ON THE MAXIMALITY OF
 SUMS OF NONLINEAR MONOTONE OPERATORS

BY
R. T. ROCKAFELLAR(${ }^{1}$)

1. Introduction. Let X be a real Banach space and let X^{*} be the dual of X, with $\left\langle x, x^{*}\right\rangle$ written in place of $x^{*}(x)$. A monotone operator from X to X^{*} is a (generally multivalued) mapping T such that

$$
\begin{equation*}
\left\langle x-y, x^{*}-y^{*}\right\rangle \geqq 0 \quad \text { whenever } x^{*} \in T(x), y^{*} \in T(y) \tag{1.1}
\end{equation*}
$$

Such an operator T is said to be maximal if its graph, i.e. the set

$$
\begin{equation*}
G(T)=\left\{\left(x, x^{*}\right) \mid x \in X, x^{*} \in T(x)\right\} \subset X \times X^{*} \tag{1.2}
\end{equation*}
$$

is not properly contained in the graph of any other monotone operator $T^{\prime}: X \rightarrow X^{*}$. The set

$$
\begin{equation*}
D(T)=\{x \in X \mid T(x) \neq \varnothing\} \tag{1.3}
\end{equation*}
$$

is called the effective domain of T, and T is said to be locally bounded at a point $x \in D(T)$ if there exists a neighborhood U of x such that the set

$$
\begin{equation*}
T(U)=\bigcup\{T(u) \mid u \in U\} \tag{1.4}
\end{equation*}
$$

is a bounded subset of X.
It is apparent that, given any two monotone operators T_{1} and T_{2} from X to X^{*}, the operator $T_{1}+T_{2}$ is again monotone, where

$$
\begin{align*}
\left(T_{1}+T_{2}\right)(x) & =T_{1}(x)+T_{2}(x) \\
& =\left\{x_{1}^{*}+x_{2}^{*} \mid x_{1}^{*} \in T_{1}(x), x_{2}^{*} \in T_{2}(x)\right\} . \tag{1.5}
\end{align*}
$$

If T_{1} and T_{2} are maximal, it does not necessarily follow, however, that $T_{1}+T_{2}$ is maximal-some sort of condition is needed, since for example the graph of $T_{1}+T_{2}$ can even be empty (as happens when $D\left(T_{1}\right) \cap D\left(T_{2}\right)=\varnothing$).

The problem of determining conditions under which $T_{1}+T_{2}$ is maximal turns out to be of fundamental importance in the theory of monotone operators. Results in this direction have been proved by Lescarret [9] and Browder [5], [6], [7]. The strongest result which is known at present is:

Theorem (Browder [6], [7]). Let X be reflexive, and let T_{1} and T_{2} be monotone operators from X to X^{*}. Suppose that T_{1} is maximal, $D\left(T_{2}\right)=X, T_{2}$ is single-valued

[^0]Copyright © 1970, American Mathematical Society
and hemicontinuous (i.e. continuous from line segments in X to the weak* topology in X^{*}), and T_{2} carries bounded sets into bounded sets. Then $T_{1}+T_{2}$ is a maximal monotone operator.

The conditions here on T_{2} imply in particular that T_{2}, like T_{1}, is maximal (Browder [3, Theorem 1.2]).

The purpose of this paper is to establish the following considerably more general result (where int and cl denote interior and (strong) closure, respectively).

Theorem 1. Let X be reflexive, and let T_{1} and T_{2} be maximal monotone operators from X to X^{*}. Suppose that either one of the following conditions is satisfied:
(a) $D\left(T_{1}\right) \cap$ int $D\left(T_{2}\right) \neq \varnothing$, or
(b) there exists an $x \in \mathrm{cl} D\left(T_{1}\right) \cap \mathrm{cl} D\left(T_{2}\right)$ such that T_{2} is locally bounded at x.

Then $T_{1}+T_{2}$ is a maximal monotone operator.
Conditions (a) and (b) of Theorem 1 are actually equivalent, as we have shown elsewhere [16, Theorem 1].

The derivation of Theorem 1 will rest heavily on the theory already developed by Browder in [6] and elsewhere. In the case where T_{1} and T_{2} are the subdifferentials of lower semicontinuous proper convex functions on X [12], [13], Theorem 1 could be deduced, however, directly from Fenchel's duality theorem and related results [11].

When X is finite-dimensional, Theorem 1 may be refined slightly in terms of relative interiors. (The relative interior of a subset C of X, denoted by ri C, is the interior of C relative to the affine hull of C, which is the intersection of all the hyperplanes containing C.)

Theorem 2. Let X be finite-dimensional, and let T_{1} and T_{2} be maximal operators from X to X^{*} such that

$$
\text { ri } D\left(T_{1}\right) \cap \text { ri } D\left(T_{2}\right) \neq \varnothing
$$

One of the main motivations behind Theorems 1 and 2 is that such results make it possible, as Browder has remarked [6, p. 92], to derive theorems about "variational inequalities" from fundamental theorems about the ranges and effective domains of (multivalued) maximal monotone operators. Some applications of this sort will be considered in $\S 4$. For the sake of applications to a class of variational inequalities studied in terms of hemicontinuity by Hartman-Stampacchia [8] and Browder [4], it will be useful to have, along with Theorems 1 and 2, the following special maximality theorem.

We shall say that an element $x^{*} \in X^{*}$ is normal to a convex subset K of X at a point x if

$$
\begin{equation*}
x \in K \quad \text { and } \quad\left\langle u-x, x^{*}\right\rangle \leqq 0, \quad \forall u \in K . \tag{1.6}
\end{equation*}
$$

For each $x \in X$, the set of all x^{*} normal to K at x is classically called the normal
cone to K at x. The normal cone to K at x is a weak* closed convex cone in X^{*}, empty by definition when $x \notin K$, but containing at least the zero vector of X^{*} (and hence nonempty) when $x \in K$. The multivalued mapping from X to X^{*} which assigns to each $x \in X$ the normal cone to K at x will be referred to as the normality operator for K. (This mapping is actually the subdifferential of the indicator of K, so that it is a maximal monotone operator with effective domain K, if K is a nonempty closed convex set [12], [13].)

