
Faculty of Sciences and Mathematics, University of Nǐs, Serbia
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ON THE MAXIMUM AND MINIMUM FIRST
REFORMULATED ZAGREB INDEX OF GRAPHS

WITH CONNECTIVITY AT MOST k

Guifu Su, Liming Xiong, Lan Xu and Beibei Ma

Abstract

The authors Miličević et al. introduced the reformulated Zagreb indices [1], which is
a generalization of classical Zagreb indices of chemical graph theory. In this paper, we
mainly consider the maximum and minimum for the first reformulated index of graphs
with connectivity at most k. The corresponding extremal graphs are characterized.

1 Introduction

A graph invariant is a function on a graph that does not depend on the labeling of
its vertices. Recently, hundreds of graph invariants have been considered in quantitative
structure-activity relationship and quantitative structure-property relationship researches.
We refer the reader to the monograph [2]. Among those useful invariants, we will present
several that are relevant for our paper, such as the first Zagreb index and the second Zagreb
index [3-7].

The authors modified the Zagreb indices in [8]. Later, the Zagreb indices were refor-
mulated in terms of the edge-degrees instead of the vertex-degrees as the original Zagreb
indices, named the reformulated Zagreb indices, by Miličević et al. in 2004 [9].

As far as we know, there are only some basic mathematical properties of the reformu-
lated Zagreb indices have been reviewed [9]. Other investigators discussed the relationship
between the reformulated Zagreb indices and the corresponding invariants of graphs [10].
Whereas to our best knowledge, the reformulated Zagreb indices with order n and k cut
vertices or connectivity at most k have, so far, not been considered in the chemical litera-
tures. The aim of the present article is to continue in the same vein and to give some novel
results concerning these indices. Here we mainly consider a special classes of graphs with
order n and connectivity at most k. The corresponding extremal graphs are also presented.
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2 Terminology and notations

Throughout the paper we consider only finite and simple graphs. Let G = (V, E) be a
finite simple graph with vertex set V and edge set E, and |G| and |E| be its order and size,
respectively. As usual, the degree of a vertex u in G is the number of incident edges, denoted
by dG(u) or d(u) for short if there is no confuse, and the neighborhood of a vertex u in G is
denoted by NG(u) or N(u) for short. The complement of G, denoted by G, is a simple graph
on the same set of vertices V (G), in which two vertices u and v are adjacent if and only if
they are not adjacent in G. For simplicity, we let m = |E| and m = |E|, hence m+m =

(
n
2

)

and the degree of the same vertex u in G is then given by dG(u) = n−1−dG(u), respectively.
The first Zagreb index M1 equals to the sum of squares of the vertex degrees, and the

second Zagreb index M2 equals to the sum of product of degree of pairs of adjacent vertices:

M1 = M1(G) =
∑

u∈V (G)

d(u)2 and M2 = M2(G) =
∑

uv∈E(G)

d(u)d(v).

We refer the reader to [4] for more information and results on Zagreb indices.
In 2004, Miličević, Nikolić and Trinajstić reformulated the Zagreb indices in terms of

edge-degrees instead of vertex-degrees [1]:

EM1 = EM1(G) =
∑

e∈E(G)

d(e)2 and EM2 = EM2(G) =
∑

e∼f

d(e)d(f),

where d(e) = d(u) + d(v)− 2 denotes the degree of the edge e in G, and e ∼ f means that
the edges e and f share a common end-vertex in G.

Let G be a graph, then G + uv denotes the graph obtained from G by adding an edge
uv for two non-adjacent vertices u and v. Similarly, G− uv denotes the graph obtained by
deleting an edge uv of G.

A subgraph obtained by vertex deletions only is said to be an induced subgraph. If S is
the set of deleted vertices, the resulting subgraph is denoted by G− S. If T = V \ S, in this
case, the subgraph is denoted by G[T ] and referred to as the subgraph of G induced by T.
We call T is a clique if the induced subgraph G[T ] is complete.

A cut-vertex in a connected graph G is a vertex whose deletion breaks the graph into
at least two connected components, and a vertex-cut of a graph G is a set X of V (G) such
that G−X has more than one component. Similarly, the edge-cut Y of graph G is a set of
edges such that G− Y has more than one component.

