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Abstract
We study the limiting behaviour of the maximum of a bivariate (finite or infinite) moving 
average model, based on discrete random variables. We assume that the bivariate distribu-
tion of the iid innovations belong to the Anderson’s class (Anderson, 1970). The innova-
tions have an impact on the random variables of the INMA model by binomial thinning. 
We show that the limiting distribution of the bivariate maximum is also of Anderson’s 
class, and that the components of the bivariate maximum are asymptotically independent.

Keywords Bivariate maximum · INMA model · Integer random variables · limit 
distribution

1 Introduction

Hall (2003) studied the limiting distribution of the maximum term Mn = max(X1,⋯ ,Xn) 
of stationary sequences {Xj} defined by non-negative integer-valued moving average 
(INMA) sequences of the form

Xj =

+∞∑
i=−∞

�i◦Vj−i,
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where the innovation sequence {Vi} is an iid sequence of non-negative integer-valued ran-
dom variables (rvs) with exponential type tails of the form

where 𝜉 ∈ ℝ, 𝜆 > 0, L(n) is slowly varying at +∞ and �i◦ denotes binomial thinning with  
probability  �i ∈ [0, 1] . Hall  (2003) proved that {Xj} satisfies Leadbetter’s conditions 
D(x + bn) and D�(x + bn) , for a suitable real sequence bn , and then

for all real x and �max ∶= max{�i, i ∈ ℤ} . Note that �max plays an important role in this 
result. This is an extension of Theorem 2 of Anderson (1970), where it is proved that for 
sequences of iid rvs with an integer-valued distribution function (df) F with infinite right 
endpoint, the limit

is equivalent to

for all real x.
The class of dfs satisfying (1), which is a particular case of (2) (see, e.g., Hall and Temido 

(2007)) is called Anderson’s class.
In this paper we extend the result of Hall (2003) for the bivariate case of an INMA 

model. Concretely, we study the limiting distribution of the maximum term of stationary 
sequences {(Xj, Yj)} where the two marginals are defined by non-negative integer-valued 
moving average sequences of the general form

where Xj and Yj are defined as above with respect to a two-dimensional iid innovation 
sequence {Vi,Wi} . The binomial thinning operator �◦ , due to Steutel and van Harn (1979), 
is defined by �◦Z =

∑Z

s=1
Bs(�), � ∈ [0, 1], where {Bs(�)} is an iid sequence of Bernoulli 

rvs independent of the positive integer rv Z. The possible class of bivariate discrete distri-
butions FV ,W (see (4)) includes also the bivariate geometric models.

We assume that X = �◦V  and Y = �◦W are conditionally independent given (V,  W), 
because the binomial thinning with �◦ and �◦ are independent, X and Y are binomial rv’s. 
with parameters (V , �) respectively (W, �) , i.e.

for all events A and B and for all possible values of v and w. We assume that �i, �i ∈ [0, 1] 
and

(1)1 − FV (n) ∼ n�L(n)(1 + �)−n, n → +∞,

{
lim supn→+∞ P(Mn ≤ x + bn) ≤ exp(−(1 + �∕�max)

−x)

lim infn→+∞ P(Mn ≤ x + bn) ≥ exp(−(1 + �∕�max)
−(x−1)),

(2)lim
n→+∞

1 − F(n − 1)

1 − F(n)
= r > 1,

exp(−r−(x−1)) ≤ lim inf
n→+∞

Fn(x + bn) ≤ lim sup
n→+∞

Fn(x + bn) ≤ exp(−r−x),

(Xj, Yj) =

(
+∞∑
i=−∞

�i◦Vj−i,

+∞∑
i=−∞

�i◦Wj−i

)
,

P(X ∈ A,Y ∈ B|V = v,W = w) = P(X ∈ A|V = v,W = w)P(Y ∈ B|V = v,W = w)

= P(X ∈ A|V = v)P(Y ∈ B|W = w),

(3)�i, �i = O
(|i|−�), |i| → +∞,
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for some 𝛿 > 2.
We investigate the limiting behaviour of (M(1)

n
,M(2)

n
) = (max1≤j≤n Xj, max1≤j≤n Yj) and 

want to find out whether the two maxima components are asymptotically dependent, 
because of the dependence of the innovations (Vi,Wi) . However, we will show that this 
is not occurring because of the independent thinning, as we believe. We investigate the 
impact of the dependence of (Vi,Wi) on the limiting distribution and the convergence rate.

