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ON THE MAXIMALITY OF
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1. Introduction. Let A" be a real Banach space and let X* be the dual of X,
with <x, x*} written in place of x*(x). A monotone operator from X to X* is a
(generally multivalued) mapping F such that

(1.1) <x-y, x*-y*} ä 0   whenever x* e T(x), y* e T(y).

Such an operator F is said to be maximal if its graph, i.e. the set

(1.2) G(T) = {(x, x*) | x e X, x* e T(x)} c Xx X*

is not properly contained in the graph of any other monotone operator F' : X -h>- X*.
The set
(1.3) D(T) = {xeX\ T(x) # 0}

is called the effective domain of F, and F is said to be locally bounded at a point
x e D(T) if there exists a neighborhood U of x such that the set

(1.4) T(U) = (J{T(u)\ueU}
is a bounded subset of X.

It is apparent that, given any two monotone operators Tx and T2 from X to
X*, the operator F», + T2 is again monotone, where

(1 5) (Ti + T2)(x) = Tx(x) + T2(x)

= {*? +x% I xf e Tx(x), xt e T2(x)}.
If Tx and F2 are maximal, it does not necessarily follow, however, that F», + T2 is
maximal—some sort of condition is needed, since for example the graph of Tx + T2
can even be empty (as happens when D(Tx) n D(T2)= 0).

The problem of determining conditions under which Tx + T2 is maximal turns
out to be of fundamental importance in the theory of monotone operators. Results
in this direction have been proved by Lescarret [9] and Browder [5], [6], [7]. The
strongest result which is known at present is :

Theorem (Browder [6], [7]). Let X be reflexive, and let Tx and T2 be monotone
operators from X to X*. Suppose that Tx is maximal, D(T2) = X, T2 is single-valued
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and hemicontinuous ii.e. continuous from line segments in X to the weak* topology
in X*), and T2 carries bounded sets into bounded sets. Then Tx + T2 is a maximal
monotone operator.

The conditions here on £2 imply in particular that £2, like Tx, is maximal
(Browder [3, Theorem 1.2]).

The purpose of this paper is to establish the following considerably more general
result (where int and cl denote interior and (strong) closure, respectively).

Theorem 1. Let X be reflexive, and let Tx and T2 be maximal monotone operators
from X to X*. Suppose that either one of the following conditions is satisfied:

(a) DiTx) n int £(£2)^ 0, or
(b) there exists an x eel D(TX) n cl £(£2) such that T2 is locally bounded at x.
Then Tx + T2 is a maximal monotone operator.

Conditions (a) and (b) of Theorem 1 are actually equivalent, as we have shown
elsewhere [16, Theorem 1].

The derivation of Theorem 1 will rest heavily on the theory already developed
by Browder in [6] and elsewhere. In the case where Tx and £2 are the subdifferentials
of lower semicontinuous proper convex functions on X [12], [13], Theorem 1
could be deduced, however, directly from Fenchel's duality theorem and related
results [11].

When X is finite-dimensional, Theorem 1 may be refined slightly in terms of
relative interiors. (The relative interior of a subset C of X, denoted by ri C, is
the interior of C relative to the afifine hull of C, which is the intersection of all the
hyperplanes containing C.)

Theorem 2. Let X be finite-dimensional, and let Tx and T2 be maximal operators
from X to X* such that

ri DiTx) n ri £(£2) ^ 0.

One of the main motivations behind Theorems 1 and 2 is that such results make
it possible, as Browder has remarked [6, p. 92], to derive theorems about "varia-
tional inequalities" from fundamental theorems about the ranges and effective
domains of (multivalued) maximal monotone operators. Some applications of this
sort will be considered in §4. For the sake of applications to a class of variational
inequalities studied in terms of hemicontinuity by Hartman-Stampacchia [8] and
Browder [4], it will be useful to have, along with Theorems 1 and 2, the following
special maximality theorem.

We shall say that an element x* e X* is normal to a convex subset K of X at a
point x if

(1.6) xe£   and    <m-x, x*> ^ 0,       V u e K.