Theorem 3. Let K be a nonempty closed convex subset of X (where X is not necessarily reflexive), and let $T_{1}: X \rightarrow X^{*}$ be the normality operator for K. Let $T_{2}: X \rightarrow X^{*}$ be any single-valued monotone operator (not necessarily maximal) such that $D\left(T_{2}\right) \supset K$ and T_{2} is hemicontinuous on K, i.e. continuous along each line segment in K with respect to the weak* topology of X^{*}. Then $T_{1}+T_{2}$ is a maximal monotone operator.
2. Preliminary results. In this section we shall only be concerned with the case where X is reflexive. Asplund [1] has shown by means of a theorem of Lindenstrauss that, in this case, there exists an equivalent norm on X which is everywhere Gâteaux differentiable except at the origin and whose polar norm on X^{*} is everywhere Gâteaux differentiable except at the origin. (Under such a norm, the unit balls of X and X^{*} are strictly convex.) For notational simplicity, we may assume that the given norm on X already has these special properties. We denote by J the Gâteaux gradient of the function $h(x)=(1 / 2)\|x\|^{2}$. Thus J is the duality mapping which assigns to each $x \in X$ the unique $J(x) \in X^{*}$ such that

$$
\begin{equation*}
\langle x, J(x)\rangle=\|x\|^{2}=\|J(x)\|^{2} \tag{2.1}
\end{equation*}
$$

(See [2].) As is known, J maps X one-to-one onto X^{*} and is continuous from the strong topology to the weak* topology. Also, J is a strictly monotone operator, i.e.

$$
\begin{equation*}
\langle x-y, J(x)-J(y)\rangle>0 \quad \text { when } x \neq y \tag{2.2}
\end{equation*}
$$

For any monotone operator T from X to X^{*}, we define the mapping T^{-1} by

$$
\begin{equation*}
T^{-1}\left(x^{*}\right)=\left\{x \mid x^{*} \in T(x)\right\} . \tag{2.3}
\end{equation*}
$$

It is obvious that T^{-1} is a monotone operator from X^{*} to X, and (assuming X to be reflexive) T^{-1} is maximal if and only if T is maximal. We denote the range of T by $R(T)$. Thus

$$
\begin{equation*}
R(T)=D\left(T^{-1}\right)=\bigcup\{T(x) \mid x \in X\} \tag{2.4}
\end{equation*}
$$

The main tool which we shall use in proving Theorem 1 is a generalization, essentially due to Browder [6], of the fundamental Hilbert space theorem of Minty [10].

Proposition 1. Let X be reflexive, and let J be the duality mapping defined above. Let $T: X \rightarrow X^{*}$ be any maximal monotone operator. Then, for any $\lambda>0, R(T+\lambda J)$
is all of X^{*} and $(T+\lambda J)^{-1}$ is a single-valued maximal monotone operator from X^{*} to X which is demicontinuous, i.e. continuous from the strong topology to the weak topology.

Proof. If $0 \in D(T)$, this follows from the argument given by Browder at the beginning of the proof of Theorem 4 of [6], except that Lemma 10 of [6] should be invoked in place of Lemma 8. We want to use this result, however, even in the case where $0 \notin D(T)$, so we must give a somewhat modified proof. Let $a \in D(T)$, and let T_{1} and T_{2} be the monotone operators defined by

$$
T_{1}(x)=T(x+a), \quad T_{2}(x)=\lambda J(x+a)
$$

Then $0 \in D\left(T_{1}\right)$, and T_{1} and T_{2} satisfy the hypothesis of Theorem 1 of [6], as is easily verified. This implies that $R\left(T_{1}+T_{2}\right)$ is all of X^{*}, and of course $R\left(T_{1}+T_{2}\right)$ is the same as $R(T+\lambda J)$. Also, $T+\lambda J$ is a maximal monotone operator by Theorem 2 of [6] ${ }^{2}$). Thus $(T+\lambda J)^{-1}$ is a maximal monotone operator from X^{*} to X whose effective domain is all of X^{*}. We shall show that $(T+\lambda J)^{-1}$ is single-valued, and this will imply by Rockafellar [14, Corollary 1 to Theorem 1] that $(T+\lambda J)^{-1}$ is demicontinuous. Let x and y be elements of $(T+\lambda J)^{-1}\left(u^{*}\right)$, and let

$$
x^{*}=u^{*}-\lambda J(x) \in T(x), \quad y^{*}=u^{*}-\lambda J(y) \in T(y) .
$$

Since T is monotone, we have

$$
\begin{aligned}
0 & =\left\langle x-y, u^{*}-u^{*}\right\rangle=\left\langle x-y,\left(x^{*}+\lambda J(x)\right)-\left(y^{*}+\lambda J(Y)\right)\right\rangle \\
& =\left\langle x-y, x^{*}-y^{*}\right\rangle+\lambda\langle x-y, J(x)-J(y)\rangle \\
& \geqq \lambda\langle x-y, J(x)-J(y)\rangle,
\end{aligned}
$$

and this implies $x=y$ by (2.2).
Corollary. Let X be reflexive, and let J be the duality mapping defined above. Let $T: X \rightarrow X^{*}$ be a monotone operator. In order that T be maximal, it is necessary and sufficient that $R(T+J)$ be all of X^{*}.