Following similar ideas of Hall (2003) for the univariate case, we:

– Define a bivariate model FV ,W which contains the bivariate geometric model;
– Characterize the tail of (�◦V , �◦W) and the tail of (Xj, Yj) , in terms of the model FV ,W;
– Establish the limiting behaviour of the bivariate maximum (M(1)

n
,M(2)

n
) of the stationary 

sequence {(Xj, Yj)} which is defined componentwise; and
– Investigate the convergence of the joint distribution of the bivariate maximum to the 

limiting distribution by simulations.

Examples: 1.) We may consider the {(Vi,Wi)} as the number of person newly infected 
by virus1 (say COVID-19 virus) and virus2 (say the usual seasonal virus) at time i. It 
is possible that a person is infected by both virus only at the same time point. We count 
by {(Xj, Yj)} the total number of infected and still contagious persons at time j adding all 
infected persons before and at time j. After some time these persons are cured (or died) 
and are no more counted to the number of infected but still contagious persons. Hence the 
random numbers (Vi,Wi) are thinned at each time point, so the contribution to Xj is �j−i◦Vi , 
and to Yj is �j−i◦Wi for i ≤ j.

2.) Another example for bivariate integer valued time series is presented in Pedeli and 
Karlis (2011) who discuss the bivariate INAR(1) model with negative binomial innova-
tions for the application of road accidents at two different time intervals in Schiphol area. 
However their bivariate negative binomial innovations are in the case of geometric inno-
vations of a different type herein considered. Similar is the situation in the paper of Silva 
et al. (2020) who discuss inference of such a bivariate time series with different distribution 
of the innovations. But their bivariate negative binomial distribution is also not of our type.

3.) A further application of a bivariate time series for count data in finance is given by 
Quoreshi (2006). He did not specify the bivariate distribution. He derived the mean and 
variance/covariances of this time series.

2  Preliminaries Results for Bivariate Innovations

Let (V, W) be a non-negative random vector with bivariate df FV ,W satisfying

as v,w → +∞ , for positive real constants 𝜆i > 0 , i = 1, 2 , 𝜃 > 0 such that 𝜃 < min{1+

�1, 1 + �2} and 𝜃 > 1 − 𝜆1𝜆2 , some real constants �i and slowly varying functions Li , 
i = 1, 2, 3, 4 , and where �(v,w) is a positive bounded (say by � ) function which converges 
to a positive constant L as v,w → ∞ . That �(v,w) converges to L is for simplicity. It has 
no impact on the results if the limit L would depend on v < w, v = w or v > w . By [x] we 
denote the greatest integer not greater than x.

(4)1 − F
V ,W (v,w) =

(
1 + �1

)−[v]
[v]�1L1(v) +

(
1 + �2

)−[w]
[w]�2L2(w)

− (1 + �1)
−[v](1 + �2)

−[w]�min([v],[w])
L3(v)L4(w)v

�3w
�4�(v,w),
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Remark 2.1 The marginal tails of FV ,W are of the form:

for v,w → +∞ . Hence, both marginal dfs belong to the Anderson’s class with

From (4), we can derive the probability function (pf) of (V, W). Because the proofs of 
the following propositions are technical, we move them to Appendix Proofs.

Proposition 2.1 The pf of the random vector (V, W) with df (4) is given by

for v, w large integers, where

and �(v,w)�∗(v,w) is bounded and converges to positive constants.