For each xe X, the set of all x* normal to £ at x is classically called the normal
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1970] SUMS OF NONLINEAR MONOTONE OPERATORS 77

cone to K at x. The normal cone to K at x is a weak* closed convex cone in X*,
empty by definition when x $ K, but containing at least the zero vector of X*
(and hence nonempty) when x e K. The multivalued mapping from X to X*
which assigns to each x e X the normal cone to K at x will be referred to as the
normality operator for K. (This mapping is actually the subdifferential of the
indicator of K, so that it is a maximal monotone operator with effective domain
K, if K is a nonempty closed convex set [12], [13].)

Theorem 3. Let K be a nonempty closed convex subset of X (where X is not
necessarily reflexive), and let Tx: X-> X* be the normality operator for K. Let
T2 : X —> X* be any single-valued monotone operator (not necessarily maximal)
such that D(T2) => K and T2 is hemicontinuous on K, i.e. continuous along each line
segment in K with respect to the weak* topology of X*. Then Ft + F2 is a maximal
monotone operator.

2. Preliminary results. In this section we shall only be concerned with the case
where Xis reflexive. Asplund [1] fias shown by means of a theorem of Linden-
strauss that, in this case, there exists an equivalent norm on X which is everywhere
Gâteaux differentiable except at the origin and whose polar norm on X* is every-
where Gâteaux differentiable except at the origin. (Under such a norm, the unit
balls of X and X* are strictly convex.) For notational simplicity, we may assume
that the given norm on X already has these special properties. We denote by /
the Gâteaux gradient of the function n(x) = (l/2)||x||2. Thus/is the duality mapping
which assigns to each x e X the unique J(x) e X* such that

(2.1) <x,J(x)} = \\x\\2= \\J(x)\\2.

(See [2].) As is known, J maps X one-to-one onto X* and is continuous from the
strong topology to the weak* topology. Also, J is a strictly monotone operator, i.e.

(2.2) (x-y, J(x)-J(y)) > 0    when x ± y.

For any monotone operator F from Xto X*, we define the mapping F_1 by

(2.3) T-\x*) = {x | x* e T(x)}.

It is obvious that F"1 is a monotone operator from X* to X, and (assuming A'to
be reflexive) T ~1 is maximal if and only if F is maximal. We denote the range of F
by R(T). Thus

(2.4) R(T) = Dp'1) = U {T(x) \xeX}.

The main tool which we shall use in proving Theorem 1 is a generalization,
essentially due to Browder [6], of the fundamental Hubert space theorem of Minty
[10].

Proposition 1. Let X be reflexive, and let J be the duality mapping defined above.
Let T: X-^- X* be any maximal monotone operator. Then, for any A>0, R(T+ XJ)
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is all of X* and (£+ A/) ~x is a single-valued maximal monotone operator from X*
to X which is demicontinuous, i.e. continuous from the strong topology to the weak
topology.

Proof. If 0 e £(£), this follows from the argument given by Browder at the
beginning of the proof of Theorem 4 of [6], except that Lemma 10 of [6] should be
invoked in place of Lemma 8. We want to use this result, however, even in the
case where 0 £ £(£), so we must give a somewhat modified proof. Let a e £»(£),
and let Tx and £2 be the monotone operators defined by

£i(x) = £(x+a),       £2(x) = A/(x+a).

Then 0 e DÇTf), and Tx and £2 satisfy the hypothesis of Theorem 1 of [6], as is
easily verified. This implies that £(ri + r2) is all of X*, and of course £(7i + ra)
is the same as £(£+ XJ). Also, £+ XJ is a maximal monotone operator by Theorem
2 of [6](2). Thus (£+ XJ) ~l is a maximal monotone operator from X* to X whose
effective domain is all of X*. We shall show that (£+A£)-1 is single-valued, and
this will imply by Rockafellar [14, Corollary 1 to Theorem 1] that (£+AJ)_1 is
demicontinuous. Let x and y be elements of (£+ XJ) ~ 1(t/*), and let

x* = u* - XJix) e £(x),       y* = u* - XJiy) e Tiy).

Since T is monotone, we have

0 = <x-j, «*-«*> = <x-y,ix* + XJix))-iy* + XJiY))y
= (x-y,x*-y*y + X(x-y,Jix)-Jiy)}
= X(x-y,Jix)-Jiy)>,

and this implies x=y by (2.2).
Corollary. Let X be reflexive, and let J be the duality mapping defined above.

Let T: X-+ X* be a monotone operator. In order that T be maximal, it is necessary
and sufficient that £(£+/) be all of X*.

