex cover that guarantees an approx-
imation ratio n−ρ, and suppose that a solution SOL(H) has been computed by
this algorithm on graph H. Reminding that graph H has O(n2) vertices, the
approximation ratio guaranteed by A on H turns to be n−2ρ. Then, it holds
that:

sol(H) > n−2ρ · opt(H) (2)

By combining (1) and (2), one can assert that SOL(H) can easily be transformed
into an independent set SOL(G) in G of value:

sol(G) >
n−2ρ · opt(H)− n

n
> n−2ρ−1 · opt(H)− 1

> n−2ρ · opt(G) + n−2ρ − 1 > n−2ρ · opt(G)

where the last inequality holds for n big enough.
Hence, the existence of an n−ρ-approximation algorithm A for max min

vertex cover induces the existence of an n−2ρ-approximation algorithm for
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max independent set, that would consist of:
• building the instance H of max min vertex cover out of the instance G of
max independent set ;
• running the algorithm A on the instance H that outputs a solution SOL(H);
• returning the solution V \ SOL(H) for the initial problem.
Since, for any constant 0 < ε 6 1, the existence of an n1−ε-approximation

algorithm for max weighted independent set induces P = NP [16], an n−ρ-
approximation algorithm for max min vertex cover can exist only subject
to the condition that n−2ρ 6 n1−ε for any 0 < ε 6 1. This leads to ρ 6 ε− 1/2,
which concludes the proof.
Observe now that the order of graph H in the gap-reduction of Proposi-

tion 1 is O(n2), while the maximum degree of H is O(n). Then, the following
inapproximability bound also can be immediately derived.

Corollary 1. max min vertex cover is inapproximable in polynomial time
within ratios O(∆ǫ−1), for any ǫ > 0.

Let us now recall the following very classical and obvious observation that will
be used later.

Remark 1. Denoting by M a maximum matching of a graph G, any vertex
cover (a fortiori a minimal one) of G uses more than |M | vertices (since, at least
one distinct vertex is needed per one edge of M).

Lemma 1. Consider a graph G(V,E) and an independent set S of G. Denote
by Γ(S) the set of neighbors of S, and V ′ = V \ (S ∪ Γ(S)). Finally, denote by
SOL(G′) a minimal vertex cover on the induced subgraph G[V ′] and by sol(G′)
its cardinality. It holds that Γ(S) ∪ SOL(G′) is a feasible solution for max min

vertex cover.

Proof. First, let us prove that Γ(S) ∪ sol (V ′) is a vertex cover: all edges of
S×Γ(S) and Γ(S)×V ′ are covered by vertices of Γ(S), and all edges inside the
induced subgraph G[V ′] are covered by SOL(G′). By hypothesis, S × S = ∅, so
that Γ(S) ∪ SOL(G′) is, indeed, a vertex cover.
Then, let us establish the minimality of such a vertex cover: on the one hand,

no vertex of Γ(S) can be removed, as they all cover an edge linked to a vertex
of S (and no vertex of S is in the vertex cover), and on the other hand, SOL(G′)
is a minimal vertex cover on a subgraph of G, so that none of its vertices can
be removed without uncovering an edge.

Proposition 2. max min vertex cover is approximable within ratio n−1/2

in polynomial time.

Proof. Consider a graph G(V,E), with |V | = n. Let Γ(x) be the set of
neighbors of a given vertex x and, given V ′ ⊆ V , let G[V ′] be the subgraph
of G induced by the set of vertices V ′. Consider the following approximation
algorithm for max min vertex cover:
• compute a maximum matching M ;
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• among the matched vertices, let x be the one with the maximal number of
exposed neighbors;
• compute a minimal vertex cover on G[V ′] with a greedy algorithm, where
V ′ = V \ ({x} ∪ Γ(x)), and denote it by SOL(G′);
• output SOL(G) = Γ(x) ∪ SOL(G′).
First, by Lemma 1, we can assert that the solution returned by our approxi-