Example 2.1 The Bivariate Geometric (BG) distribution is a particular case of the 
model (4) with margins (5). Consider the bivariate Bernoulli random vector (B1,B2) 
with P(B1 = k,B2 = �) = pk� , (k,�) ∈ {0, 1}2, and success marginal probabilities 
p+1 = p01 + p11 and p1+ = p10 + p11 . Due to Mitov and Nadarajah (2005), using the 
construction of a BG, the pf and the df of a random vector (V, W) with BG distribution 
are given, respectively, by

for v,w ∈ ℕ0 , and

for v,w ∈ ℝ
+
0
 , assuming that 0 < p0+, p+0 < 1 . Hence, this df satisfies (4) with the constants 

�1 , �2 given by

(5)1 − FV (v) = [v]�1 (1 + �1)
−[v]L1(v) and 1 − FW (w) = [w]�2 (1 + �2)

−[w]L2(w),

lim
v→+∞

1 − FV (v)

1 − FV (v + 1)
= 1 + �1 and lim

w→+∞

1 − FW (w)

1 − FW (w + 1)
= 1 + �2.

P(V = v,W = w) = (1 + �1)
−v(1 + �2)

−w�min([v],[w])−1L3(v)L4(w)v
�3w�4�(v,w)�∗(v,w),

(6)lim
v,w→+∞

�∗(v,w) =

⎧⎪⎨⎪⎩

𝜆2
�
1 + 𝜆1 − 𝜃

�
, v < w,

𝜆1𝜆2 + 𝜃 − 1 , w = v,

𝜆1
�
1 + 𝜆2 − 𝜃

�
, w < v,

(7)fV ,W (v,w) = P(V = v,W = w) =

⎧
⎪⎪⎨⎪⎪⎩

pv
00
p10p

w−v−1
+0

p+1 , 0 ≤ v < w,

pv
00
p11 , v = w,

pw
00
p01p

v−w−1
0+

p1+ , 0 ≤ w < v,

(8)

FV ,W (v,w) =P(V ≤ v,W ≤ w)

=1 − p
[v]+1

0+
− p

[w]+1

+0
+

⎧
⎪⎨⎪⎩

p
[v]+1

00
p
[w]−[v]

+0
, 0 ≤ v ≤ w,

p
[w]+1

00
p
[v]−[w]

0+
, 0 ≤ w < v,

1 + 𝜆1 =
1

p0+
> 1 and 1 + 𝜆2 =

1

p+0
> 1
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and the index � associated to the dependence structure of (B1,B2) is

The slowly varying functions are constants and �i = 0 , for i = 1, 2, 3, 4 . The indepen-
dence case occurs when � = 1 . For dependence cases, we can have 0 < 𝜃 < 1 or 𝜃 > 1 . 
Finally, we note that �(v,w) is a constant. For instance, take L1(v) = L3(v) = 1∕(1 + �1) , 
L2(v) = L4(v) = 1∕(1 + �2) , we have �(v,w) = � with �∗(v,w)  as in (6).

The marginal df of V and W are obviously

which means V and W are geometrically distributed rvs with parameter p1+ and p+1, 
respectively.

In order to characterize the df of (X, Y) = (�◦V , �◦W) we start by establishing the rela-
tionship between the probability generating function (pgf) of (V, W) and (X, Y), defined e.g. 
for (V, W) as

which exists for (s1, s2) in the following region R (given in Lemma 2.1).
Taking into account Proposition 2.1, the series GV ,W (s1, s2) converges obviously for any 

si ≤ 1 . Even for some si > 1 the series converges because of the assumption (4). By this 
assumption, we have E(sV

1
) < +∞ if s1 < 1 + 𝜆1 and E(sW

2
) < +∞ if s2 < 1 + 𝜆2 . The fol-

lowing lemma gives a condition such that the series GV ,W (s1, s2) exists.

Lemma 2.1 The pgf GV ,W (s1, s2) = E(sV
1
sW
2
) exists for (s1, s2) in

Its more technical proof is given also in the appendix. As consequence of this lemma, 
the pgf GV ,W (s1, s2) exists for s1, s2 > 1 , if si ≤ 1 + �i, i = 1, 2 in case � ≤ 1 , and if 
s1 ≤ 1 + �1 and s2� ≤ 1 + �2 in case of 𝜃 > 1 . In the following, we use these convenient 
conditions for the convergence of GV ,W.