Proof. By Zorn's Lemma, there exists a maximal monotone operator £' : X -> X*
such that £'(x)=>£(x) for every x. Applying Proposition 1 to £' with A=l, one
sees that, for each u* e X*, there exist unique elements xe X and x* e X* such
that x* e T\x) and x*+/(x)=m*. Therefore, £=£' if and only if each u* e X*
can actually be expressed in the form x*+7(x) for some xe X and x* e £(x),
i.e. if and only if £(£+J) = X*.

The next result may be regarded as a generalization of Theorem 2.2 of Browder
[3]. Its proof is derived from Browder's proof of Theorem 3 of [6].

Proposition 2. Let X be reflexive, and let T: X-> X* be a maximal monotone
operator. Suppose there exists an a > 0 such that

(2.5) <x, x*> > 0   whenever ||x|| > a, xe £»(£), x* 6 £(x).

(2) The hypothesis in Theorem 1 of [6] that Tx have a dense domain is superfluous—it is
nowhere used in the proof nor mentioned in the rest of the paper.
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Then there exists an xe Xsuch that

(2.6) 0 g T(x).

Proof. We can assume that the given norm on X has the special properties
described above. Let Uu be the closed ball of radius a around the origin of X.
The set

(2.7) T(Ua) = U (T(x) | ||x|| â «}

is closed in X*; see Rockafellar [14, Lemma 2]. Hence, to show that 0 e T(Ua),
it suffices to show that T(Ua) meets every ball of positive radius about the origin
of X*. Let J be the duality mapping defined above. Given any e > 0, there exists by
Proposition lanxelsuch that

0e(T+(ela)J)(x).

Setting x*= -(e¡a)J(x), we have x* e T(x) and

0 = <*,**>+ (*/<*)<*,/(*)>,
or equivalently by (2.1)

(2.8) <x,x*} = -(«/«) ||*||a.

If we had ||jc|| >a, the left side of (2.8) would be nonnegative by (2.5), whereas the
right side would be negative, a contradiction. Therefore ||jc|| =a and

fl**|| = (*/a)|/(x)| = (e/«)|*||  = e.

This shows that T(Ua) meets the closed ball of radius e about the origin of X*,
and the proof is complete.

Besides the important device of perturbing a monotone operator F to an operator
of the form F+ XJ, we shall need to use a device of "truncation" in proving Theorem
1. For each a>0, we shall denote by Ba the subdifferential of the indicator function
of the closed ball Ua of radius a about the origin in X (with respect to a norm on
X having the special properties described above). Thus Ba is the normality operator
for Ua, so that Ba(x)= 0 when ||jc|| >«, Ba(x) consists of solely the zero element of
X* when ||jc|| <c¡, and

Ba(x) = {XJ(x) I A ̂  0}   when ||jc| = a.

It is known that Ba is a maximal monotone operator (Rockafellar [12], [13]). In
particular, therefore, if F: X-*■ X* is any monotone operator, T+Ba is a monotone
operator. Note that

(2.9) (T+Ba)(x) = T(x)   when xeint Ua,

(2.10) D(T+Ba) = D(T)n Ua.

Proposition 3. Let X be reflexive, and let T: X-> X* be a monotone operator
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such that 0 e £(£). Suppose there exists an a0>0 such that the monotone operator
T+Ba is maximal for every aäa0, where Ba is the mapping defined above. Then T
is maximal.

Proof. Subtracting a constant mapping from £ if necessary, we can reduce to the
case where 0 e £(0). Let / be the duality mapping defined above, and let u* be an
arbitrary element of X*. To prove that T is maximal, it suffices, according to the
corollary to Proposition 1, to prove the existence of an x e X such that

(2.11) u*eiT+J)ix).

Take any a^a0 such that a> \u*\. Since T+Ba is maximal by hypothesis, there
exists by Proposition 1 a certain xe Xsuch that

u*eiT+Ba+J)ix) = (£+7)(x) + £a(x).

By the definition of Ba, this means that

(2.12) u* e iT+J)ix) + XJix) = (£+ (1 + A)/)(x),

where ||x|| =a, and A is some nonnegative number, taken to be 0 if ||x|| <a. We
shall show that indeed ||x|| < a, so that (2.12) reduces to (2.11) as desired. According
to (2.12), there exists an x* e Tix) such that

u* = x* + (l + A)/(x).

