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Abstract—The integration of wireless communication and
control systems revealed wireless networked control systems
(WNCSs). One fundamental problem in WNCSs is to have a wide
coverage area. For the first time in the literature, we address this
problem and we obtain the maximum coverage area by solving an
optimization problem. In this technical note, we consider a WNCS
where the output sensor measurements are transmitted over
separate heterogeneous multi-hop wireless ad-hoc subnetworks.
The observation process is divided into N parts and the system
state is estimated using the Kalman filter. We present the critical
arrival probability for a sensor measurement packet such that
if the packet arrival probability is larger than the critical value,
it is guaranteed that the estimator of the WNCS converges. We
derive the maximum total coverage area of the heterogeneous
wireless subnetworks having maximum cost-efficiency under the
constraint of the convergence of the WNCS estimator.

Index Terms—Wireless networked control systems, multi-hop
wireless networks, coverage area, estimator convergence, Kalman
filtering.

I. INTRODUCTION

Recent developments on micro sensor integrated systems

have enabled combination of communication and control

systems. This integration revealed networked control systems

(NCSs) where the communication system enables the sensor

observation delivery [1], [2]. The control system components

such as sensors, actuators and plants with wireless commu-

nication capabilities constitute a wireless networked control

system (WNCS). The observations of the sensors deployed

over a wide area are fed to the WNCS through a wireless

network. The WNCSs have a wide application area such as

smart grid, automatic management and navigation systems [3].

For the WNCS applications requiring large coverage areas,

e.g., space and terrestrial exploration, navigation systems, the

maximum achievable area of the wireless network which

ensures the convergence of the WNCS estimator is crucial.

To the best of our knowledge, no attempt has yet been made

to find the maximum coverage area of the wireless network

under the convergence constraint. For the first time in the

literature, we address this problem and obtain the solution

by solving an optimization problem in [4]. Although in [5],

[6], [7], the authors study the maximum coverage area for
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wireless networks, they do not consider the convergence of a

WNCS estimator which utilizes wireless networks. We find

the maximum coverage area of a wireless network having

maximum cost-efficiency by considering the convergence of

the WNCS estimator.

In our scenario, wireless sensor nodes are employed to

observe the system behavior. We consider that the sensor

measurements are transmitted to the controller over multi-hop

wireless ad-hoc networks. As an extension of our previous

study in [4], we employ a heterogeneous multi-hop wireless

ad-hoc network model as a generalization of homogeneous

networks. In these networks, also known as cognitive radio

sensor networks [8], [9], measurement packets are conveyed

to the WNCS estimator by utilizing available channels oppor-

tunistically. These packets may be lost due to the unreliable

wireless channel characteristics caused by the noise, collision,

and congestion. Since the WNCSs rely on the observations of

the sensors to estimate the state of the system, any loss of the

sensor measurements degrades the stability of the WNCS.

We use the Kalman filter for the state estimation of the sys-

tem. The Kalman filtering is a well studied technique in control

theory [10], [11]. In the classical sense, the Kalman filter uses

all the observation data provided by the sensors for the state

estimation. However, for the WNCSs, the observations may be

lost due to wireless channel conditions. In [10], the Kalman

filter is studied when the observations are intermittent; nev-

ertheless, the authors do not consider statistical convergence

behavior. In [11], the authors investigate the state estimation

process, in which the sensor measurements are received or lost

completely in a stochastic manner, and they show that if the

probability of arrival of an observation is above a threshold, the

expectation of the state estimation error covariance is bounded.

In [12], the authors consider two sensors, and the measurement

of each sensor is independently received or lost by the Kalman

filter. Furthermore, in [13], the H∞ filtering problem is studied

for a class of discrete-time networked nonlinear systems with

random delays and packet losses; and in [14], the distributed

fuzzy filters are designed so that the filtering error dynamic

system to be mean-square stable in spite of time-varying

delays and multiple probabilistic packet losses. However, none

of these works address the maximum coverage area problem

of a WNCS network under the convergence constraint.