Now the relationship of the two pgf is the following. It holds as long as the pgf’s exist. 
For our derivations it is convenient to use in the following the given domain R . The proof 
of this relationship is also given in the appendix.

Proposition 2.2 The pgf of (X, Y) = (�◦V , �◦W) is given in terms of the pgf of (V, W):

for all (s1, s2) such that (�s1 + 1 − �, �s2 + 1 − �) ∈ R.

We want to derive an exact relationship of the two distributions FV ,W and FX,Y with the 
help of a suitable transformation, as a modified pgf or a Mellin transform. We define the 
(bivariate) modified pgf or tail generating function (Sagitov (2017))

� =
p00

p0+p+0
.

P(V ≤ v) = 1 − p
[v]+1

0+
and P(W ≤ w) = 1 − p

[w]+1

+0
, for v,w ≥ 0,

GV ,W (s1, s2) ∶=

+∞∑
k1=0

+∞∑
k2=0

P(V = k1,W = k2)s
k1
1
s
k2
2
,

R =

{
(s1, s2) ∈ ℝ

2
+
∶ s1s2 <

(1 + 𝜆1)(1 + 𝜆2)

𝜃
, s1 < 1 + 𝜆1, s2 < 1 + 𝜆2

}
.

GX,Y (s1, s2) = GV ,W (�s1 + 1 − �, �s2 + 1 − �),

□

2377Methodology and Computing in Applied Probability (2022) 24:2373–2402
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and analogously for X, Y. The relationship between QV ,W and GV ,W is given in the following 
proposition.

Proposition 2.3 For (s1, s2) ∈ R , we have

Proposition 2.4 The modified pgf of (X, Y) and (V, W) satisfy

if the series converge, i.e. (�s1 + 1 − �, �s2 + 1 − �) ∈ R.

From Propositions 2.2 and 2.4, we can derive now the tail 1 − FX,Y in terms of 1 − FV ,W

Proposition 2.5 The df FX,Y is given in terms of the df FV ,W with x, y ∈ ℤ
+ :

Hence the tail of FX,Y can be estimated by the assumption (4).

Proposition 2.6 If the joint df of (V, W) satisfies (4), then for large integers x and y

with

where L∗
i
 are slowly varying functions, being

with

QV ,W (s1, s2) =

+∞∑
k1=0

+∞∑
k2=0

(
1 − F(V ,W)(k1, k2)

)
s
k1
1
s
k2
2
,

(1 − s1)(1 − s2)QV ,W (s1, s2) = 1 − G
V ,W (s1, s2).

QX,Y (s1, s2) = ��QV ,W (�s1 + 1 − �, �s2 + 1 − �),

1 − FX,Y (x, y) =

+∞∑
k=x

+∞∑
�=y

(
k

x

)(
�

y

)
(1 − �)k−x(1 − �)�−y�x+1�y+1

(
1 − FV ,W (k,�)

)
.

1 − FX,Y (x, y) =

(
1 +

�1
�

)−x

x�1L∗
1
(x) +

(
1 +

�2
�

)−y

y�2L∗
2
(y) − H(x, y)

0 ≤ H(x, y) ≤ �L∗
3
(x)x�3

(
1 +

�1
�

)−x

L∗
4
(w)y�4

(
1 +

�2�
�

)−y

,

L∗
1
(x) ∼ �

(
1 + �1
�1 + �

)�1+1

L1(x), L
∗
2
(y) ∼ �

(
1 + �2
�2 + �

)�2+1

L2(y),

L∗
3
(x) ∼ �

(
1 + �1
�1 + �

)�3+1

L3(x), L
∗
4
(y) ∼ �

(
1 + �2�
�2� + �

)�4+1

L4(y),

(9)𝜆2𝜃 =

⎧⎪⎨⎪⎩

𝜆2 , 𝜃 ≤ 1

1+𝜆2
𝜃

− 1 , 𝜃 > 1,
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and � the bound of �(v,w).