mation algorithm is feasible. Then notice that the algorithm runs in polynomial
time, all steps of the algorithm are so: step 1 can be performed in O(n2.376)
by the algorithm presented in [17], identifying vertex x is done in O(n), and
building a minimal vertex cover is done in O(n2) (starting from the whole set
of vertices, the greedy algorithm deletes them one by one as long as the solu-
tion remains a vertex cover, when no vertex can be deleted, the remaining set
is a minimal vertex cover). Finally, without loss of generality, let us suppose
that the graph has no isolated vertices, since such vertices obviously make the
problem easier to approximate.
Let us now analyze the approximation guarantee of this algorithm. Given

the maximum matching M computed at the first step of the algorithm, denote
by P the set of exposed vertices of V with respect to M (i.e., the set of vertices
of V that are not saturated by M), which obviously forms an independent set.
Finally, set p = |P | and m = |M |. Our analysis is based upon the following
maximality argument that will be used also in Proposition 3.
Notice that each edge (vi, vj) of M is linked to a set of vertices Pij ⊆ P ,

so that Pij ⊂ Γ(vi), or Pij ⊂ Γ(vj). Indeed, suppose vi has some neighbor vk
in P not linked to vj , and vj some neighbor vl in P not linked to vi. Then, by
deleting (vi, vj) fromM and adding (vi, vk) and (vj , vl) to it, one could produce
a matching with m + 1 edges, so that M would not be a maximum matching.
In other words, there exists a covering of P by m sets Pij , each of them been
included in the neighborhood of a single matched vertex. For the algorithm,
this implies that the vertex x picked at step 2 has at least p/m neighbors in P .
The algorithm includes the whole neighborhood of this vertex x, which

might also include some matched vertices. Suppose that Γ(x) contains exactly h
matched vertices. Then it holds that:

|Γ(x)| > h+
p

m
= h+

n− 2m

m
(3)

We now bound the value of SOL(G′). Among the edges of the matching M , at
least m− h still exist in the subgraph G[V ′]. Indeed, this subgraph is obtained
by deleting from G the vertex x together with all its neighbors, and all edges
incident to these vertices. It is clear that, by deleting h vertices from M , only h
edges are deleted from it. Thus, G[V ′] contains a matching with m − h edges,
so that any vertex cover in G[V ′] has at least m − h vertices. A fortiori, this
also holds for the vertex cover computed at step 3 of the algorithm; so:

sol (G′) | > m− h (4)

Combining (3) and (4), we finally get the following bound on the value of the
solution computed by the algorithm: sol(G) > m+ n

m − 2 >
√
n, where the last
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inequality results from a simple case analysis on the value of m with respect
to
√
n: if m >

√
n, then the first term of the sum is at least

√
n and the second

at least 2 (as m 6 n/2). In the opposite case (m <
√
n), the second term of the

sum is at least
√
n, where m > 2 (if m = 1, the graph is a star, and the problem

is polynomial).
Considering that opt(G) 6 n, the algorithm clearly guarantees an n−1/2

approximation ratio, and the proof is concluded.

Proposition 3. max min vertex cover is polynomially approximable within
ratio 3/2∆, where ∆ is the maximum degree of the input graph. Furthermore, in
bounded-degree graphs, regular graphs and graphs admitting a perfect matching
max min vertex cover is in APX.

Proof. Denote by di the degree of a vertex vi ∈ V , by d the average degree
of G and, as previously, by M a maximum matching of G, by m the cardinality
of M and by p the cardinality of the set P = V \ V (M) of the exposed vertices
of V with respect to M .
The maximality argument stated in the proof of Proposition 2, has the fol-

lowing consequence for sets M and P :

for an edge (vi, vj) ∈ M , if one, say vi, of its endpoints has more
than one exposed neighbor, then vj has no exposed neighbour at
all; in the opposite case, an augmenting path would occur; in other
words, in the case that a matching edge (vi, vj) is incident to some
edge (v, u) with either vi = v, or vj = v, and u ∈ P , it holds that
|(Γ(vi) ∪ Γ(vj)) ∩ P | 6 1.