We consider the general case of the system presented in

[12]. The observation process is divided into N parts and

each part is independently and randomly received or lost
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by the Kalman filter. Thus, we consider N separate multi-

hop wireless ad-hoc subnetworks for our scenario and each

subnetwork includes one sensor node. Based on the derivations

presented in [12], we derive the critical arrival probability

for the measurement of each sensor such that if the arrival

probability of a sensor measurement is larger than the critical

value, it is guaranteed that the estimator of the WNCS is

convergent so that the WNCS is stable. In this technical note,

we refer the stability of the WNCS as the convergence of the

WNCS estimator. Then, we show that there exists a critical

hop-diameter of a subnetwork such that if the hop-diameter

of the subnetwork is less than the critical hop-diameter, the

WNCS is stable where the maximum hop number of the

shortest paths between any two node pairs in the network

is the hop-diameter. Furthermore, based on the solution of

an optimization problem, we find both the optimum hop-

diameter and the maximum coverage area of the multi-hop

wireless ad-hoc network with maximum cost-efficiency under

the constraint of the convergence of the WNCS estimator.

II. KALMAN FILTERING WITH PARTIAL OBSERVATION

LOSSES

In a WNCS, the Kalman filter gathers sensor measurements

from distinct sensors and each sensor node encodes its own

observation into a single packet. However, some of the packets

might be lost during the wireless data transmission. In [12], the

authors present a state estimation process with partial observa-

tion losses considering that the observation process is divided

into two parts which are transmitted over different wireless

channels by two different sensor nodes. In this section, we

present a general state estimation process, i.e., the observation

process is divided into N parts, with partial observation losses

using the Kalman filter. In other words, the Kalman filter uses

the output observations of N independent sensors.

We consider a general multiple-input multiple-output

(MIMO) discrete time linear time-invariant system which is

described by the following system equations

xt+1 = Axt +wt,
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(1)

where xt ∈ Rn is the system state vector, wt ∈ Rn is

the system disturbance vector, A ∈ Rn×n is the system

matrix, yi,t ∈ Rmi , is sensor measurement output vector,

vi,t ∈ Rmi is the measurement noise vector, and Ci ∈ Rmi×n

is the output matrice for i = 1, 2, . . . , N and the subscript t
indicates the time index. Also note that the boldface symbols

in this technical note represent vectors. We define yt =
[y1,t, y2,t, . . . , yN,t]

T, vt = [v1,t, v2,t, . . . , vN,t]
T, and

C = [C1, C2, . . . , CN ]T. Both wt and vt are assumed to be

Gaussian random vectors with zero mean and their covariance

matrices are Q ≥ 0 and R > 0, respectively. R is a NxN
matrix having elements as Rij = E[vi,tv

′
j,t]. Furthermore,

we assume that the system (A,C) is observable; hence, the

Kalman filter converges without sensor measurement losses.
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Fig. 1. (a) The block diagram of the WCSN. (b) The model of the
heterogeneous multi-hop wireless ad-hoc subnetworks.

The sensor measurement packets y1,t,y2,t, . . . ,yN,t are

encoded independently and transmitted over different multi-

hop wireless ad-hoc subnetworks. We use random variable

γi,t which indicates whether the measurement packet of ith

sensor, yi,t, is correctly received during a given sample

period. We assume γi,t for i = 1, 2, . . . , N are independent

Bernoulli random variables with Pr{γi,t = 1} = λi and

Pr{γi,t = 0} = 1 − λi. That is, if γi,t = 1, then the

measurement packet yi,t is correctly received; otherwise, the

packet is lost during the wireless data transmission. λi depends

on the channel gains, the network resource allocation, the

network traffic, and the number of hops taken by a packet

to reach the Kalman filter. In this technical note, we are

only interested in the successful transmission probability of

a packet between two nodes and we do not consider the

effects of modulation, decoding and encoding processes of

the information on the successful transmission probability of

a packet.