Proof. By Zorn's Lemma, there exists a maximal monotone operator $T^{\prime}: X \rightarrow X^{*}$ such that $T^{\prime}(x) \supset T(x)$ for every x. Applying Proposition 1 to T^{\prime} with $\lambda=1$, one sees that, for each $u^{*} \in X^{*}$, there exist unique elements $x \in X$ and $x^{*} \in X^{*}$ such that $x^{*} \in T^{\prime}(x)$ and $x^{*}+J(x)=u^{*}$. Therefore, $T=T^{\prime}$ if and only if each $u^{*} \in X^{*}$ can actually be expressed in the form $x^{*}+J(x)$ for some $x \in X$ and $x^{*} \in T(x)$, i.e. if and only if $R(T+J)=X^{*}$.

The next result may be regarded as a generalization of Theorem 2.2 of Browder [3]. Its proof is derived from Browder's proof of Theorem 3 of [6].

Proposition 2. Let X be reflexive, and let $T: X \rightarrow X^{*}$ be a maximal monotone operator. Suppose there exists an $\alpha>0$ such that

$$
\begin{equation*}
\left\langle x, x^{*}\right\rangle \geqq 0 \quad \text { whenever }\|x\|>\alpha, x \in D(T), x^{*} \in T(x) . \tag{2.5}
\end{equation*}
$$

$\left({ }^{2}\right)$ The hypothesis in Theorem 1 of [6] that T_{1} have a dense domain is superfluous-it is nowhere used in the proof nor mentioned in the rest of the paper.

Then there exists an $x \in X$ such that

$$
\begin{equation*}
0 \in T(x) \tag{2.6}
\end{equation*}
$$

Proof. We can assume that the given norm on X has the special properties described above. Let U_{α} be the closed ball of radius α around the origin of X. The set

$$
\begin{equation*}
T\left(U_{\alpha}\right)=\bigcup\{T(x) \mid\|x\| \leqq \alpha\} \tag{2.7}
\end{equation*}
$$

is closed in X^{*}; see Rockafellar [14, Lemma 2]. Hence, to show that $0 \in T\left(U_{\alpha}\right)$, it suffices to show that $T\left(U_{\alpha}\right)$ meets every ball of positive radius about the origin of X^{*}. Let J be the duality mapping defined above. Given any $\varepsilon>0$, there exists by Proposition 1 an $x \in X$ such that

$$
0 \in(T+(\varepsilon / \alpha) J)(x) .
$$

Setting $x^{*}=-(\varepsilon / \alpha) J(x)$, we have $x^{*} \in T(x)$ and

$$
0=\left\langle x, x^{*}\right\rangle+(\varepsilon / \alpha)\langle x, J(x)\rangle,
$$

or equivalently by (2.1)

$$
\begin{equation*}
\left\langle x, x^{*}\right\rangle=-(\varepsilon / \alpha)\|x\|^{2} \tag{2.8}
\end{equation*}
$$

If we had $\|x\|>\alpha$, the left side of (2.8) would be nonnegative by (2.5), whereas the right side would be negative, a contradiction. Therefore $\|x\| \leqq \alpha$ and

$$
\left\|x^{*}\right\|=(\varepsilon / \alpha)\|J(x)\|=(\varepsilon / \alpha)\|x\| \leqq \varepsilon
$$

This shows that $T\left(U_{\alpha}\right)$ meets the closed ball of radius ε about the origin of X^{*}, and the proof is complete.

Besides the important device of perturbing a monotone operator T to an operator of the form $T+\lambda J$, we shall need to use a device of "truncation" in proving Theorem 1. For each $\alpha>0$, we shall denote by B_{α} the subdifferential of the indicator function of the closed ball U_{α} of radius α about the origin in X (with respect to a norm on X having the special properties described above). Thus B_{α} is the normality operator for U_{α}, so that $B_{\alpha}(x)=\varnothing$ when $\|x\|>\alpha, B_{\alpha}(x)$ consists of solely the zero element of X^{*} when $\|x\|<\alpha$, and

$$
B_{\alpha}(x)=\{\lambda J(x) \mid \lambda \geqq 0\} \quad \text { when }\|x\|=\alpha .
$$

It is known that B_{α} is a maximal monotone operator (Rockafellar [12], [13]). In particular, therefore, if $T: X \rightarrow X^{*}$ is any monotone operator, $T+B_{\alpha}$ is a monotone operator. Note that

$$
\begin{gather*}
\left(T+B_{\alpha}\right)(x)=T(x) \quad \text { when } x \in \operatorname{int} U_{\alpha} \tag{2.9}\\
D\left(T+B_{\alpha}\right)=D(T) \cap U_{\alpha} . \tag{2.10}
\end{gather*}
$$

Proposition 3. Let X be reflexive, and let $T: X \rightarrow X^{*}$ be a monotone operator
such that $0 \in D(T)$. Suppose there exists an $\alpha_{0}>0$ such that the monotone operator $T+B_{\alpha}$ is maximal for every $\alpha \geqq \alpha_{0}$, where B_{α} is the mapping defined above. Then T is maximal.

Proof. Subtracting a constant mapping from T if necessary, we can reduce to the case where $0 \in T(0)$. Let J be the duality mapping defined above, and let u^{*} be an arbitrary element of X^{*}. To prove that T is maximal, it suffices, according to the corollary to Proposition 1, to prove the existence of an $x \in X$ such that

$$
\begin{equation*}
u^{*} \in(T+J)(x) \tag{2.11}
\end{equation*}
$$

Take any $\alpha \geqq \alpha_{0}$ such that $\alpha>\left\|u^{*}\right\|$. Since $T+B_{\alpha}$ is maximal by hypothesis, there exists by Proposition 1 a certain $x \in X$ such that

$$
u^{*} \in\left(T+B_{\alpha}+J\right)(x)=(T+J)(x)+B_{\alpha}(x) .
$$

By the definition of B_{α}, this means that

$$
\begin{equation*}
u^{*} \in(T+J)(x)+\lambda J(x)=(T+(1+\lambda) J)(x) \tag{2.12}
\end{equation*}
$$