Suppose that there exist a set M ′ of m′ edges of M , whose one endpoint is
adjacent to some exposed vertex of G with respect toM . Obviously, p 6 m′ ·∆.
Since n = 2m+ p, we get, using the quoted consequence above, n = 2m + p 6

2(m−m′) + (∆ + 1)m′ = 2m+ (∆− 1)m′ 6 (∆ + 1)m; hence:

m >
n

∆+ 1
(5)

By the seminal Turán’s Theorem, every maximal (for inclusion) independent
set of G has size at least n/(d+ 1); consequently:

opt(G) 6
dn

d+ 1
(6)

Combining (5) and (6) and taking into account Remark 1, the following holds
for the approximation of every minimal vertex cover:

sol(G)

opt(G)
>

d+ 1

d(∆ + 1)
≃ d+ 1

d∆
(7)

for arbitrarily large values of ∆. Also the following fact holds for any vertex
cover of a graph G(V,E) of order n.
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Any vertex cover (a fortiori a minimal one) C guarantees approxi-
mation ratio at least (d+ 1)/2∆ for max min vertex cover.

In fact, since C covers E, it holds that
∑

vi∈C
di > |E|. Also,

∑
vi∈C

di 6 ∆|C|
and |E| = nd/2. Putting all this together, we get:

sol(G) = |C| > nd

2∆
(8)

Combining (8) and (6), we derive:

sol(G)

opt(G)
>

d+ 1

2∆
(9)

Ratio in (9) is increasing with d, while in (7) is decreasing with d. Equality
holds for d = 2, which derives ratio 3/2∆.

3 Parameterized analysis

We prove in this section that, continuing the asymmetry between min inde-

pendent dominating set and max min vertex cover, the later is fixed
parameter tractable when parameterized by the standard parameter, i.e., the
cardinality opt of a maximum minimal vertex cover.

Proposition 4 . max min vertex cover can be solved in O∗(4opt/3) =
O∗(1.5874opt).

Proof. Let, as previously, Γ(vi) be the neighborhood of vertex vi. First, notice
that if all vertices have degree 6 2, then the problem becomes straightforwardly
polynomially solvable by dynamic programming. Then, we assume that there
exists a vertex vj such that dj > 3. Notice also that for each vertex vi at least
one vertex among the set Γ(vi) ∪ {vi} cannot be part of the vertex cover or
else that vertex cover would not be minimal. We consider a branch and reduce
approach where in each branch a vertex is excluded from the vertex cover and
its neighbors are then necessarily included. We point out that such branch
guarantees that all vertex covers generated will be minimal. We branch on
vertex vj according to the following exhaustive cases.

Case 1. dj > 3 and all vi ∈ Γ(vj) have degree di > dj . We generate
|Γ(vj)| + 1 branches as follows: in one branch, vertex vj is excluded from the
vertex cover and correspondingly all its neighbors are included; in all other
branches one of the vertices vi ∈ Γ(vj) is excluded while all vk ∈ Γ(vi) are
included. This corresponds to |dj+1| branches where in each branch at least |di|
vertices are included in the vertex cover. The worst-case occurs for |dj | =
3, where we have four branches each including 3 vertices in the vertex set.
Correspondingly, the complexity is O∗(4opt/3) = O∗(1.5874opt).

Case 2. dj > 3 and there exists vi ∈ Γ(vj) with di = 2. Three subcases
occur with respect to the degree of the other neighbor vk of vi.
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Subcase 2 (a). If dk > 3, then either vi or vj or vk are excluded from
the vertex cover and correspondingly their neighbors are included in the vertex
cover. Then, the recursion is at least T (opt) 6 T (opt − 2) + 2T (opt − 3) and
the worst-case complexity is O∗(1.5214opt).