The connectivity of G, denoted by κ(G), is the minimum size of a vertex set R such that
G− R is disconnected or has only one vertex. A graph G is k-connected if its connectivity
is at least k. The edge connectivity of G, denoted by κ′(G), with at least two vertices is the
minimum size of a edge-cut. A graph with at least two vertices is k-edge-connected if every
edge-cut has at least k edges.

Let Vn,k = {G|κ(G) ≤ k ≤ n − 1 and |G| = n} and En,k = {G|κ′(G) ≤ k ≤
n− 1 and |G| = n}.

Expansion Lemma. Let G be a k-connected graph, and G′ is obtained from G by adding
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Fig 1: The graph K
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)
= K1 ¦Kk ¦Kn−k−1.

a new vertex u with at least k neighbors in G. Then G′ is k-connected.

Two graphs are said to be disjoint if they have no vertex in common. Let G1, G2, · · · , Gl

be l disjoint graphs, G1 ¦G2 ¦ · · · ¦Gl denotes the graph obtained from G1 ∪G2 ∪ · · · ∪Gl

by joining all the vertices of Gi to those of Gi+1, 1 ≤ i ≤ l − 1.
Let G

(
t,k

n−k−t

)
= Kt ¦Hk ¦Kn−k−t be a graph with order n, where Kt is the complete

graph with order t and Hk is a graph with order k and k ≥ 1, 2 ≤ t ≤ 2−1(n− k).
In particular, if Hk

∼= Kk, we denote K
(

1,k
n−k−1

)
= K1 ¦Kk ¦Kn−k−1 be the graph with

order n as is shown in Fig. 1, and K
(
1,n−1

0

)
= K1 ¦Kn−1 = Kn. By the Expansion Lemma,

we obtain that K
(

1,k
n−k−1

) ∈ En,k ⊆ Vn,k.

3 Preliminary lemmas

We begin with several lemmas, which will be helpful to the proofs of our main results.

Lemma 1. Let G be a simple graph with order n. Then
(1) EM1(G + uv) > EM1(G) for two non-adjacent vertices u, v ∈ V (G);
(2) EM1(G− uv) < EM1(G) for two adjacent vertices u, v ∈ V (G).

Proof. It follows immediately by the definitions, so omitted here.

Let G be a connected graph with dG(u) ≥ dG(v) for two non-adjacent vertices u, v.
Assume that v1, v2, · · · , vs ∈ NG(v) \ NG(u), where 1 ≤ s ≤ dG(v). Let G′ = G −
{vv1, vv2, · · · , vvs}+ {uv1, uv2, · · · , uvs}. Then we have the following conclusion.
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Lemma 2. Let G and G′ be two graphs shown as in Fig. 2. Then EM1(G′) > EM1(G).

Proof. For simplicity, we denote E1 = {e|e = ab ∈ E(G) and a, b 6= u, v}, V1 = NG(u) \
NG(v), V2 = NG(v) \NG(u) and V3 = NG(u) ∩NG(v). Thus we have, see Fig. 2.

EM1(G′) =
∑

ab∈E1

[
d(a) + d(b)− 2

]2

+
∑

ui∈V1

[(
d(u) + s

)
+ d(ui)− 2

]2

+
∑

vi∈V2

[(
d(u) + s

)
+ d(vi)− 2

]2

+
∑

wi∈V3

[(
d(u) + s

)
+ d(wi)− 2

]2

+
∑

wi∈V3

[(
d(v)− s

)
+ d(wi)− 2

]2

.

By the same reasoning, we have

EM1(G) =
∑

ab∈E1

[
d(a) + d(b)− 2

]2

+
∑

ui∈V1

[
d(u) + d(ui)− 2

]2

+
∑

vi∈V2

[
d(v) + d(vi)− 2

]2

+
∑

wi∈V3

[
d(u) + d(wi)− 2

]2

+
∑

wi∈V3

[
d(v) + d(wi)− 2

]2

.

Comparing to the two identities above, we obtain

EM1(G′)− EM1(G) =
∑

ui∈V1

s
[
2d(u) + 2d(ui) + s− 4

]

+
∑

vi∈V2

[
d(u) + s

][
d(u) + d(v) + 2d(vi) + s− 4

]

+
∑

vi∈V3

s
[
2d(u)− 2d(v) + 2s

]
> 0.

The last inequality follows by d(u) ≥ d(v), d(v) ≥ s ≥ 1, d(ui) ≥ 1 and d(vi) ≥ 1.
This completes the proof. ¤

Let Kn, Pn and Cn be the complete graph, the path and the cycle with order n, and
Kp,q be the complete bipartite graph.