The block diagram of the WNCS for our scenario is shown

in Fig. 1(a). Note that the observation process is stochastic

due to the random measurement losses during the packet

transmission process. Furthermore, since we assume that γi,t
and γj,t′ for i 6= j are independent for every t and t′, the sensor

measurement packets yi,t for i = 1, 2, . . . , N can be indepen-

dently lost or received. Therefore, the loss of a measurement

packet is equivalent to the reception of a measurement having

an infinite noise variance. Then, for the measurement noise

vectors vi,t, we define the following conditional probability

distribution function f
v|γ(vi,t|γi,t) ∼ N (0, Rii) if γi,t = 1

and f
v|γ(vi,t|γi,t) ∼ N (0, σ2

i I) if γi,t = 0. Then, we take the

limit as σ2
i → ∞ to derive the Kalman equations for random

partial losses.

In [11], the authors investigate the state estimation pro-
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cess, in which the sensor measurement packet is received

or lost completely, and they show the existence of a critical

packet arrival probability λc such that E[Pt+1|t] is bounded

if λ > λc and E[Pt+1|t] becomes infinite as t → ∞ if

λ < λc. For the general case, based on the derivations and

results given in [12], if (A,Q) is controllable and (A,C) is

observable, for a fixed set of (λ1, λ2, . . . , λi−1, λi+1, . . . λN ),
if λi ≥ λc

i , the state estimation error covariance is bounded

and estimator converges so that the WNCS is stable. If the

output matrices C1, C2, . . . , CN are square and invertible A
has a single unstable eigenvalue, the upper and lower bounds

for limt→∞ E[Pt+1|t] coincide and the critical packet arrival

probability of the measurement packet of the ith sensor

becomes

λc
i = max

{

0,

1− 1

α2(1− λ1) . . . (1− λi−1)(1− λi+1) . . . (1− λN )

}

(2)

where α = maxi |σi| and σi is the ith eigenvalue of A
[12]. We discuss the appropriate selection of the set of

(λ1, λ2, . . . , λN ) in Section IV for a cost-efficient WNCS with

the maximum coverage area under convergence constraint.

III. MULTI-HOP WIRELESS AD-HOC NETWORK MODEL

AND CONNECTIVITY

For the WNCS, we employ multi-hop wireless ad-hoc

networks. The first advantage of multi-hop wireless ad-hoc

networks is that they can be employed in a fast and easy way,

which is the reason why they are named “ad-hoc networks”

[15]. The second advantage of this network model is that very

large areas can be covered by means of the multi-hop property.

However, since the wireless channels are unreliable, as the

number of hops increases during the packet transmission, the

packet arrival probability decreases.

In this technical note, we consider a heterogeneous multi-

hop wireless ad-hoc network model in which cognitive radio

ad-hoc networks (secondary networks) coexist with licensed

networks (primary networks). In such a heterogeneous net-

work, the secondary network nodes, i.e., Secondary Users

(SUs), cannot communicate with the primary network nodes,

i.e., Primary Users (PUs). Cognitive radio ad-hoc networks

enable the unlicensed secondary users to utilize the spectrum

holes unoccupied by the licensed PUs so that the limited

spectrum resource is more efficiently used [9]. For the analysis

presented in this part, we assume that the sensor measurements

are transmitted to the Kalman filter over the cognitive radio

multi-hop wireless ad-hoc subnetworks.

