On the Maximum Number of Dominating Classes in Graph Coloring

Bing Zhou
Department of Mathematics, Trent University, Peterborough, Canada
Email: bzhou@trentu.ca

Received 9 September 2015; accepted 3 April 2016; published 6 April 2016
Copyright © 2016 by author and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

We investigate the dominating- χ-color number, $d_{\chi}(G)$, of a graph G. That is the maximum number of color classes that are also dominating when G is colored using $\chi(G)$ colors. We show that $d_{\chi}(G \vee H)=d_{\chi}(G)+d_{\chi}(H)$ where $G \vee H$ is the join of G and \dot{H}. This result allows us to construct classes of graphs such that $d_{\chi}(G)>1$ and $d_{\chi}(G)=\chi(G)$ thus provide some information regarding two questions raised in [1] and [2].

Keywords

Graph Coloring, Dominating Sets, Dominating Coloring Classes, Chromatic Number, Dominating Color Number

1. Introduction

Let G be a graph with vertex set V and edge set E. A subset I of V is independent if no two vertices in I are adjacent. A subset S of V is a dominating set if every vertex in $V \backslash S$ is adjacent to at least one vertex in S. We define a coloring C of G with k colors to be a partition of V into k independent sets:

$$
C=\left\{C_{1}, C_{2}, \cdots, C_{k}\right\}
$$

such that

$$
C_{1} \cup C_{2} \cup \cdots \cup C_{k}=V
$$

and C_{i} is independent for $i=1,2, \cdots, k$. The minimum of k for which such a partition is possible is the chromatic number of G, denoted $\chi(G)$. The dominating- χ-color number of G is motivated by a two-stage
optimization problem. First, we partition the vertex set of G into the minimum number of independent sets; secondly, we maximize the independent sets that are also dominating in G. Clearly, the number of independent sets we use in the first stage will be $\chi(G)$, the chromatic number of G. Among all colorings of G using $\chi(G)$ colors, the maximum number of independent sets that are also dominating is defined to be the dominating-χ-color number of G, denoted by $d_{\chi}(G)$. Formally, we have

$$
d_{\chi}(G)=\max \{\text { number of coloring classes of } \mathcal{C} \text { that are dominating in } G: \mathcal{C} \text { is a } \chi \text {-coloring of } G\} .
$$

The dominating- χ-color number of G was first introduced in [2]. More research has been done in this area since then (see for example [1] [3] [4]). However, the two interesting questions posed in [1] and [2] remain unanswered. In this article, we present some more results about the dominating- χ-color number of a graph that are relevant to these two questions.

2. Main Results

The following observation was made in [2].
Theorem 1 For all graph $G, 1 \leq d_{\chi}(G) \leq \chi(G)$.
The following two questions are posed in [1] and [2].
Question 1. Characterize the graphs G for which $d_{\chi}(G)=1$.
Question 2. Characterize the graphs G for which $d_{\chi}^{\chi}(G)=\chi(G)$.
Neither of the two extreme cases is trivial. It is known that if G has an isolated vertex, then $d_{\chi}(G)=1$. However, a graph G with $d_{\chi}(G)=1$ can be connected and have arbitrarily large minimum degree.

Theorem 2. [1] For every integer $k \geq 0$, there exists a connected graph G with $\delta(G)=k$ and $d_{\chi}(G)=1$.
The following lemma may help us understand the relation between the structure of a graph and its dominating- χ-color number. It shows that if a graph G contains a complete bipartite graph as a spanning subgraph, then the dominating- χ-color number of G is the sum of the dominating- χ-color numbers of these two subgraphs.

Lemma 1. If $V(G)$ can be partitioned into two sets V_{1} and V_{2} such that every vertex in V_{1} is adjacent to every vertex in V_{2}, then $d_{\chi}(G)=d_{\chi}\left(G_{1}\right)+d_{\chi}\left(G_{2}\right)$ where G_{i} is the subgraph of G induced by V_{i} for $i=1,2$.