Subcase 2 (b). If dk = 2, vj may or may not be adiacent to vk. If vj and vk
are adjacent, then a branch on vj can be performed: either vj is excluded from
the vertex cover and correspondingly its neighbors (at least three) are included
in the vertex cover, or vj is included in the vertex cover and arbitrarily vi (vk)
is excluded from the vertex cover and vk (vi) is included in the vertex cover.
Then, the recursion is at least T (opt) 6 T (opt− 2)+T (opt− 3) and the worst-
case complexity is O∗(1.3248opt). Alternatively, vj and vk are non adjacent
and vk is adjacent to another vertex vl. Then, either vi is excluded from the
vertex cover (and its two neighbors are included), or vk is excluded from the
vertex cover (and again its two neighbors are included), or both vi and vk are
included in the vertex cover and correspondingly vj and vl are excluded from
the vertex cover. In this last case, the other neighbors of vj and vl (that may
possibly coincide) must be included in the vertex cover and globally at least four
vertices must be included in the vertex cover. Correspondingly, the recursion
is at least T (opt) 6 2T (opt− 2) + T (opt− 4) and the worst-case complexity is
O∗(1.5538opt) (notice that this last branch does not even occur if vj and vl are
adjacent).

Subcase 2 (c). If dk = 1, then vi and vj cannot be both included in the
vertex cover as such solution is not better than the one with vj and vk included
in the vertex cover and vi excluded from the vertex cover. Then either vi is
excluded from the vertex and two vertices (vi andvj) are included in the vertex
cover, or vj is excluded from the vertex cover and all its neighbors (at least
three vertices) are included in the vertex cover. Correspondingly, the recursion
is at least T (opt) 6 T (opt − 2) + T (opt − 3) and the worst-case complexity is
O∗(1.3248opt).

Case 3. dj > 3 and there exists vi ∈ Γ(vj) with di = 1. We generate 2
branches where either vi is excluded from and vj is included, or vj is excluded
from the vertex and all its neighbors are included. Correspondingly, the recur-
sion is at least T (opt) 6 T (opt− 1)+T (opt− 3) and the worst-case complexity
is O∗(1.4656opt).
Overall, the worst-case is attained in case 1 with complexity O∗(4opt/3) =

O∗(1.5874opt).
In what follows, we further strengthen the result of Proposition 4, showing

that max min vertex cover is FPT even when parameterized by the cardi-
nality of a maximum matching M of the input graph (recall that m 6 opt(G)).

Proposition 5. max min vertex cover can be optimally solved in time
O∗(3m) where M is maximum matching of the input graph.

Proof. Consider a general graph G(V,E), and a maximum matching M ⊆ E
on G. All exposed vertices obviously form an independent set, that we denote
by S. We also denote, as previously, by V (M) the set of matched vertices.
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We show that any feasible solution SOL(G) for max min vertex cover

can be unequivocally characterized by its subset of matched vertices. Consider
any subset SOL(G) ∩ V (M) of V (M) known to be the subset of a unknown
feasible solution SOL(G). There actually exists a single solution SOL(G) which
admits SOL(G) ∩ V (M) as subset of matched vertices. Indeed denote by Ŝ
the subset of S containing all exposed vertices incident to a matched vertex
that does not belong in SOL(G) ∩ V (M). Then, the whole set Ŝ must be part
of SOL(G) in order to make it feasible. Conversely, all exposed vertices that
do not belong to Ŝ cannot belong to SOL(G), because they would make the
solution non minimal: by definition, all of their neighbors already belong in the
vertex cover.
Therefore, by identifying the subset OPT ∩ V (M), where OPT denotes a

maximum minimal vertex cover, one would be able to reconstruct the whole
solution OPT by simply adding to OPT ∩ V (M) all exposed vertices incident
to a matched vertex not in the vertex cover.
Finally, notice that for each edge of the matching M , any vertex cover (a

fortiori the optimal one) must take at least one endpoint of this edge. So, for
each edge, any solution can take one endpoint, or the other, or both endpoints,
that is three possibilities. Hence, there are at most 3m vertex covers in the
subgraph induced by the matched vertices.
Consider the following algorithm:

• compute a maximum matching M ;
• build all 3m possible vertex-covers Vi ⊆ V (M) among the matched vertices;
• complete each of these vertex-covers by adding all vertices of S incident to a
vertex not in the vertex cover;
• output the maximal feasible solution.
It is clear that through the exhaustive search performed at step 2 of the

algorithm, the subset OPT ∩ V (M) will be found, and when completed by
exposed vertices at step 3, the optimal solution will be produced. Hence, an
optimal solution can be computed in O∗(3m), and the proof is concluded.
Taking into account that m 6 τ , the cardinality of a minimum vertex cover

of the input graph, the following corollary immediately holds.