We assume that the PUs (SUs) are distributed according to

two dimensional homogeneous Poisson point process having a

density ρp (ρs). We consider that the transmission ranges of all

primary (secondary) network nodes are the same and denoted

by rp (rs). The connectivity of cognitive radio networks

is more troublesome than the connectivity of homogeneous

networks. That is, the secondary cognitive radio network is

connected if each node pair SUi and SUj in the cognitive radio

network satisfies the following conditions: 1) The distance

between SUi and SUj , r, satisfies r ≤ rs condition. 2) Both

SUi and SUj are outside the transmission range rp of every

active sender in the primary network. 3) There is no active

primary network receiver in the transmission range rs of SUi

and SUj . In Fig. 1(b), the heterogeneous multi-hop wireless

ad-hoc network model used in this technical note is shown

where Gi denotes the ith cognitive radio subnetwork including

the ith sensor node.

In [15], the authors show that there exists a critical node

density ρ∗s such that if the node density of the secondary

network is larger than ρ∗s , the secondary network percolates

at all time, i.e., there exists always an infinite connected

component in the secondary network under the time-varying

spectrum availability. To guarantee the connectivity of the

secondary network, we use the upper bound of the critical

node density which is given by [15]

ρ∗s =
5

r2s
ln

[

1−
√

(1− (
√
6/3)Λ)e(|Re|+|R′

e|)Π1ρp

]−1

(3)

where Λ = (4Ld+2d+1)×(4Ld+d)+(4Ld+d+1)×(4Ld+
2d)− 1, |Re| = (2 + 2⌈rp/d⌉)× (1 + 2⌈rp/d⌉)× d2, |R′

e| =
(2 + 2⌈rs/d⌉) × (1 + 2⌈rs/d⌉) × d2, L = ⌈max{rp, rs}/d⌉,

d = rs/
√
5. We assume that each PU sender is associated with

an independent and identically distributed (i.i.d.) alternating

renewal process1, denoted by Sp(t), which alternates between

two states: the ON state, during which the licensed channel is

used by the PU, i.e., the PU is active; and the OFF state, during

which the licensed channel is not used by the PU, i.e., the PU

is inactive. Π1 in (3) is defined as the probability that the

licensed channel is used by a PU, i.e., Π1 = Pr{Sp(t) = 1}.

IV. MAXIMUM COVERAGE AREA ANALYSIS

In a multi-hop network, we can increase the coverage area

by increasing the number of nodes in the network. However,

if the coverage is enlarged with an increase in the number

of nodes, the number of hops during the packet transmission

between two distant nodes rises. Because of the unreliable

wireless channels, an increase in the number of hops during

the transmission decreases the successful packet arrival prob-

ability, and the estimator of the WNCS might diverge and

WNCS become unstable as discussed in Section II. Thus, for

a stable WNCS, the hop-diameter of the network, denoted by

di, becomes a critical parameter.

The successful packet transmission probability between two

nodes, which are within the transmission range of each other,

is assumed to be constant and the same for each transmission

process in the network and it is denoted by β. Therefore,

the probability that the ith sensor measurement is correctly

received by the Kalman filter, i.e., λi, can be expressed as

λi = βMi for i = 1, 2, . . . , N where Mi is the number of

hops taken by the packet transmitted by the ith sensor until it

reaches the Kalman filter. Mi depends on the routing protocol,

network topology, and number of nodes. Here, we assume that

1An alternating renewal process is a two-state process which alternates
between an on-state and an off-state after a random sojourn time, where the
on-times and the off-times are independent random variables.



4

maximize
λ1,...,λN

f(λ1, . . . , λN ) = λ1m1(λ1) + λ2m2(λ2) + · · ·+ λNmN (λN )

subject to λi ≥ max

{

0, 1−
1

α2(1− λ1) . . . (1− λi−1)(1− λi+1) . . . (1− λN )

}

for i = 1, 2, . . . , N
(5)

the routing protocol is smart enough so that it can find a single

shortest route from the sensor to the Kalman filter [16].