Proof. Since in any coloring of G, no vertex in V_{1} can share a color with a vertex in V_{2}, we have $\chi(G)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)$. Let $\chi\left(G_{1}\right)=k_{1}$ and $\chi\left(G_{2}\right)=k_{2}$. Let C_{1} be a k_{1}-coloring of G_{1} with $d_{\chi}\left(G_{1}\right)$ dominating coloring classes using the colors $\left\{1,2, \cdots, k_{1}\right\}$. Let C_{2} be a k_{2}-coloring of G_{2} with $d_{\chi}\left(G_{2}\right)$ dominating coloring classes using the colors $\left\{k_{1}+1, k_{1}+2, \cdots, k_{1}+k_{2}\right\}$. The combination of C_{1} and C_{2} is clearly a $\left(k_{1}+k_{2}\right)$-coloring of G. A coloring class of C is either a coloring class of C_{1} or a coloring class of C_{2}. Suppose that S is a coloring class of C_{1} that dominates G_{1}. Every vertex in $V_{1} \backslash S$ is adjacent to at least one vertex in S. Every vertex in V_{2} is adjacent to every vertex in S. Therefore S is a dominating set in G. Similarly, every coloring class of C_{2} that dominates G_{2} is a dominating set in G. C is a coloring of G with at least $d_{\chi}\left(G_{1}\right)+d_{\chi}\left(G_{2}\right)$ coloring classes. We have $d_{\chi}(G) \geq d_{\chi}\left(G_{1}\right)+d_{\chi}\left(G_{2}\right)$.

Suppose that C^{\prime} is a coloring of G with $\chi(G)$ colors and $d_{\chi}(G)$ dominating coloring classes. The restriction of C^{\prime} to G_{i} is a coloring of G_{i} with $\chi\left(G_{i}\right)$ colors for $i=1,2$. Let S be a dominating coloring class of $C^{\prime} . S \subset V_{1}$ or $S \subset V_{2}$. Suppose that $S \subset V_{1}$. Then S is a dominating set for G_{1}. Therefore, every dominating coloring class of C^{\prime} is either a dominating coloring class of G_{1} or a dominating coloring class of G_{2}. Therefore $d_{\chi}\left(G_{1}\right)+d_{\chi}\left(G_{2}\right) \geq d_{\chi}(G)$.

Using Lemma 1, we have a sufficient condition for the dominating- χ-color number of a graph to be greater than one.

Corollary 1. If the complement of G is disconnected, then $d_{\chi}(G)>1$.
The join of two graphs G_{1} and G_{2}, denoted by $G_{1} \vee G_{2}$, is defined by

$$
\begin{gathered}
V\left(G_{1} \vee G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right), \\
E\left(G_{1} \vee G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right) \cup\left\{x y: x \in V\left(G_{1}\right), y \in V\left(G_{2}\right)\right\} .
\end{gathered}
$$

In other words, we construct $G_{1} \vee G_{2}$ by taking a copy of each of G_{1} and G_{2} and joining every vertex in
G_{1} with every vertex in G_{2}. It is known that $\chi\left(G_{1} \vee G_{2}\right)=\chi\left(G_{1}\right)+\chi\left(G_{2}\right)$. By Lemma 1 , there is a similar relation between the dominating- χ-color numbers.

Theorem 3. $d_{\chi}\left(G_{1} \vee G_{2}\right)=d_{\chi}\left(G_{1}\right)+d_{\chi}\left(G_{2}\right)$.
It is shown in [1] that it is possible for a graph with chromatic number k to have dominating- χ-color number l for any k such that $1 \leq l \leq k$ and $(k, l) \neq(2,1)$. We present a new construction to prove this result using Theorem 3.

Theorem 4. For all integers k, l such that $1 \leq l \leq k$ and $(k, l) \neq(2,1)$, there exists a connected graph G with $\chi(G)=k$ and $d_{\chi}(G)=l$.

Proof. We prove by induction on l. If $l=1$, the existence of such graphs is guaranteed by Theorem 2. For $(k, l)=(3,2)$, it is easy to check that $\chi\left(C_{5}\right)=3$ and $d_{\chi}\left(C_{5}\right)=2$. Therefore the theorem is true for $(k, l)=(3,2)$. Suppose that $l>1$ and $(k, l) \neq(3,2)$. Let $k^{\prime}=k-1$ and $l^{\prime}=l-1$. $\left(k^{\prime}, l^{\prime}\right) \neq(2,1)$. By inductive hypothesis, there is a connected graph H with $\chi(H)=k^{\prime}$ and $d_{\chi}(H)=l^{\prime}$. Let $G=H \vee K_{1}$. Since $\chi\left(K_{1}\right)=d_{\chi}\left(K_{1}\right)=1$, by Theorem 3 we have