where $\|x\| \leqq \alpha$, and λ is some nonnegative number, taken to be 0 if $\|x\|<\alpha$. We shall show that indeed $\|x\|<\alpha$, so that (2.12) reduces to (2.11) as desired. According to (2.12), there exists an $x^{*} \in T(x)$ such that

$$
u^{*}=x^{*}+(1+\lambda) J(x) .
$$

In terms of this x^{*}, we have

$$
\left\langle x, u^{*}\right\rangle=\left\langle x, x^{*}\right\rangle+(1+\lambda)\langle x, J(x)\rangle,
$$

where $\left\langle x, x^{*}\right\rangle \geqq 0$ by the monotonicity of T and the fact that $0 \in T(0)$. It follows by (2.1) that

$$
(1+\lambda)\|x\|^{2}=(1+\lambda)\langle x, J(x)\rangle \leqq\left\langle x, u^{*}\right\rangle \leqq\|x\| \cdot\left\|u^{*}\right\|,
$$

and hence that

$$
\|x\| \leqq(1+\lambda)^{-1}\left\|u^{*}\right\|<(1+\lambda)^{-1} \alpha \leqq \alpha
$$

3. Proofs of the main results.

Proof of Theorem 1. Since assumptions (a) and (b) in Theorem 1 are equivalent by [14, Theorem 1], as already pointed out, we need only consider the case of assumption (a). We shall suppose, to begin with, that $D\left(T_{2}\right)$ is also a bounded subset of X. Subsequently we shall prove, using Proposition 3, that this boundedness assumption is unnecessary. It will be assumed, of course, that the norm on X which we work with has the special properties described at the beginning of $\S 2$.

Translating T_{1} and T_{2} by a common amount if necessary, and subtracting a constant mapping from T_{1}, we can assume that

$$
\begin{equation*}
0 \in T_{1}(0), \quad 0 \in \operatorname{int} D\left(T_{2}\right) . \tag{3.1}
\end{equation*}
$$

Let J be the duality mapping defined above. We shall show that, for the monotone operator $T_{1}+T_{2}, R\left(T_{1}+T_{2}+J\right)$ is all of X^{*}, and this will establish that $T_{1}+T_{2}$ is maximal, according to the corollary to Proposition 1.

Given any $\bar{x}^{*} \in X^{*}$, we must show that $\bar{x}^{*} \in R\left(T_{1}+T_{2}+J\right)$. Subtracting a constant mapping from T_{2} if necessary, we can reduce the argument to the case where $\bar{x}^{*}=0$. Thus we need only show the existence of an $x \in X$ such that

$$
\begin{equation*}
0 \in\left(T_{1}+T_{2}+J\right)(x) \tag{3.2}
\end{equation*}
$$

Now x satisfies (3.2) if and only if there exists an $x^{*} \in X^{*}$ such that

$$
\begin{equation*}
-x^{*} \in\left(T_{1}+(1 / 2) J\right)(x) \quad \text { and } \quad x^{*} \in\left(T_{2}+(1 / 2) J\right)(x) . \tag{3.3}
\end{equation*}
$$

Define the mappings S_{1} and S_{2} from X^{*} to X by

$$
\begin{align*}
& S_{1}\left(x^{*}\right)=-\left(T_{1}+(1 / 2) J\right)^{-1}\left(-x^{*}\right) \tag{3.4}\\
& S_{2}\left(x^{*}\right)=\left(T_{2}+(1 / 2) J\right)^{-1}\left(x^{*}\right) \tag{3.5}
\end{align*}
$$

The existence of an x and x^{*} satisfying (3.3) is then equivalent to the existence of an x^{*} satisfying

$$
\begin{equation*}
0 \in S_{1}\left(x^{*}\right)+S_{2}\left(x^{*}\right) \tag{3.6}
\end{equation*}
$$

Therefore, to prove the existence of an x satisfying (3.2), it suffices to prove that

$$
\begin{equation*}
0 \in R\left(S_{1}+S_{2}\right) \tag{3.7}
\end{equation*}
$$

To do this, we observe from Proposition 1 that S_{1} and S_{2} are single-valued maximal monotone operators, continuous from the strong topology of X^{*} to the weak topology of X, such that

$$
\begin{equation*}
D\left(S_{1}\right)=X^{*}=D\left(S_{2}\right) \tag{3.8}
\end{equation*}
$$

Hence $S_{1}+S_{2}$ is a single-valued monotone operator, continuous from the strong topology to the weak topology, such that $D\left(S_{1}+S_{2}\right)=X^{*}$, and this implies by Browder [3, Theorem 1.2] that $S_{1}+S_{2}$ is maximal. Since $J(0)=0$, we have

$$
\begin{equation*}
0 \in\left(T_{1}+(1 / 2) J\right)(0) \tag{3.9}
\end{equation*}
$$

by (3.1), and consequently $0 \in S_{1}(0)$. Therefore

$$
\begin{equation*}
\left\langle S_{1}\left(x^{*}\right), x^{*}\right\rangle \geqq 0, \quad \forall x^{*} \in X^{*}, \tag{3.10}
\end{equation*}
$$

by the monotonicity of S_{1}. Furthermore, $R\left(S_{2}\right)=D\left(T_{2}+(1 / 2) J\right)=D\left(T_{2}\right)$, so that $R\left(S_{2}\right)$ is a bounded set by our initial assumption and, by (3.1),

$$
\begin{equation*}
0 \in \operatorname{int} R\left(S_{2}\right) . \tag{3.11}
\end{equation*}
$$

We shall show that these properties of $R\left(S_{2}\right)$ imply the existence of an $\alpha>0$ such that

$$
\begin{equation*}
\left\langle S_{2}\left(x^{*}\right), x^{*}\right\rangle \geqq 0 \quad \text { whenever }\left\|x^{*}\right\|>\alpha \tag{3.12}
\end{equation*}
$$