Note that 1 < 𝜆2𝜃 < 𝜆2.
We observe that the stationary bivariate INMA model 

(
Xj, Yj

)
 introduced in our work is an 

extension of the BINAR model of Pedeli and Karlis (2011) defined by

with an iid innovations sequence {(R1j,R2j)} . In their paper it is stated that it has also the 
representation

Hence, considering 
(
Xj, Yj

)
 with �i = �i = 0 for i < 0 , �i = �i and �i = � i for i ≥ 0 we 

obtain 
(
X̃j, Ỹj

)
.

3  The Bivariate Stationary Sequence

We consider now the stationary bivariate INMA model {
(
Xj, Yj

)
} with iid innovations 

{(Vi,Wi)} with df satisfying (4). We establish first the tail behaviour of 
(
Xj, Yj

)
 . The maxi-

mal values of �i and �i are most important as in the univariate case. Therefore we write 
�max = max{�i ∶ |i| ≥ 0} and �max = max{�i ∶ |i| ≥ 0} . We assume that they are unique. It 
may happen in the bivariate case that �max and �max occurs at the same index or at different 
ones. We consider both cases. Furthermore, we use that

which holds because of (3).
Suppose first that �max and �max are occuring at different indexes i0 and i1 , respectively. We 

write for any j

and

Denote S1 = �max◦Vj−i0
 , S2 = �i1◦Vj−i1

 , S3 =
∑
i≠i0,i1

�i◦Vj−i , S = S2 + S3 , T1 = �max◦Wj−i1
 , 

T2 = �i0◦Wj−i0
 and T3 =

∑
i≠i0,i1

�i◦Wj−i , T = T2 + T3 . Hence, Xj = S1 + S2 + S3 = S1 + S 

and Yj = T1 + T2 + T3 = T1 + T  . Note that S, Si, T  and Ti depend on j.
For the proof of the main proposition of this section we need the following lemma.

(
X̃j, Ỹj

)
=
(
�◦X̃j−1 + R1j, �◦Ỹj−1 + R2j

)

(10)
(
X̃j, Ỹj

)
d
=

(
+∞∑
i=0

�i◦R1,j−i,

+∞∑
i=0

� i◦R2,j−i

)
.

(11)
+∞∑
i=−∞

𝛼i < +∞,

+∞∑
i=−∞

𝛽i < +∞.

Xj = �max◦Vj−i0
+ �i1◦Vj−i1

+
∑
i≠i0,i1

�i◦Vj−i

Yj = �max◦Wj−i1
+ �i0◦Wj−i0

+
∑
i≠i0,i1

�i◦Wj−i .

2379Methodology and Computing in Applied Probability (2022) 24:2373–2402
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Lemma 3.1 

a) If the rv V belongs to the Anderson’s class, then E(1 + h)V = 1 + hE(V)(1 + o
h
(1)), as

h → 0+.
b) For any set I of integers with �I = max{�i, i ∈ I} , consider the rv Z =

∑
i∈I �i◦V−i. Then 

E(1 + h)Z is finite for any 0 < h <
𝜆1
𝛼I

.

The proof of this lemma is given in the appendix. We deal now with the limiting 
behaviour of the tail of (Xj, Yj) . Besides of the univariate tail distributions we derive 
only an appropriate positive upper bound H∗(x, y) for the joint tail which is sufficient 
for the asymptotic limit distribution of the maxima. We will see that we get asymptotic 
independence of the components of the bivariate maxima (M(1)

n
,M(2)

n
) , since this norma- 

lized H∗(x, y) is vanishing, not contributing to the limit.
For the asymptotic behaviour of the tail of the stationary distribution of the sequence 

{(Xj, Yj)} , we write simply (X,  Y) for any (Xj, Yj) . As mentioned we deal with the two 
cases that �max and �max are occurring at different indexes or at the same one. We start 
with the first case and the above defined S, Si, T , Ti.