$$
\chi(G)=\chi(H)+1=k^{\prime}+1=k
$$

and

$$
d_{\chi}(G)=d_{\chi}(H)+1=l^{\prime}+1=l .
$$

This proves the theorem.
Next we turn our attention to Question 2. Arumugam et al. [2] showed that if G is uniquely χ-colorable, then $d_{\chi}(G)=\chi(G)$. Therefore if G contains a subgraph that is uniquely $\chi(G)$-colorable, then $d_{\chi}(G)=\chi(G)$. It is natural to ask whether there are any other kind of such graph, that is, whether there are any graph G such that $d_{\chi}(G)=\chi(G)=k$ and G does not contain a uniquely k-colorable subgraph. For $k=2$, the answer is no since every edge is a uniquely 2 -colorable subgraph. For $k=3$, the answer is yes. Arumugam et al. [1] showed that $d_{\chi}\left(C_{6 i+3}\right)=\chi\left(C_{6 i+3}\right)=3$ for any nonnegative integer i. $C_{6 i+3}$ was not uniquely 3 -colorable for $i>0$. Using this fact and Theorem 3, we can show that the answer of our question is yes for all $k \geq 3$.

First, we need a technical lemma.
Lemma 2. The graph $G=G_{1} \vee G_{2}$ is uniquely $\left(\chi\left(G_{1}\right)+\chi\left(G_{2}\right)\right)$-colorable if and only if G_{1} is uniquely $\chi\left(G_{1}\right)$-colorable and G_{2} is uniquely $\chi\left(G_{2}\right)$-colorable.
The proof is easy and omitted.
Theorem 5. Let k be an integer greater than 3. There is a graph G_{k} such that $d_{\chi}\left(G_{k}\right)=\chi\left(G_{k}\right)=k$ and G_{k} do not contain a uniquely k-colorable subgraph.
Proof. We prove by induction on k. We have shown that the statement is true for $k=3$. Suppose that $k \geq 4$ and the statement is true for $k-1$. Let $G_{k}=G_{k-1} \vee K_{1}$. Since $d_{\chi}\left(K_{1}\right)=\chi\left(K_{1}\right)=1$, $d_{\chi}\left(G_{k}\right)=d_{\chi}\left(G_{k-1}\right)+d_{\chi}\left(K_{1}\right)=k$ by Theorem 3 and the inductive hypothesis. Every k-chromatic subgraph H of G_{k} must have the form $H=H_{k-1} \vee K_{1}$ where H_{k-1} is a subgraph of G_{k-1}. By Lemma 2, H is uniquely k-colorable if and only if H_{k-1} is uniquely $(k-1)$-colorable. Since G_{k-1} does not contain a uniquely $(k-1)$ colorable subgraph, G_{k} does not contain any uniquely k-colorable subgraph. This proves the theorem.

The graphs constructed in Theorem 5 contain large cliques. In fact, G_{k} contains many copies of K_{k-1}. If $k=3 l+j$ for some integers l and j, we may reduce the size of the largest clique in G_{k} by taking the join of copies of C_{9} in the first l steps and then taking the join with K_{1} afterwards. Thus, we have the following result.

Theorem 6. Let j, l be nonnegative integers and $k=3 l+j$. There is a graph G_{k} such that $d_{\chi}\left(G_{k}\right)=\chi\left(G_{k}\right)=k . G_{k}$ does not contain a uniquely k-colorable subgraph and the largest clique in G_{k} has size $2 l+j$.

3. Remarks

It is well known that there are uniquely k-colorable graphs with arbitrarily large girth. Therefore, there are graphs G such that $d_{\chi}(G)=\chi(G)$ and G has arbitrarily large girth. In light of Theorems 5 and 6 , we would like to ask the following question.

Question 3. Are there triangle-free graphs G such that $d_{\chi}(G)=\chi(G)=k$, and does G not contain a uniquely k-colorable graph? Furthermore, are there such graphs with arbitrarily large girth?

References

[1] Arumugam, S., Haynes, T.W., Henning, M.A. and Nigussie, Y. (2011) Maximal Independent Sets in Minimum Colorings. Discrete Mathematics, 311, 1158-1163. http://dx.doi.org/10.1016/j.disc.2010.06.045
[2] Arumugam, A., Hamid, I.S. and Muthukamatchi, A. (2008) Independent Domination and Graph Clorings. Ramanujan Mathematical Society Lecture Notes Series, 7, 195-203.
[3] Arumugam, S. and Chandrasekar, K.R. (2012) Minimal Dominating Sets in Maximum Domatic Partitions. Australasian Journal of Combinatorics, 52, 281-292.
[4] Li, S., Zhang, H. and Zhang, X. (2013) Maximal Independent Sets in Bipartite Graphs with at Least One Cycle. Discrete Mathematics and Theoretical Computer Science, 15, 243-258.