This will establish (3.7) as desired, via Proposition 2, since by (3.10) and (3.12) we will have

$$
\left\langle\left(S_{1}+S_{2}\right)\left(x^{*}\right), x^{*}\right\rangle \geqq 0 \quad \text { whenever }\left\|x^{*}\right\|>\alpha .
$$

The proof that (3.12) holds for some $\alpha>0$ proceeds as follows. For any x^{*} and y^{*} in X^{*}, we have

$$
\left\langle S_{2}\left(x^{*}\right)-S_{2}\left(y^{*}\right), x^{*}-y^{*}\right\rangle \geqq 0
$$

by the monotonicity of S_{2}, in other words

$$
\begin{equation*}
\left\langle S_{2}\left(x^{*}\right), x^{*}\right\rangle \geqq\left\langle S_{2}\left(y^{*}\right), x^{*}\right\rangle+\left\langle S_{2}\left(x^{*}\right)-S_{2}\left(y^{*}\right), y^{*}\right\rangle . \tag{3.13}
\end{equation*}
$$

Since $R\left(S_{2}\right)$ is bounded in $X, R\left(S_{2}\right)$ is contained in a certain ball of radius $\alpha_{1}>0$ about the origin, and hence

$$
\begin{equation*}
\left|\left\langle S_{2}\left(x^{*}\right)-S_{2}\left(y^{*}\right), y^{*}\right\rangle\right| \leqq 2 \alpha_{1}\left\|y^{*}\right\| \tag{3.14}
\end{equation*}
$$

in (3.13). On the other hand, (3.11) implies by [14, Theorem 1] that S_{2}^{-1} is locally bounded at 0 . Thus there exist $\varepsilon>0$ and $\alpha_{2}>0$ such that

$$
\begin{equation*}
\left\{S_{2}\left(y^{*}\right) \mid\left\|y^{*}\right\| \leqq \alpha_{2}\right\} \supset\{y \mid\|y\| \leqq \varepsilon\} \tag{3.15}
\end{equation*}
$$

From (3.13) and (3.14), we have

$$
\left\langle S_{2}\left(x^{*}\right), x^{*}\right\rangle \geqq\left\langle S_{2}\left(y^{*}\right), x^{*}\right\rangle-2 \alpha_{1} \alpha_{2}
$$

for every y^{*} with $\left\|y^{*}\right\| \leqq \alpha_{2}$, so that by (3.15)

$$
\begin{aligned}
\left\langle S_{2}\left(x^{*}\right), x^{*}\right\rangle & \geqq \sup _{\|y\| \leq \varepsilon}\left\{\left\langle y, x^{*}\right\rangle-2 \alpha_{1} \alpha_{2}\right\} \\
& =\varepsilon\left\|x^{*}\right\|-2 \alpha_{1} \alpha_{2} .
\end{aligned}
$$

The latter expression is nonnegative when $\left\|x^{*}\right\| \geqq 2 \alpha_{1} \alpha_{2} / \varepsilon$, and therefore (3.12) holds, as claimed, for $\alpha \geqq 2 \alpha_{1} \alpha_{2} / \varepsilon$.

The argument that we have given so far proves that Theorem 1 is valid under the additional hypothesis that $D\left(T_{2}\right)$ is bounded. We shall show now that this narrower version of Theorem 1 implies the general version. Let T_{1} and T_{2} be maximal monotone operators such that

$$
\begin{equation*}
D\left(T_{1}\right) \cap \operatorname{int} D\left(T_{2}\right) \neq \varnothing \tag{3.16}
\end{equation*}
$$

where $D\left(T_{2}\right)$ is not necessarily bounded. Translating the domains of T_{1} and T_{2} if necessary, we can assume that the origin belongs to the intersection (3.16). For each $\alpha>0$, the maximal monotone mapping B_{α} described in $\S 2$ then satisfies $D\left(T_{2}\right) \cap$ int $D\left(B_{\alpha}\right) \neq \varnothing$, and $D\left(B_{\alpha}\right)$ is bounded. The monotone operator $T_{2}+B_{\alpha}$ is therefore maximal by the narrower version of Theorem 1. Since

$$
D\left(T_{2}+B_{\alpha}\right)=\left\{x \in D\left(T_{2}\right) \mid\|x\| \leqq \alpha\right\}
$$

and the origin belongs to the intersection (3.16), we have $D\left(T_{1}\right) \cap$ int $D\left(T_{2}+B_{\alpha}\right)$
$\neq \varnothing$, where $D\left(T_{2}+B_{\alpha}\right)$ is again bounded. Thus the mapping $T_{1}+\left(T_{2}+B_{\alpha}\right)=$ $\left(T_{1}+T_{2}\right)+B_{\alpha}$ is a maximal monotone operator for every $\alpha>0$ by the narrower version of Theorem 1, and we may conclude from Proposition 3 that $T_{1}+T_{2}$ is maximal. This proves Theorem 1 in the general case.

Proof of Theorem 2. Translating T_{1} and T_{2} by a common amount if necessary, we can suppose that

$$
\begin{equation*}
0 \in \operatorname{ri} D\left(T_{1}\right) \cap \text { ri } D\left(T_{2}\right), \tag{3.17}
\end{equation*}
$$

so that the affine hulls of $D\left(T_{1}\right)$ and $D\left(T_{2}\right)$ are certain subspaces L_{1} and L_{2} of X, respectively. Let $L_{0}=L_{1} \cap L_{2}$, and for $i=0,1,2$ let

$$
\begin{gather*}
L_{i}^{\perp}=\left\{x^{*} \in X^{*} \mid\left\langle x, x^{*}\right\rangle=0, \forall x \in L_{i}\right\}, \tag{3.18}\\
P_{i}(x)=L_{i}^{\perp} \tag{3.19}\\
=\varnothing \\
\text { if } x \in L_{i}, \\
\text { if } x \notin L_{i} .
\end{gather*}
$$