In terms of this x*, we have

<x, «*> = <x, x*> + (1 + A)<x, 7(x)>,

where <x, x*> ^ 0 by the monotonicity of £ and the fact that 0 e £(0). It follows
by (2.1) that

(1 + A)||x||2 = (l+A)<x,/(x)> ^ <x,«*> í ||x||>*||,

and hence that

||x||  ^ (l+A)"1^*!  < (1 + A)-Xa ^ a.

3. Proofs of the main results.
Proof of Theorem 1. Since assumptions (a) and (b) in Theorem 1 are equivalent

by [14, Theorem 1], as already pointed out, we need only consider the case of
assumption (a). We shall suppose, to begin with, that £(£2) is also a bounded
subset of X. Subsequently we shall prove, using Proposition 3, that this boundedness
assumption is unnecessary. It will be assumed, of course, that the norm on X which
we work with has the special properties described at the beginning of §2.

Translating Tx and £2 by a common amount if necessary, and subtracting a
constant mapping from Tx, we can assume that

(3.1) Oe^O),       0eint£(£2).
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Let J he the duality mapping defined above. We shall show that, for the monotone
operator Tx + T2, R(TX + T2+J) is all of X*, and this will establish that Tx + T2
is maximal, according to the corollary to Proposition 1.

Given any x*eX*, we must show that x* e R(Tx + T2+J). Subtracting a
constant mapping from T2 if necessary, we can reduce the argument to the case
where x* = 0. Thus we need only show the existence of an x e X such that

(3.2) 0e(Tx + T2+J)(x).

Now x satisfies (3.2) if and only if there exists an x* e X* such that

(3.3) -x*e(Tx+(l/2)J)(x)   and   x* e(T2+(l/2)J)(x).

Define the mappings Sx and S2 from X* to X by

(3.4) Sx(x*) = -(^ + (1/2)/)-X-**),

(3.5) S2(x*) = (T. + dMJyKx*).
The existence of an x and x* satisfying (3.3) is then equivalent to the existence of an
x* satisfying

(3.6) 0eSx(x*) + S2(x*).

Therefore, to prove the existence of an x satisfying (3.2), it suffices to prove that

(3.7) 0eR(Sx + S2).

To do this, we observe from Proposition 1 that Sx and S2 are single-valued
maximal monotone operators, continuous from the strong topology of X* to the
weak topology of X, such that

(3.8) D(Sx) = X* = D(S2).

Hence 5,1 + 52 is a single-valued monotone operator, continuous from the strong
topology to the weak topology, such that D(Sx + S2) = X*, and this implies by
Browder [3, Theorem 1.2] that Sx + S2 is maximal. Since 7(0)=0, we have

(3.9) 0e(F,+(l/2)/)(0)

by (3.1), and consequently 0 e Sx(0). Therefore

(3.10) <Sx(x*), x*) ^ 0,       Vx*eP,

by the monotonicity of Si. Furthermore, R(S2) = D(T2 + (lj2)J) = D(T2), so that
R(S2) is a bounded set by our initial assumption and, by (3.1),

(3.11) 0£intÄ(52).

We shall show that these properties of R(S2) imply the existence of an a > 0 such
that

(3.12) <S2(x*),x*} ä 0   whenever ||x*|| > «.
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This will establish (3.7) as desired, via Proposition 2, since by (3.10) and (3.12)
we will have

(iSx + S2)ix*), x*> ä 0   whenever ||x*|| > a.

The proof that (3.12) holds for some a>0 proceeds as follows. For any x* and
y* in X*, we have

<S2ix*)-S2iy*),x*-y*)^0

by the monotonicity of S2, in other words

(3.13) <S2(x*), x*> ^ <S2(j*), x*> + {S2ix*)-S2iy*), y*}.

Since £(52) is bounded in X, £(52) is contained in a certain ball of radius ax > 0
about the origin, and hence

(3.14) \<S2ix*)-S2iy*),y*}\ Í 2ax\\y*\\

in (3.13). On the other hand, (3.11) implies by [14, Theorem 1] that «Sj1 is locally
bounded at 0. Thus there exist e > 0 and o¡2 > 0 such that

(3.15) {S2iy*) | ||j*| ^ «2} => {y \ \\y\\ = *}.