Let the critical packet arrival probability of the ith sensor

measurement be λc
i . Based on the definition of the hop-

diameter of a network, the maximum number of hop taken

by a measurement packet until it reaches the Kalman filter is

less than or equal to the hop-diameter of the subnetwork. Then,

using λi = βMi , the critical-hop diameter of ith subnetwork

is dci = ⌊ln(λc
i )/ ln(β)⌋. That is, if the hop-diameter of the

subnetwork Gi satisfies di ≤ dci condition, it is guaranteed that

the arrival probability of the packet transmitted by ith sensor is

larger than the critical arrival probability; hence, the estimator

of the WNCS converges. However, if di > dci , the convergence

of the estimator is not guaranteed. Since the hop-diameter

depends on several factors such as topology, network size,

node locations, sensor communication range, and node density,

it is difficult to find an upper bound for the maximum number

of nodes which ensures a given hop-diameter. Therefore, to

guarantee the convergence of the estimator, one can use lower

bound for the maximum number of nodes in a subnetwork

given as mi(λ
c
i ) = dci + 1 where mi(λ

c
i ) denotes the number

of nodes which guarantees that the packet arrival probability is

greater than the critical value and the proof is straightforward.

If we consider only the convergence criterion, for a given

set of (λ1, λ2, . . . , λi−1, λi+1, . . . λN ), as λc
i → 0, mi(λ

c
i ) →

∞, and hence the total coverage area of the ith subnetwork

becomes infinite. Indeed, it is irrational and cost-inefficient to

place infinitely many nodes in a subnetwork including a sensor

node whose critical packet arrival probability is 0. That is, a

decrease in λc
i decreases the importance of the subnetwork

Gi, and when λc
i = 0, the measurements of the ith sensor

in Gi become unnecessary for the convergence of the WNCS

estimator. Thus, the cost-efficiency of the multi-hop wireless

network should also be considered because the selection of a

set of packet arrival probabilities of the sensor measurements

affects the cost-efficiency.

Since when λi → 0, mi(λ
c
i ) → ∞ and λimi(λi) → 0,

we can use λimi(λi) as the efficiency of the ith subnetwork.

Therefore, to find a cost-efficient multi-hop wireless ad-hoc

network, we define a cost-efficiency function as follows

f(λ1, . . . , λN ) = λ1m1(λ1) + · · ·+ λNmN (λN ) (4)

where mi(λi) is the number of nodes in the subnetwork Gi

which guarantees that the packet arrival probability is bounded

below by λi and it is given by mi(λi) = ⌊ln(λi)/ ln(β)⌋ +
1. Note that the cost-efficiency function is the weighted sum

of the number of nodes in the subnetworks. Using (2), the

set of (λ1, λ2, . . . , λN ) which both maximizes f(λ1, . . . , λN )
and ensures the convergence of the WNCS estimator can be

found by solving the optimization problem in (5) at the top of

this page. Note that, the convergence condition of a WNCS

estimator is λi ≥ λc
i for i = 1, 2, . . . , N where λc

i is given in

(2) as discussed in Section II.

We numerically evaluated the objective function in (5) to ob-

tain a pattern for the solution. Since there is a constraint of the

maximization problem, the maximum point changes according

to the constraint. That is, if the constraint functions for λi for

i = 1, 2, ..., N are small enough, the maximum point is equal

to the global maximum of the objective function and the global

maximum point is given by e− ln(λi)−1, which is an analytical

result. However, if the constraint functions are larger than a

certain value, the maximum is found by considering both the

objective and constraint functions. For this second case, we

found that the maximum value of the objective function in (5)

can be approximately given by 1 − α−2/N according to the

numerical evaluations of the objective function. Therefore, the

solution of (5) can be approximated as

λopt
i ≈ max{e− ln(β)−1, 1− α−2/N} (6)

for i = 1, 2, . . . , N , where (λopt
1 , λopt

2 , . . . , λopt
N ) denotes the

optimum convergent set having the maximum cost-efficiency.

Note that, since we used an approximation for the second case

of the optimization problem in (5), the solution given in (6) is

an approximate solution obtained using an ad hoc method.