Each P_{i} is a maximal monotone operator (the subdifferential of the indicator of L_{i}), and

$$
\begin{equation*}
P_{0}=P_{1}+P_{2}=P_{0}+P_{1}=P_{0}+P_{2} . \tag{3.20}
\end{equation*}
$$

Given any $x \in D\left(T_{1}\right), x^{*} \in T_{1}(x), z^{*} \in L_{1}^{\perp}$, we have $\left\langle x-y,\left(x^{*}+z^{*}\right)-y^{*}\right\rangle=$ $\left\langle x-y, x^{*}-y^{*}\right\rangle \geqq 0$ whenever $y \in D\left(T_{1}\right), y^{*} \in T(y)$, because T_{1} is a monotone operator with $D\left(T_{1}\right) \subset L_{1}$, and this implies by the maximality of T_{1} that

Thus

$$
x^{*}+z^{*} \in T_{1}(x)
$$

Similarly

$$
\begin{equation*}
T_{1}=T_{1}+P_{1} \tag{3.21}
\end{equation*}
$$

and it follows that

$$
\begin{equation*}
T_{1}+T_{2}=T_{1}+T_{2}+P_{1}+P_{2}=\left(T_{1}+P_{0}\right)+T_{2} \tag{3.23}
\end{equation*}
$$

In view of (3.20) and (3.21), we can regard T_{1} and P_{0} in a natural way as maximal monotone operators from the space L_{1} to the quotient space X^{*} / L_{1}^{1}, which may be identified with the dual L_{1}^{*} of L_{1}. Theorem 1 is applicable to these mappings from L_{1} to L_{1}^{*}, since by (3.17) the origin belongs to the intersection of $D\left(P_{0}\right)=L_{0}$ and the interior, relative to L_{1}, of $D\left(T_{1}\right)$. Thus $T_{1}+P_{0}$ must be a maximal monotone operator from X to X^{*}. Now we apply a similar argument to the space L_{2}. Since (3.22) holds and ($T_{1}+P_{0}$) $+P_{2}=T_{1}+P_{0}$, we can regard $T_{1}+P_{0}$ and T_{2} as maximal monotone operators from L_{2} to $X^{*} / L_{2}^{\frac{1}{2}}$, which may be identified with L_{2}^{*}. The interior of $D\left(T_{2}\right)$ relative to L_{2} meets $D\left(T_{1}+P_{0}\right)=D\left(T_{1}\right) \cap L_{2}$ by (3.17), so $\left(T_{1}+P_{0}\right)+T_{2}$ is maximal by Theorem 1. This means by (3.23) that $T_{1}+T_{2}$ is a maximal monotone operator from X to X^{*}.

Proof of Theorem 3. As already mentioned in $\S 1, T_{1}$ is a maximal monotone operator, since it is the subdifferential of a certain closed proper convex function, namely the indicator of K [12], [13]. Therefore $T_{1}+T_{2}$ is, at all events, a monotone operator. Let $y \in X$ and $y^{*} \in X^{*}$ be such that

$$
\begin{equation*}
\left\langle x-y, x^{*}-y^{*}\right\rangle \geqq 0 \quad \text { whenever } x^{*} \in T_{1}(x)+T_{2}(x) \tag{3.24}
\end{equation*}
$$

or in other words

$$
\begin{equation*}
\left\langle x-y, x_{1}^{*}\right\rangle+\left\langle x-y, T_{2}(x)-y^{*}\right\rangle \geqq 0 \tag{3.25}
\end{equation*}
$$

whenever $x \in K$ and x_{1}^{*} is normal to K at x.
We shall demonstrate by a direct argument that

$$
\begin{equation*}
y^{*} \in T_{1}(y)+T_{2}(y), \text { i.e. } y^{*}-T_{2}(y) \in T_{1}(y) \tag{3.26}
\end{equation*}
$$

and this will prove that $T_{1}+T_{2}$ is maximal.
If x is any point of K and x_{1}^{*} is normal to K at x, then λx_{1}^{*} is likewise normal to K at x for every $\lambda \geqq 0$, so that by (3.25)

$$
\lambda\left\langle x-y, x_{1}^{*}\right\rangle+\left\langle x-y, T_{2}(x)-y^{*}\right\rangle \geqq 0, \quad \forall \lambda \geqq 0
$$

This implies that $\left\langle x-y, x_{1}^{*}\right\rangle \geqq 0$. Thus

$$
\left\langle x-y, x_{1}^{*}-0\right\rangle \geqq 0 \quad \text { whenever } x_{1}^{*} \in T_{1}(x)
$$

and since T_{1} is a maximal monotone operator we may conclude that $0 \in T_{1}(y)$. Hence $y \in K$.

To complete the proof that (3.26) holds, i.e. that $y^{*}-T_{2}(y)$ is normal to K at y, we need only show that

$$
\begin{equation*}
\left\langle u-y, y^{*}-T_{2}(y)\right\rangle \leqq 0, \quad \forall u \in K \tag{3.27}
\end{equation*}
$$

Fix any $u \in K$, and let

$$
x_{\lambda}=\lambda u+(1-\lambda) y, \quad 0<\lambda<1
$$

Since $y \in K$ and K is convex, we have $x_{\lambda} \in K$. Therefore (3.25) holds for $x=x_{\lambda}$ and $x_{1}^{*}=0$, and we have

$$
\begin{aligned}
0 & \leqq\left\langle x_{\lambda}-y, T_{2}(x)-y^{*}\right\rangle=\lambda\left\langle u-y, T_{2}(x)-y^{*}\right\rangle \\
& =\lambda\left\langle u-y, T_{2}\left(x_{\lambda}\right)-T_{2}(y)\right\rangle-\lambda\left\langle u-y, y^{*}-T_{2}(y)\right\rangle .
\end{aligned}
$$

This implies that

$$
\left\langle u-y, y^{*}-T_{2}(y)\right\rangle \leqq\left\langle u-y, T_{2}\left(x_{\lambda}\right)-T_{2}(y)\right\rangle, \quad 0<\lambda<1 .
$$

Since T_{2} is hemicontinuous, $T_{2}\left(x_{\lambda}\right)$ converges in the weak* topology to $T_{2}(y)$ as λ decreases to 0 , and (3.27) must hold.
4. Applications. Theorems 1,2 and 3 may be used to get new theorems asserting that $R\left(T_{1}+T_{2}\right)$ is all of X, or that $0 \in R\left(T_{1}+T_{2}\right)$, and so forth.