For this derivation, we use � , � ∈ (0, 1) and 𝜆 > 0 such that 𝜆1
𝛼max

< 𝜆 <
𝜆1
𝛼∗

 , with 
�∗ = max{�i, i ≠ i0} , and �2� given in (9),

and

Proposition 3.1 If (V ,W) satisfies (4) and �max and �max are unique and taken at different 
indexes, then 

 (i) for the marginal dfs 

 and 

 (ii) for the joint df with � , �, � satisfying (12) and (13)

(12)1 +
𝜆1
𝛼max

< (1 + 𝜆)𝜓 < 1 + 𝜆 < 1 +
𝜆1
𝛼∗

(13)𝜌 < B = log

(
1 +

𝜆2
𝛽max

)
∕ log

(
1 +

𝜆2𝜃
𝛽i0

)
.

1 − FX(x) ∼ x�1

(
1 +

�1
�max

)−[x]

L∗∗
1
(x), x → +∞,

1 − FY (y) ∼ y�2

(
1 +

�2
�max

)−[y]
L∗∗
2
(y), y → +∞,

1 − FX,Y (x, y) = x�1

(
1 +

�1
�max

)−[x]

L∗∗
1
(x)

(
1 + ox(1)

)

+ y�2

(
1 +

�2
�max

)−[y]

L∗∗
2
(y)(1 + oy(1)) − H∗(x, y),
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as x, y → +∞ , where

and

for some constant C > 0.

We show also that P(S > 𝜓x) = ox(P(S1 > x)).

Proof In fact

We deal with the three terms in (16), separately. 

 (i) Since 𝜆1
𝛼max

<
𝜆1
𝛼∗

 , taking the sum S = Z in Lemma 3.1, we conclude that E
(
1 +

�1
�max

)S

 

is finite. Similarly E
(
1 +

�2
�max

)T

 is finite since 𝜆2
𝛽max

<
𝜆2
𝛽∗

 with �∗ = max{�i, i ≠ i1} . 
The tail function of X is given, with �x = [�x] , by 

 For the first sum of (17), we get by applying Proposition 2.6 with � = �max for the 
marginal distribution 

(14)L∗∗
1
(x) = L∗

1
(x)E

(
1 +

�1
�max

)S

, L∗∗
2
(y) = L∗

2
(y)E

(
1 +

�2
�max

)T

(15)

0 ≤ H∗(x, y) ≤oy(1)

(
1 +

𝜆1
𝛼max

)−x
(
1 +

𝜆2𝜃
𝛽i0

)−𝜌y

x𝜉3L∗
3
(x) + Cx𝜉1+1y𝜉2L∗

1
(x)L∗

2
(y)×

×

(
1 +

𝜆1
𝛼max

)−(1−𝜓)x(
1 +

𝜆2
𝛽max

)−y+(log y)2

+ Ox(P(S > 𝜓x)),

(16)1 − F(X,Y)(x, y) = 1 − FX(x) + 1 − FY (y) − P(X > x, Y > y).

(17)

1 − FX(x) = P
(
S1 + S > x

)
=

+∞∑
k=0

P(S1 > x − k)P(S = k)

= P
(
S1 > x

) 𝜓x∑
k=0

P(S1 > x − k)

P(S1 > x)
P(S = k)+

+

+∞∑
k=𝜓x+1

P(S1 > x − k)P(S = k).

𝜓x∑
k=0

P(S1 > x − k)

P(S1 > x)
P(S = k) =

𝜓x∑
k=0

(
1 +

𝜆1
𝛼max

)k

(1 + ox(1))P(S = k)

→

+∞∑
k=0

(
1 +

𝜆1
𝛼max

)k

P(S = k)

= E

(
1 +

𝜆1
𝛼max

)S

, x → +∞,
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 by dominated convergence. For the second sum in (17), we get for x large 

 using the Markov inequality, since E(1 + �)S is finite for 𝜆 < 𝜆1∕𝛼
∗ . Since 

(1 + 𝜆)𝜓 > 1 +
𝜆1
𝛼max

, we get by Theorem 4 of Hall (2003) 

 and thus together 

 With the same arguments we characterize the tail 1 − FY . Hence, the statements on 
the marginal dfs are shown.