Corollary 2. max min vertex cover parameterized by τ is FPT.

Let us now quickly point out how combination of Propositions 4 and 5 allows us
to handle interesting trade-offs between parameterization and approximation.
Indeed, we shall show that approximation ratios for max min vertex cover,
impossible to achieve in polynomial time, can be achieved in parameterized
time. This issue has been already studied in [5, 6, 9, 10, 12], etc., for several
problems, as min vertex cover, Steiner tree, min edge dominating set,
several restricted versions of min hitting set, etc.

Revisit Proposition 5 and remark that if m < (log 1.5874/ log 3)opt(G) ≈
0.42opt(G), then the parameterized algorithm of Proposition 5 runs faster than
that of Proposition 4 while, if m > 0.42opt(G), any minimal vertex cover (a
fortiori the one of Proposition 3) achieves ratio greater than, or equal to, 0.42,
ratio “forbidden” in polynomial time. For instance, we can guarantee ratio 0.1
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in parameterized time less than O∗(1162opt), much smaller than O∗(1.5874opt),
or even, approximation ratio 0,4 in time less than O∗(1.552opt) that always
remains less than O∗(1.5874opt).

We conclude the section by showing that the same kind of trade-off can me
made combining Proposition 4 and Proposition 1 [4] in order to get approxi-
mation results unachievable in polynomial time through exponential algorithms
running faster that the optimal ones. Recall that Proposition 1 in [4] claims
that for any positive ǫ 6 5, min independent dominating set is (1 + ǫ)-
approximable in time O∗(1.3351(1−(ǫ/168))n).

If opt(G) < 0.626(1 − (ǫ/168))n, then the algorithm of Proposition 4 com-
putes a maximum minimal vertex cover of G in time smaller than O∗(1.3351n),
which is the best worst-case complexity known for min independent dominat-

ing set and, consequently, for max min vertex cover. Suppose now that
opt(G) > 0.626(1− (ǫ/168))n. In this case the (1+ ǫ)-approximation algorithm
of Proposition 1 in [4] (indeed this algorithm can be seen as a kind of mod-
erately exponential approximation schema) can be transformed a moderately
exponential approximation schema for max min vertex cover.

Denote by opt′(G) the size of a minimum dominating set in G and use the
algorithm of Proposition 1 [4] in order to get an (1+ǫ)-approximate independent
dominating set S. Obviously, the set C = V \S is a minimal vertex cover of G.
The approximation ratio of C is:

|C|
opt(G)

=
n− |S|

n− opt′(G)
>

n− (1 + ǫ)opt′(G)

n− opt′(G)
(10)

The last expression in (10) decreases with opt′(G); since opt(G) > 0.626(1 −
(ǫ/168))n, opt′(G) 6 (0.374 + (0.626ǫ/168))n and setting it in the last term
of (10) we get after some easy but tedious algebra that |C|/opt(G) > 1 + ǫ′ for
some ǫ′ that only depends on ǫ.

4 max min vertex cover in interval graphs

Recall that an interval graph G(V,E) is defined as the intersection graph of a set
of intervals on the real line. Each vertex vi ∈ V corresponds to an interval li =
[xi, yi] of the interval set, and for each pair of vertices (vi, vj), the edge (vi, vj) is
present in the graph if and only if intervals li and lj intersect. Figure 1 provides
an example of interval graph, and of the interval set associated.