For example, Theorem 3 of Browder [6] leads to the following result, where a monotone operator $T: X \rightarrow X^{*}$ is said to be coercive if

$$
\begin{equation*}
\lim _{\alpha \rightarrow+\infty}(1 / \alpha) \inf \left\{\left\langle x, x^{*}\right\rangle \mid x^{*} \in T(x),\|x\| \geqq \alpha\right\}=+\infty \tag{4.1}
\end{equation*}
$$

(inf \varnothing being $+\infty$ by convention).
Theorem 4. Let X be reflexive, and let T_{1} and T_{2} be monotone operators satisfying the hypothesis of Theorem 1 (or Theorem 2 or Theorem 3), such that $T_{1}+T_{2}$ is coercive. Then $R\left(T_{1}+T_{2}\right)=X^{*}$.
(In particular, $T_{1}+T_{2}$ is coercive if $0 \in D\left(T_{1}\right)$ and T_{2} is coercive, or vice versa. Also, $T_{1}+T_{2}$ is coercive trivially if $D\left(T_{1}\right) \cap D\left(T_{2}\right)$ is bounded.)

Proof. The monotone operator $T=T_{1}+T_{2}$ is maximal by Theorem 1 (or by Theorem 2 or Theorem 3, as the case may be), and since T is also coercive we have $R(T)=X^{*}$ according to Browder [6, Theorem 3]. (Browder's result assumes that the unit ball of X^{*} is strictly convex and that $0 \in D(T)$. However, the strict convexity assumption can be avoided by giving the proof in terms of a duality mapping J of the type employed in $\S 2$. This is permissible, since passage to an equivalent norm on X does not alter the coerciveness of the operator T. The assumption that $0 \in D(T)$ can then be avoided by invoking Proposition 1 of the present paper in the proof in place of Browder's Theorem 1.)

In the case where T_{1} and T_{2} satisfy the hypothesis of Theorem 3, Theorem 4 yields a result about variational inequalities proved independently by Browder [4] and Hartman-Stampacchia [8].

A condition for the existence of an x satisfying

$$
\begin{equation*}
0 \in T_{1}(x)+T_{2}(x) \tag{4.2}
\end{equation*}
$$

can be obtained at once by combining Theorems 1,2 and 3 with Proposition 2. In particular, taking T_{1} or T_{2} to be the normality operator associated with a convex set K, one obtains the following existence theorem for solutions to variational inequalities.

Theorem 5. Let X be reflexive, let K be a closed convex subset of X, and let $A: X \rightarrow X^{*}$ be a (possibly multivalued) monotone operator. Suppose there exist an $a \in K$ and an $\alpha>0$ such that

$$
\begin{equation*}
\left\langle x-a, x^{*}\right\rangle \geqq 0 \quad \text { whenever } x \in D(A) \cap K,\|x\|>\alpha, x^{*} \in A(x) \tag{4.3}
\end{equation*}
$$

Suppose also that one of the following five conditions is satisfied:
(a) $D(A) \supset K$ and A is single-valued and hemicontinuous on K, or
(b) A is maximal and $K \cap$ int $D(A) \neq \varnothing$, or
(c) A is maximal and $D(A) \cap$ int $K \neq \varnothing$, or
(d) A is locally bounded at some $x \in K \cap \mathrm{cl} D(A)$ and maximal, or
(e) X is finite-dimensional, A is maximal and

$$
\text { ri } D(A) \cap \text { ri } K \neq \varnothing
$$

Then the variational inequality for A and K has a solution, i.e. there exists at least one $x \in D(A) \cap K$ such that, for some $x^{*} \in A(x),-x^{*}$ is normal to K at x.

Proof. Replacing K and A by the translates $K^{\prime}=K-a$ and $A^{\prime}(x)=A(x+a)$ if necessary, we can reduce the theorem to the case where $a=0$. In terms of the normality operator N for K, which has $D(N)=K$, the solutions to the variational inequality for A and K are simply the points x such that

$$
0 \in N(x)+A(x)=(N+A)(x) .
$$

Such a solution exists by Proposition 2, if the monotone operator $T=N+A$ is maximal, since condition (2.5) for T is equivalent to condition (4.3) on K and A (when $0=a \in K$). Each of the conditions (a), (b), (c), (d) and (e) is sufficient, in view of Theorems 1,2 and 3 , for T to be maximal.

When the set K is given by a system of convex inequality constraints,

$$
\begin{equation*}
K=\left\{x \mid f_{i}(x) \leqq 0, i=1, \ldots, m\right\} \tag{4.4}
\end{equation*}
$$

the normality condition in Theorem 5 can sometimes be expressed in terms of the subdifferentials ∂f_{i} of the convex functions f_{i} and certain Lagrange multipliers. In particular, there is the following result.