 (ii) Now we deal with the third term in (16). Note that (S1, T2) , (S2, T1) and (S3, T3) in the 
representation of X and Y are independent. For any � ∈ (0, 1) and 𝜆 > 0 satisfying 
(12), we use that (18) and (19) imply 

 and 

 The probability in the third term of (16) is split into four summands with 𝜓 < 1 
satisfying (12), �x = [�x] and �y = [y − (log y)2] . We get for x and y large, 

(18)

+∞∑
k=𝜓x+1

P(S1 > x − k)P(S = k) ≤ P(S > 𝜓x)

= P
(
(1 + 𝜆)S > (1 + 𝜆)𝜓x

)
≤

E(1 + 𝜆)S

(1 + 𝜆)𝜓x

,

(19)
(1 + 𝜆)−𝜓x

P(S1 > x)
→ 0, x → +∞,

1 − FX(x) = P(S1 > x)

[
E

(
1 +

𝜆1
𝛼max

)S

+ Ox

(
(1 + 𝜆)−𝜓x

P(S1 > x)

)]

= P(S1 > x)E

(
1 +

𝜆1
𝛼max

)S

(1 + ox(1)).

(20)P(S2 + S3 > 𝜓x) = P(S > 𝜓x) = Ox((1 + 𝜆)−𝜓x)

(21)P(S > 𝜓x) = ox(P
(
S1 > x

)
).

(22)

P(X > x, Y > y) = P(S1 + S2 + S3 > x, T1 + T2 + T3 > y)

=

𝜓x∑
k=0

𝛿y∑
�=0

P(S1 > x − k, T2 > y − �)P(S2 + S3 = k, T1 + T3 = �)+

+

𝜓x∑
k=0

+∞∑
�=𝛿y+1

P(S1 > x − k, T2 > y − �)P(S2 + S3 = k, T1 + T3 = �)+

+

+∞∑
k=𝜓x+1

𝛿y∑
�=0

P(S1 > x − k, T2 > y − �)P(S2 + S3 = k, T1 + T3 = �)+

+

+∞∑
k=𝜓x+1

+∞∑
�=𝛿y+1

P(S1 > x − k, T2 > y − �)P(S2 + S3 = k, T1 + T3 = �)

=∶

4∑
m=1

Sm(𝜓x, 𝛿y)
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 to simplify the proof. The last sum S4(�x, �y) is bounded by P(S2 + S3 > 𝜓
x
, T1+

T3 > 𝛿
y
) ≤ P(S2 + S3 > 𝜓

x
) = O

x
((1 + 𝜆)−𝜓x ) by (20). For the first sum S1(�x, �y) of 

(22) we use Proposition 2.6 and obtain with 𝜌 < 1 such that (13) holds, 

 Note that ([y] − �)�4
(
1 +

�2�
�i0

)−(1−�)([y]−�)

L∗
4
[y] − � = oy(1) uniformly for � ≤ �y , 

i.e. y − � > (log y)2 → ∞ . Hence the sum is bounded above by 

 since the last pgf exists due to Lemma 3.1 and (13) Note that

𝜓x∑
k=0

𝛿y∑
�=0

P(S1 > x − k,T2 > y − �)P(S2 + S3 = k, T1 + T3 = �)

≤ 𝜗

𝜓x∑
k=0

𝛿y∑
�=0

([x] − k)𝜉3 ([y] − �)𝜉4
(
1 +

𝜆1
𝛼max

)−([x]−k)
(
1 +

𝜆2𝜃
𝛽i0

)−([y]−�)

×

× L∗
3
([x] − k) L∗

4
([y] − �)P

(
S2 + S3 = k, T1 + T3 = �

)