From (3.13) and (3.14), we have

<52(x*),x*> ^ <52(j*),x*>-2«l(x2

for every y* with ||j>*|| g<x2, so that by (3.15)

<S2(x*), x*> ^   sup  {<y,x*y-2axa2}
llvllSe

= e\\x*\\-2axa2.

The latter expression is nonnegative when ||x*|| =2a1a2/e, and therefore (3.12)
holds, as claimed, for a ä 2a1a2/e.

The argument that we have given so far proves that Theorem 1 is valid under the
additional hypothesis that £(£2) is bounded. We shall show now that this narrower
version of Theorem 1 implies the general version. Let Tx and £2 be maximal mono-
tone operators such that

(3.16) DiTx) n int £(£2) ^ 0,

where £(£2) is not necessarily bounded. Translating the domains of Tx and T2
if necessary, we can assume that the origin belongs to the intersection (3.16). For
each a>0, the maximal monotone mapping Ba described in §2 then satisfies
D(T2) n int £(£a)# 0, and £(£a) is bounded. The monotone operator T2+Ba is
therefore maximal by the narrower version of Theorem 1. Since

£(£2 + £a) = {xe£(£2)| |x|| ^ a},

and the origin belongs to the intersection (3.16), we have £(£i) n int £(£2 + £a)
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,¿ 0, where D(T2 + Ba) is again bounded. Thus the mapping F1+(F2 + fia) =
(Tx + T2) + Ba is a maximal monotone operator for every e¡>0 by the narrower
version of Theorem 1, and we may conclude from Proposition 3 that Tx + T2 is
maximal. This proves Theorem 1 in the general case.

Proof of Theorem 2. Translating Fx and F2 by a common amount if necessary,
we can suppose that

(3.17) 0 e ri F>(F») n ri D(T2),

so that the affine hulls of D(TX) and D(T2) are certain subspaces Lx and L2 of X,
respectively. Let F0=L1 n L2, and for /=0, 1, 2 let

(3.18) Lt = {x* e X* | <x, x*) = 0, V x e L,},

P,(x) = L,L       if x e L>,
(3.19) 7

= 0        if x £ Lx.

Each P¡ is a maximal monotone operator (the subdifferential of the indicator of LA,
and

(3.20) F0 = Px+P2 = Po+Pi = F0+F2.

Given any xeD(Tx), x* e Tx(x), z*eL1L, we have <x—y, (x*+z*)— y*} =
(x-y,x*-y*} = 0 whenever y e D(Tx), y*eT(y), because Tx is a monotone
operator with D(Tx)<=Lx, and this implies by the maximality of Tx that

x*+z*eTx(x).
Thus

(3.21) Tx = Tx+Px-
Similarly

(3.22) T2 = T2+P2,

and it follows that

(3.23) Tx + T2 = Tx + T2+Px +P2 = (Tx +P0) + F2.

In view of (3.20) and (3.21), we can regard Tx and P0 in a natural way as maximal
monotone operators from the space L± to the quotient space X*jLxL, which may
be identified with the dual Lf of Lx. Theorem 1 is applicable to these mappings
from Lx to Lf, since by (3.17) the origin belongs to the intersection of D(P0)=L0
and the interior, relative to Lx, of D(Tx). Thus Tx+P0 must be a maximal mono-
tone operator from X to X*. Now we apply a similar argument to the space L2.
Since (3.22) holds and (F1+F0)+F2 = F1+Fo, we can regard Tx+P0 and T2 as
maximal monotone operators from L2 to X*/L¿, which may be identified with F*.
The interior of D(T2) relative to L2 meets D(Tx+P0) = L\Ti) c\L2 by (3.17), so
(Tx+P0) + T2 is maximal by Theorem 1. This means by (3.23) that Tx + T2 is a
maximal monotone operator from X to X*.
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Proof of Theorem 3. As already mentioned in §1, Tx is a maximal monotone
operator, since it is the subdifferential of a certain closed proper convex function,
namely the indicator of £ [12], [13]. Therefore Tx + T2 is, at all events, a monotone
operator. Let y e X and y* e X* be such that

(3.24) <.x-y, x*-y*} ^ 0   whenever x* e Tx{x) + £2(x),

or in other words

(3 25)    <x~y' x*>+<x~y' T*(x)-y*> = °
whenever xe K and xf is normal to £ at x.