The results show that the solution given in (6) accurately

satisfies the convergence constraint of the WNCS estimator

and maximizes the cost-efficiency.

Using the optimum set of packet arrival probabilities given

in (6), the optimum hop-diameter of the ith subnetwork having

the maximum cost-efficiency is given by

dopti =

⌊

ln(max{e− ln(β)−1, 1− α−2/N})
ln(β)

⌋

. (7)

Furthermore, to guarantee the convergence of the WNCS

estimator, we use the lower bound for the maximum number

of nodes in Gi, denoted by mi(λ
opt
i ), and it is

mi(λ
opt
i ) =

⌊

ln
(

max{e− ln(β)−1, 1− α−2/N}
)

ln(β)

⌋

+ 1 (8)

for i = 1, 2, . . . , N . Based on the number of nodes in

each subnetwork having maximum cost-efficiency under the

convergence constraint, we can derive the maximum coverage

of the WNCS. Note also that, (6), (7), and (8) are independent

of i which is an expected result because we consider each

subnetwork identical. In our future work, we aim to consider

subnetworks having different parameters to make the scenario

more realistic.

To find the coverage area of the subnetworks for the number

of nodes given in (8), we consider the connectivity of the

subnetworks. Thus, to have the maximum coverage area for a

given number of nodes, we assume that the node density of

the heterogeneous multi-hop wireless ad-hoc network is the
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same as the critical node density ρ∗s in (3). Then, for a stable

WNCS, the maximum coverage area of the subnetwork Gi,

which has the maximum cost-efficiency, is given by Sht
i =

mi(λ
opt
i )/ρ∗s . Since the number of nodes found in (8) is the

same for each subnetwork, the maximum total coverage area

of the heterogeneous subnetworks is given by

Sht
T =

Nmi(λ
opt
i )r2s

5 ln

[

1−
√

(1− (
√
6/3)Λ)e(|Re|+|R′

e|)Π1ρp

]−1 . (9)

V. NUMERICAL ANALYSIS

In this section, we present the numerical analyses of both the

optimum hop-diameter dopti and the maximum total coverage

area Sht
T of the heterogeneous subnetworks with respect to

several system and network parameters. We assume that the

observation model matrices C1, C2, . . . , CN are square and

invertible [11], [12]. Note that, the observation model matrices

map the true state space into the observed space and in general,

their dimensions are mi × n for i = 1, 2, . . . , N . If Ci is a

square matrix, the true state space and the observed space have

the same dimensions, which is a quite reasonable assumption.

The numerical evaluations are conducted using MATLAB.

A. Optimum Hop-Diameter of Subnetworks

In the first part of the numerical analyses, we present the

variation of the optimum hop-diameter of subnetworks, dopti ,

given in (7) with respect to the number of sensor nodes, N , the

successful packet transmission probability between two nodes,

β, and the eigenvalue of A having the maximum magnitude,

α.

In Fig. 2(a), dopti with respect to the number of sensor

nodes N employed for the WNCS with different β values

is shown. dopti increases with an increase in β which is an

expected result. Note that 0 ≤ β ≤ 1 and as β → 1,

ln(β) → 0, also the numerator in (7) is negative; hence, an

increase in β causes an increase in dopti . As seen in Fig. 2(a),

dopti increases up to N = 5, then it becomes constant. If

N > −2 ln(α)/ ln(1− e− ln(β)−1), then max{e− ln(β)−1, 1−
α−2/N} = e− ln(β)−1, and hence dopti depends only on β.

On the other hand, if N < −2 ln(α)/ ln(1− e− ln(β)−1), then

max{e− ln(β)−1, 1−α−2/N} = 1−α−2/N ; thus, dopti depends

on α and N , i.e., dopti = ln(1 − α−2/N )/ ln(β). Obviously,

dopti decreases with an increase in α. For a fixed β = 0.9,

the results seen in Fig. 2(b) show that dopti decreases with an

increase in α, which supports our inferences. It is also seen

that dopti can be increased with an increase in N .