Tab. EM1-value for some graph families.

Graph Kn Pn(n > 2) Cn Kp,q (p, q > 2)

EM1 − value 2n(n− 1)(n− 2)2 4n− 10 4n pq(p + q − 2)2
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Fig 2: The transformation from graph G to graph G′.
The dotted line illustrates that uvi is not an edge of G, and analogous illustration for vvi in G′.

Lemma 3. (Zhou et al. [3]) Let G be a graph with order n and size m ≥ 1. Then
EM1(G) ≤ (n − 4)M1(G) + 4M2(G) − 4m2 + 4m, with equality if and only if any two
non-adjacent vertices have equal degrees.

Lemma 4. (Zhang and Wu [7]) Let G be a graph with order n. Then
(1) 2−1n(n− 1)2 ≤ M1(G) + M1(G) ≤ n(n− 1)2;
(2) 2−3n(n− 1)3 ≤ M2(G) + M2(G) ≤ 2−1n(n− 1)3.
The upper bounds in (1) and (2) attain on Kn.

Lemma 5. EM1

(
G

(
t,k

n−k−t

))
< EM1

(
G

(
1,k

n−k−1

))
holds for 2 ≤ t ≤ 2−1(n− k).

Proof. Let v1, v2, · · · , vt be the vertices of Kt and u1, u2, · · · , un−k−t the vertices of Kn−k−t.
It is obvious that (t− 1)− (n− k− t− 1) = 2t−n + k ≤ 0, which implies that d(ui) ≥ d(vi)
holds for all 1 ≤ i ≤ t. In view of Lemma 2, we have EM1(G′′) > EM1

(
G

(
t,k

n−k−t

))
, where

G′′ = G
(

t,k
n−k−t

) − {v1v2, v1v3, · · · , v1vt}+ {u1v2, u1v3, · · · , u1vt}, see Fig. 3. On the other
hand, G

(
1,k

n−k−1

)
considered to be the graph obtained from G′′ by joining ui and vh for

all 2 ≤ i ≤ n − k − t and 2 ≤ h ≤ t. By repeated application of Lemma 1, we have
EM1(G′′) < EM1

(
G

(
1,k

n−k−1

))
. This completes the proof. ¤
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Fig 3: The transformation from graph G
(

t,k
n−k−t

)
to graph G′′.

1. The dotted line illustrates that u1vi is not an edge of G
(

t,k
n−k−t

)
, and analogous illustration for

v1vi in G′′.
2. The bold line between Kt and Hk illustrates the join of them, and analogous illustration for

others.

4 The upper and lower bounds of EM1 index

Theorem 1. Let G be an arbitrary graph in Vn,k. Then

4n−10 ≤ EM1(G) ≤ k(k+n−3)2+4(n−2)2
(

k

2

)
+4(n−3)2

(
n− k − 1

2

)
+k(n−k−1)(2n−5)2,

the upper bound attains on K
(

1,k
n−k−1

)
, and the lower bound attains on Pn.

Proof. (1) We firstly consider the upper bound.
By an elementary calculation, we have
EM1

(
K

(
1,k

n−k−1

))
= k(k+n−3)2+4(n−2)2

(
k
2

)
+4(n−3)2

(
n−k−1

2

)
+k(n−k−1)(2n−5)2.

We have to prove now that for every G ∈ Vn,k, the inequality EM1(G) ≤ EM1

(
K

(
1,k

n−k−1

))

holds and with equality if and only if G ∼= K
(

1,k
n−k−1

)
.

Noting that K
(
1,n−1

0

) ∼= Kn is in the set Vn,k. If k ≥ n − 1, the upper bound holds by
Lemma 1. If 1 ≤ k < n− 1, let G0 be the graph with order n and maximum EM1 in Vn,k,
which implies EM1(G) ≤ EM1(G0) holds for all G ∈ Vn,k.
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Noting G0 ∈ Vn,k is not the complete graph, otherwise κ(G0) = n − 1 ≤ k < n − 1,
a contradiction to the choice of G0. Hence there exists a k-vertex cut in G0, say S =
{v1, v2, · · · , vk}. Next we have to prove the following several facts:
Fact 1. There are exactly two components in G0 − S.