We shall demonstrate by a direct argument that

(3.26) y*eTxiy) + Uy),   i.e. y* - T2iy) e Txiy),

and this will prove that Tx + T2 is maximal.
If x is any point of £ and x* is normal to £ at x, then Ax* is likewise normal to

£ at x for every A^O, so that by (3.25)

A<x-j, x*> + <x-j, Taix)-y*} 2: 0,       V A ̂  0.

This implies that (x-y, x*>^0. Thus

(x-y, xf-0> ^ 0   whenever xf e Txix),

and since Tx is a maximal monotone operator we may conclude that 0 e Txiy).
Hence y e K.

To complete the proof that (3.26) holds, i.e. that y* — T2iy) is normal to K
at y, we need only show that

(3.27) (u-y,y*-T2iy)} ^ 0,      Vme£.

Fix any ue K, and let
xA = Xu + il-X)y,       0 < A < 1.

Since y e K and £ is convex, we have xA e K. Therefore (3.25) holds for x=xx
and x*=0, and we have

0 Ú (xK-y, T2ix)-y*} = X(u-y, T2ix)-y*}

= X(u-y, £2(xA)-£2(j0>-X(u-y, y*-T2iy)}.
This implies that

(u-y,y*-T2iy)} = (u-y, £2(xÄ)-£2(j)>,       0 < A < 1.

Since £2 is hemicontinuous, £2(xA) converges in the weak* topology to T2iy) as A
decreases to 0, and (3.27) must hold.

4. Applications. Theorems 1, 2 and 3 may be used to get new theorems asserting
that £(£i + £2) is all of X, or that 0 e R(TX + T2), and so forth.
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For example, Theorem 3 of Browder [6] leads to the following result, where a
monotone operator T: X-> X* is said to be coercive if

(4.1) lim   il/a) inf {<x, x*> | x* e Tix), \\x\\ ^ a} = +co
a-* + oo

(inf 0 being +co by convention).

Theorem 4. Let X be reflexive, and let Tx and T2 be monotone operators satisfying
the hypothesis of Theorem I ior Theorem 2 or Theorem 3), such that Tx + T2 is coercive.
ThenRiTx + T2) = X*.

iln particular, Tx + T2 is coercive if Oe £(£i) and T2 is coercive, or vice versa.
Also, Tx + T2 is coercive trivially if L\TX) O £(£2) is bounded.)

Proof. The monotone operator T=TX + T2 is maximal by Theorem 1 (or by
Theorem 2 or Theorem 3, as the case may be), and since £is also coercive we have
RiT) = X* according to Browder [6, Theorem 3]. (Browder's result assumes that
the unit ball of X* is strictly convex and that 0 e £(£). However, the strict con-
vexity assumption can be avoided by giving the proof in terms of a duality mapping
J of the type employed in §2. This is permissible, since passage to an equivalent
norm on X does not alter the coerciveness of the operator T. The assumption that
0 e £>(£) can then be avoided by invoking Proposition 1 of the present paper in the
proof in place of Browder's Theorem 1.)

In the case where Tx and £2 satisfy the hypothesis of Theorem 3, Theorem 4
yields a result about variational inequalities proved independently by Browder [4]
and Hartman-Stampacchia [8].

A condition for the existence of an x satisfying

(4.2) 0eTxix) + T2ix)

can be obtained at once by combining Theorems 1, 2 and 3 with Proposition 2.
In particular, taking Tx or £2 to be the normality operator associated with a convex
set £, one obtains the following existence theorem for solutions to variational
inequalities.

Theorem 5. Let X be reflexive, let K be a closed convex subset of X, and let
A: X-> X* be a ipossibly multivalued) monotone operator. Suppose there exist an
ae Kand an a>0 such that

(4.3) (x — a, x*> S: 0    whenever x e DiA) n £, ||x|| > «, x* e Aix).

Suppose also that one of the following five conditions is satisfied:
(a) L>iA) => £ and A is single-valued and hemicontinuous on K, or
(b) A is maximal and K n int DiA) ̂  0, or
(c) A is maximal and DÍA) n int £^ 0, or
(d) A is locally bounded at some x e £ n cl DiA) and maximal, or
(e) X is finite-dimensional, A is maximal and

ri DiA)nriK ¿ 0.
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Then the variational inequality for A and K has a solution, i.e. there exists at least
one x e D(A) n K such that, for some x* e A(x), — x* is normal to K at x.