Also recall that all interval graphs are chordal graphs, i.e., graphs where
each cycle of four or more nodes has a chord, which is an edge joining two nodes
that are not adjacent in the cycle.

weighted min independent dominating set and, consequently, weigh-

ted max min vertex cover was shown to be solvable in linear time in chordal
graphs with weights 0 or 1 [11]. However, it was proved in [18] that when weights
are arbitrary, the problem becomes NP-hard and even inapproximable by any
randomized polynomial-time algorithm within any ratio c ln(n) for some fixed
constant c, unless NP ⊆ ZTIME(nO(log logn)).
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Figure 1: An example of interval graph; for simplicity, in Figure 4 vertices have
the same names as the corresponding intervals.

Here, we provide a positive result for weighted max min vertex cover

and weighted min independent dominating set in interval graphs when
weights are arbitrary.

Proposition 6. weighted max min vertex cover and weighted min

independent dominating set are solvable in polynomial time on interval
graphs.

Proof. We develop an O(n2) dynamic programming algorithm that solves both
problems. For simplicity, we analyze it for the case of weighted min inde-

pendent dominating set.
Let G(V,E,w) be a weighted interval graph, where each vertex i is associated

with a weight w(i). We suppose that G is connected; if not, it suffices to run
the dynamic programming algorithm on each of the connected components.
Suppose that vertices of G are labelled in increasing order of vi from 1 to n. In
a given set of intervals/vertices, the one with minimal index will be denoted as
the first, while the one with maximal index will be referred as the last. Also, for
each vertex vertex vi, define S(vi) as a subset of vertices j such that: (a) j < i,
(b) vj /∈ Γ(vi) and (c) {vj+1, . . . , vi−1} ⊆ Γ(vj) ∪ Γ(vi).
For example, in Figure 1, S(v9) = {v2, v6, v7}. Indeed, vertices v4 and v8

both belong to Γ(v9), while considering j = 1, j = 3 or j = 5 induces that
vertices v6 and v7 are not included in Γ(vj) ∪ Γ(v9) (as well as vertex v5 for
j = 1).
Some slight modifications are performed on the graph before running the

dynamic programming algorithm. Isolated vertices are simply deleted, knowing
that such nodes cannot be part of any feasible solution. In order to simplify
the initialization of the algorithm, we also add one vertex v0, with w(v0) = 0,
whose interval does not intersect with any other interval, and is placed in the
very first position. This is done in order to ensure that the set S(vi) will not be
empty for any i > 1.

11



Finally, let Wi denote the value of the minimum weight solution on the sub-
graph induced by vertices v1, . . . , vi such that vertex vi is a dominating vertex.
Given the definition of Wi, it is clear that opt = min

i∈{vn}∪Γ(vn)
{Wi}. Indeed,

considering that intervals are labelled in increasing order of i, any interval li
that intersects ln also intersects all intervals li+1 . . . ln−1, so that vertex vi dom-
inates all vertices vj , j 6 i + 1, and a feasible solution on vertices v1, . . . , vi
such that vi is dominating is feasible for the whole graph. On the other hand,
if the last dominating vertex does not belong to {vn} ∪ Γ(vn), then n is neither
dominated nor dominating.
The dynamic programming is initialized with W0 = 0, and the recursion

formula is Wi = w(i) + min
vj∈S(vi)

{Wj}, ∀i > 1. Indeed, for any vertex vi that

is included in the dominating set, then the last vertex vj before vi to be also
dominating is necessarily in the set S(vi):
• if vj ∈ Γ(vi), then including vj and vi in the solution results in a non-
independent set;
• if ∃k ∈ {j + 1, . . . , i − 1} and vk /∈ Γ(vj) ∪ Γ(vi), then vertex vk will not be
dominated; indeed, vk cannot be dominated by any vertex vl, l > i, considering
that vertices are labelled in increasing order of i: if i does not intersect k, then
no following interval can do this; it cannot be dominated by any vertex vl, l 6 j
either, considering that Wj defines an independent dominating set: if a domi-
nating interval l < j intersects interval k, then it also intersects j, so that Wj

is not independent.
Therefore, if the value (and corresponding solution) Wj is valid ∀vj ∈ S(vi),

then the value Wi is valid itself. There are n partial solutions Wi to build, each
of them needing O(n) operations to be computed. So, the whole complexity
is O(n2), as claimed.
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