Corollary. Let X be reflexive, and let $T: X \rightarrow X^{*}$ be a maximal monotone operator. Let f_{1}, \ldots, f_{m} be continuous real-valued convex functions on X. Suppose there exist an $a \in X$ and an $\alpha>0$ such that

$$
\begin{align*}
& a \in D(T) \text { and } f_{i}(a)<0 \text { for } i=1, \ldots, m, \tag{4.5}\\
& \left\langle x-a, x^{*}\right\rangle \geqq 0 \quad \text { whenever } x \in D(T), \quad x^{*} \in T(x), \tag{4.6}\\
& \quad\|x\|>\alpha \text { and } f_{i}(x) \leqq 0 \text { for } i=1, \ldots, m .
\end{align*}
$$

Then there exist real numbers $\lambda_{1}, \ldots, \lambda_{m}$ (Lagrange multipliers) and an $x \in X$ such that

$$
\begin{gather*}
\lambda_{i} \geqq 0, \quad f_{i}(x) \leqq 0, \quad \lambda_{i} f_{i}(x)=0, \quad i=1, \ldots, m, \tag{4.7}\\
0 \in T(x)+\lambda_{1} \partial f_{1}(x)+\cdots+\lambda_{m} \partial f_{m}(x) \tag{4.8}
\end{gather*}
$$

Proof. For K as in (4.4), we have $a \in D(T) \cap$ int K by (4.5), so that the hypothesis of Theorem 5 is satisfied under condition (c). The corollary then follows from the fact that (since the inequality system $f_{i}<0, i=1, \ldots, m$, can be satisfied) the normal cone to K at a point $x \in K$ is the union of $\lambda_{1} \partial f_{1}(x)+\cdots+\lambda_{m} \partial f_{m}(x)$ over all coefficients λ_{i} such that $\lambda_{i} \geqq 0$ for indices i such that $f_{i}(x)=0$ and $\lambda_{i}=0$ for indices i such that $f_{i}(x)<0$. For the proof of the latter fact, see Rockafellar [11, p. 86]. (The argument in [11] concerns the case where f_{1}, \ldots, f_{m} are Gâteaux differentiable, but it is easily extended to the general case.)

Remark. When certain of the functions f_{i} are actually affine (i.e. linear-plus-aconstant), the corresponding conditions $f_{i}(a)<0$ in (4.5) may be weakened to
$f_{i}(a) \leqq 0$, provided that the condition $a \in D(T)$ is strengthened at the same time to $a \in \operatorname{int} D(T)$. This follows by the argument given in [11, p. 87]. With this modification, the corollary may be applied to cases where the definition of K involves constraints of the form $\langle x, b\rangle=\beta$, where $b \in X^{*}$, since such a constraint can always be re-expressed as a pair of affine inequality constraints:

$$
f_{1}(x)=\langle x, b\rangle-\beta \leqq 0, \quad f_{2}(x)=\beta-\langle x, b\rangle \leqq 0
$$

Observe that, according to (4.8) the "solution" x whose existence is asserted in the corollary is in particular a solution to:

$$
\begin{equation*}
0 \in S(x), \quad \text { where } S=T+\lambda_{1} \partial f_{1}+\cdots+\lambda_{m} \partial f_{m} \tag{4.9}
\end{equation*}
$$

Moreover, S is a maximal monotone operator by Theorem 1 , since the subdifferentials ∂f_{i} are maximal monotone operators with $D\left(\partial f_{i}\right)=X$. (A nonnegative multiple of a maximal monotone operator with effective domain X is trivially another maximal monotone operator.) In particular, suppose in the corollary that T is single-valued on $D(T)$, and that each f_{i} is actually Gâteaux differentiable, so that the subdifferentials ∂f_{i} reduce to single-valued gradient mappings ∇f_{i}. Then S is a single-valued maximal monotone operator with $D(S)=D(T)$, and (4.9) becomes an equation:

$$
\begin{equation*}
0=S(x)=T(x)+\lambda_{1} \partial f_{1}(x)+\cdots+\lambda_{m} \partial f_{m}(x) \tag{4.10}
\end{equation*}
$$

The Lagrange multipliers λ_{i} thus make it possible sometimes to reduce variational inequalities to operator equations of a simpler sort, which can be useful of course in the analysis of the solutions x, at least in cases where T is a differential or integral operator whose properties are well understood.

References

1. E. Asplund, Averaged norms, Israel J. Math. 5 (1967), 227-233. MR 36 \#5660.
2. ——, Positivity of duality mappings, Bull. Amer. Math. Soc. 73 (1967), 200-203. MR 34 \#6481.
3. F. E. Browder, Multi-valued monotone nonlinear mappings and duality mappings in Banach spaces, Trans. Amer. Math. Soc. 118 (1965), 338-351. MR 31 \#5114.
4. - , Nonlinear monotone operators and convex sets in Banach spaces, Bull. Amer. Math. Soc. 71 (1965), 780-785. MR 31 \#5112.
5. ——, Problèmes nonlinéaires, Univ. of Montreal Press, Montreal, 1966.
6. ——, Nonlinear maximal monotone operators in Banach space, Math. Ann. 175 (1968), 89-113. MR 36 \#6989.
7. - Nonlinear variational inequalities and maximal monotone mappings in Banach spaces, Math. Ann. 185 (1970), 81-90.
8. P. Hartman and G. Stampacchia, On some non-linear elliptic differential-functional equations, Acta. Math. 115 (1966), 271-310. MR 34 \#6355.
9. C. Lescarret, Cas d'addition des applications monotones maximales dans une espace de Hilbert, C. R. Acad. Sci. Paris 261 (1965), 1160-1163. MR 34 \#645.
10. G. J. Minty, Monotone (nonlinear) operators in Hilbert space, Duke Math. J. 29 (1962), 341-346. MR 29 \#6319.
11. R. T. Rockafellar, Extension of Fenchel's duality theorem for convex functions, Duke Math. J. 33 (1966), 81-89. MR 32 \#4517.
12. -, Characterization of the subdifferentials of convex functions, Pacific J. Math. 17 (1966), 497-510. MR 33 \#1769.
13. ——, On the maximal monotonicity of subdifferential mappings, Pacific J. Math. 33 (1970).
14. —, Local boundedness of nonlinear montone operators, Michigan Math. J. 16 (1969), 397-407.

University of Washington,
Seattle, Washington 98105

[^0]: Received by the editors September 24, 1968.
 ${ }^{(1)}$ This research was supported in part by the Air Force Office of Scientific Research under grant AF-AFOSR-1202-67.