B. Maximum Total Coverage Area of Heterogeneous Network

In this part, we consider the maximum total coverage area of

the heterogeneous multi-hop wireless ad-hoc network model.

We present the effect of rs, rp, N , β, α on the maximum total

coverage area of the heterogeneous subnetworks, ST
ht, given

in (9). For the numerical analysis presented in this part, we

consider that the secondary cognitive radio subnetwork Gi is

connected. Furthermore, we set ρp = 0.01nodes/m2.
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In Fig. 3(a), for rp = 100m, Π1 = 0.01, N = 15 and α =
4.0, the variation of the maximum total coverage area Sht

T with

respect to the transmission range of SUs, rs, is illustrated for

different β values. According to the results, Sht
T increases with

an increase in rs which is an expected result. In addition, the

results show that an increase in β enlarges the total coverage

area of the subnetworks. From Section V-A, dopti increases

with an increase in β, and mi(λ
opt
i ) = dopti + 1. Thus, from

(9), it is obvious that Sht
T increases with an increase in dopti .

In Fig. 3(b), for constant rs = 50m, Π1 = 0.01, N = 15
and α = 4.0, the variation of the maximum total coverage

area Sht
T with respect to the transmission range of PUs, rp,

is illustrated for different β values. According to the results,

Sht
T decreases with an increase in rp. For connectivity of the

secondary network, the PUs are required to be outside the

transmission range of SUs as explained in Section III-B. Thus,

an increase in the transmission range of PUs decreases the

number of connected nodes in the secondary network, which

decreases the maximum total coverage area of the secondary

subnetworks. In addition, the results show that an increase

in β can significantly increase the total coverage area of the

subnetworks.

The effect of α, i.e., the eigenvalue of the system matrix

A having the maximum magnitude, on the maximum total

coverage area of the multi-hop wireless subnetworks ST is

shown in Fig. 3(c) for different N values. Here, we set

rs = 50m, rp = 100m, Π1 = 0.01, and β = 0.9. According

to the results, an increase in α, causes a reduction in the
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maximum total coverage area Sht
T . For a given N , an increase

in α decreases the optimum hop-diameter. Therefore, since

mi(λ
opt
i ) = dopti + 1, an increase in α also decreases Sht

T ,

which can be seen in (9). Moreover, Sht
T increases with an

increase in N because of Sht
T = NSht

i . Modifying the system

matrix A results in a change in α. For example in [17],

the authors consider the problem of minimizing the largest

eigenvalue of a matrix. Therefore, this technique can be used

to change the largest eigenvalue of the system matrix A.

In Fig. 3(d), the effect of Π1, on the maximum total

coverage area of the multi-hop wireless subnetworks ST for

different N values is demonstrated. For this analysis, we set

rs = 50m, rp = 50m, α = 4.0, and β = 0.9. According

to the results, an increase in Π1, causes a reduction in the

maximum total coverage area Sht
T . Activation of the PUs

degrade the connectivity of SUs. That is, for the connectivity

of the secondary network, the spectrum holes unoccupied

by the licensed PUs are required. Therefore, an increase

in the activation rate of the PUs decreases the number of

connected nodes in the secondary network, which eventually

decreases the maximum total coverage area of the secondary

subnetworks.

VI. CONCLUSION

For the WNCS applications requiring wide coverage areas,

e.g., exploration and navigation, the maximum coverage area

expression can be used for a cost-efficient multi-hop network

ensuring the convergence of the estimator and hence the

stability of the control system. Using the analysis presented in

this technical note, the maximum total coverage area can be

increased by appropriately adjusting the number of sensors,

the successful transmission probability between nodes, the

transmission range of nodes, and the eigenvalues of the system

matrix.
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