In fact, suppose that there are at least three components, say W1,W2, · · · ,Wt and t ≥ 3.
Let u ∈ Wi and v ∈ Wj for any 1 ≤ i < j ≤ t. Easily to find that S is also a k-vertex cut of
G0 +uv, which means G0 +uv ∈ Vn,k. By Lemma 1, we obtain EM1(G0 +uv) > EM1(G0),
a contradiction to the choice of G0. This complete the proof of fact 1.

Without loss of generality, we denote W1, W2 be the exactly two components of graph
G0 − S.
Fact 2. The graphs induced by V (W1) ∪ S and V (W2) ∪ S are cliques.

In fact, suppose that the graph induced by V (W1) ∪ S is not a clique, hence there exist
a pair of non-adjacent vertices u, v ∈ V (W1)∪ S. Note that G0 + uv ∈ Vn,k, then we obtain
that EM1(G0 + uv) > EM1(G0) by Lemma 1, again a contradiction, which implies the
proof of fact 2.

As desired we know the graphs induced by V (W1) ∪ S and V (W2) ∪ S are cliques, say
Kn1 and Kn2 , respectively.
Fact 3. There is only one clique Kni such that |Kni | = 1 for i = 1, 2.

In fact, suppose that both n1 and n2 are larger than 2. Noting G
(

1,k
n−k−1

)
= K1 ¦

G0[S] ¦ Kn−k−1. As is known G
(

1,k
n−k−1

) ∈ Vn,k. By Lemma 5, we have EM1(G0) <

EM1

(
G

(
1,k

n−k−1

))
, a contradiction, which implies the proof of fact 3.

This completes the proof of (1).
(2) We now consider the lower bound.

By the table above, we have EM1(Pn) = 4n− 10 for n > 2. It remains to prove that for
every G ∈ Vn,k, the inequality EM1(G) ≥ EM1(Pn) holds and with equality if and only if
G ∼= Pn.
Fact 4. Pn takes uniquely the minimum EM1 on the set of all connected graphs with order
n.

In fact, suppose Tn = {T |T is a tree with order n}. Then it is easy to find that the path
Pn has the minimum of EM1 in Tn, respectively. On the other hand, if H is a subgraph of
G, then EM1(H) ≤ EM1(G) holds by Lemma 1. Therefore, the minimum of EM1 on the
set of all connected graphs with order n is the same as the minimum of EM1 on Tn. This
implies that Pn takes the minimum first reformulated Zagreb index EM1 on the set of all
connected graphs with order n.

Now, suppose that G ∈ Vn,k the graph with EM1-value as small as possible as described
above. Thus among all trees with order n, the path Pn is respectively the unique tree with
minimum of EM1. This implies the proof of fact 4.

As desired we have completed the proof of Theorem 1. ¤

Theorem 2. Let G be an arbitrary graph in En,k. Then

4n−10 ≤ EM1(G) ≤ k(k+n−3)2+4(n−2)2
(

k

2

)
+4(n−3)2

(
n− k − 1

2

)
+k(n−k−1)(2n−5)2,

the upper bound attains on K
(

1,k
n−k−1

)
, and the lower bound attains on Pn.
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Proof. Since K
(

1,k
n−k−1

) ∈ En,k ⊆ Vn,k, we immediately complete the proof. ¤

Theorem 3. Let G be a graph with order n and size m. Then

EM1(G) + EM1(G) ≤ 2n(n− 1)(n− 2)2 + 4n(n− 1)m− 8m2,

and the upper bound attains on Kn.

Proof. By applying Lemma 3 to the completement graph G, one obtains EM1(G) ≤
(n−4)M1(G)+4M2(G)−4m2 +4m, thus EM1(G)+EM1(G) ≤ (n−4)

(
M1(G)+M1(G)

)
+

4
(
M2(G) + M2(G)

) − 4(m2 + m2) + 4(m + m). In view of Lemma 4, 2−1n(n − 1)2 ≤
M1(G) + M1(G) ≤ 2−1n(n − 1), and 2−3n(n − 1)3 ≤ M2(G) + M2(G) ≤ 2−1n(n − 1)3, we
complete the proof of the first part by elementary calculations.

Note that the upper bound is best possible. By the table, EM1(Kn) + EM1(Kn) =
2n(n− 1)(n− 2)2, the upper bound attains on Kn. ¤
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[8] A. Miličević, S. Nikolić, N. Trinajstić, On reformulated Zagreb indices. Mol. Divers. 8
(2004) 393-399.



On the maximum and minimum EM1 of graphs with connectivity at most k 83
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