Proof. Replacing K and A by the translates K' = K-a and A'(x) = A(x+a) if
necessary, we can reduce the theorem to the case where a=0. In terms of the
normality operator A^ for K, which has D(N) = K, the solutions to the variational
inequality for A and K are simply the points x such that

OeAT(x) + ^(x) = (N+A)(x).

Such a solution exists by Proposition 2, if the monotone operator T=N+A is
maximal, since condition (2.5) for F is equivalent to condition (4.3) on K and A
(when 0 = a e K). Each of the conditions (a), (b), (c), (d) and (e) is sufficient, in
view of Theorems 1, 2 and 3, for T to be maximal.

When the set K is given by a system of convex inequality constraints,

(4.4) K={x\fi(x)S0, i=l,...,m},

the normality condition in Theorem 5 can sometimes be expressed in terms of the
subdifferentials dfi of the convex functions /, and certain Lagrange multipliers.
In particular, there is the following result.

Corollary. Let X be reflexive, and let T: X -*■ X* be a maximal monotone
operator. Let fix,.. .,fim be continuous real-valued convex functions on X. Suppose
there exist an ae X and an a > 0 such that

(4.5) a e D(T)   and  fi(a) < 0   for i = 1,..., m,

(x — a, x*> > 0    whenever x e D(T),   x* e T(x),
(4.6)

||x|| > a   and fix) ^ 0 for i = 1,..., m.

Then there exist real numbers Xx,..., Am (Lagrange multipliers) and an xe Xsuch
that

(4.7) A( ̂  0,       fi(x) = 0,        XJlx) = 0,       i=l,...,m,

(4.8) 0 e Fix) + Xxdfx(x) +■■■+ Xmdfm(x).

Proof. For K as in (4.4), we have a e D(T) n int K by (4.5), so that the hypo-
thesis of Theorem 5 is satisfied under condition (c). The corollary then follows
from the fact that (since the inequality system fi<0, /= 1,..., m, can be satisfied)
the normal cone to K at a point x e K is the union of Xxdfi(x)+ ■ ■ ■ +Xmdfim(x)
over all coefficients A( such that A¡^0 for indices / such that/¡(x) = 0 and A¡ = 0 for
indices / such that/¡(x)<0. For the proof of the latter fact, see Rockafellar [11, p.
86]. (The argument in [11] concerns the case where fix,.. .,fim are Gâteaux differen-
tiable, but it is easily extended to the general case.)

Remark. When certain of the functions .Fi are actually affine (i.e. linear-plus-a-
constant), the corresponding conditions/,(a)<0 in (4.5) may be weakened to
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fiia) á 0, provided that the condition a e £(£) is strengthened at the same time to
a e int £(£). This follows by the argument given in [11, p. 87]. With this modifica-
tion, the corollary may be applied to cases where the definition of K involves
constraints of the form (x,b}=ß, where beX*, since such a constraint can
always be re-expressed as a pair of affine inequality constraints :

fix) = (x,b}-ßi 0,      /2(x) = ß-(x, b} = 0.

Observe that, according to (4.8) the "solution" x whose existence is asserted
in the corollary is in particular a solution to :

(4.9) 0 £ Six),   where S = T+ Xxdfi +■■■+ Xmdfim.

Moreover, S is a maximal monotone operator by Theorem 1, since the sub-
differentials 8fi are maximal monotone operators with £(S/) = Z. (A nonnegative
multiple of a maximal monotone operator with effective domain X is trivially
another maximal monotone operator.) In particular, suppose in the corollary
that £ is single-valued on £(£), and that each / is actually Gâteaux differentiable,
so that the subdifferentials dfi reduce to single-valued gradient mappings V/.
Then Sisa single-valued maximal monotone operator with £(5) = £(£), and (4.9)
becomes an equation :

(4.10) 0 = Six) = Hx) + Xxdfiix) +■■■+ Xn8fimix).

The Lagrange multipliers A¡ thus make it possible sometimes to reduce variational
inequalities to operator equations of a simpler sort, which can be useful of course
in the analysis of the solutions x, at least in cases where £is a differential or integral
operator whose properties are well understood.
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