≤ 𝜗

𝜓x∑
k=0

𝛿y∑
�=0

([x] − k)𝜉3 ([y] − �)𝜉4
(
1 +

𝜆1
𝛼max

)−([x]−k)
(
1 +

𝜆2𝜃
𝛽i0

)−((1−𝜌)+𝜌)([y]−�)

×

× L∗
3
([x] − k)L∗

4
([y] − �)P

(
S2 + S3 = k, T1 + T3 = �

)
.

oy(1)x
�3L∗

3
(x)

(
1 +

�1
�max

)−x
(
1 +

�2�
�i0

)−�y

×

×

�x∑
k=0

�y∑
�=0

(
1 +

�1
�max

)k
(
1 +

�2�
�i0

)��

P
(
S2 + S3 = k,T1 + T3 = �

)

≤ o
y
(1)x�3L∗

3
(x)

�
1 +

�1
�max

�−x
�
1 +

�2�
�
i0

�−�y

×

× E

⎛⎜⎜⎝

�
1 +

�1
�max

�(S2+S3)
�
1 +

�2�
�
i0

��(T1+T3)⎞⎟⎟⎠

≤ o
y
(1)x�3L∗

3
(x)

�
1 +

�1
�max

�−x
�
1 +

�2�
�
i0

�−�y

,

E

⎛⎜⎜⎝

�
1 +

�1
�max

�(S2+S3)
�
1 +

�2�
�i0

��(T1+T3)⎞
⎟⎟⎠

= E

⎛⎜⎜⎝
�
i≠i0

(1 +
�1
�max

)�i◦V−i

�
(1 +

�2�
�i0

)�

��i◦W−i⎞⎟⎟⎠

=
�
i≠i0

E

⎛⎜⎜⎝

�
1 +

�i�1
�max

�V−i

�
1 + �i([1 +

�2�
�i0

]� − 1)

�W−i⎞⎟⎟⎠
.

2383Methodology and Computing in Applied Probability (2022) 24:2373–2402



1 3

 The expectations exist by assumption (4) since 1 + 𝛼i𝜆1
𝛼max

< 1 + 𝜆1 , and also 
1 + 𝛽i([1 +

𝜆2𝜃
𝛽i0

]𝜌 − 1) ≤ 1 + 𝛽max([1 +
𝜆2𝜃
𝛽i0

]𝜌 − 1) < 1 + 𝜆2 , for all i, by the choice of 

� in (13), by using the arguments of Lemma 3.1. We consider now the approxima-
tion of the second sum S2(�x, �y) in (22). We have with some positive constant C

 By the arguments used to approximate P(X > x) = P(S1 + S2 + S3 > x) in (i), we 
also obtain 

 with some generic constant C. Hence, it implies together with (23) 

 For the third sum S3(�x, �y) in (22), we get analogously to the derivation of the 
second sum 

Combining now the bounds of the four terms Si(�x, �y) , we get the upper bound for 
H∗(x, y) which shows our statement.   ◻

Suppose now the case that the unique �max and �max are taken at the same index i0 , say. 
Write for any j

and

Denote S1 = �max◦Vj−i0
 , S =

∑
i≠i0

�i◦Vj−i , T1 = �max◦Wj−i0
 , and T =

∑
i≠i0

�i◦Wj−i , as used 

for Proposition 3.1. Observe that (S1, T1) and (S,T) are independent. Then the 

(23)

S2(𝜓x, 𝛿y) ≤

𝜓x∑
k=0

+∞∑
�=𝛿y+1

P(S1 > x − k)P(T1 + T3 = �)

≤Cx𝜉1+1L∗
1
(x)

(
1 +

𝜆1
𝛼max

)−(1−𝜓)x

P(T1 + T3 > 𝛿y).

P(T1 + T3 > 𝛿y) ∼ Cy𝜉2 L∗
2
(y)E

(
1 +

𝜆2
𝛽max

)T3
(
1 +

𝜆2
𝛽max

)−𝛿y

, y → +∞,

𝜓x∑
k=0

+∞∑
�=𝛿y+1

P(S1 > x − k,T2 > y − �)P(S2 + S3 = k, T1 + T3 = �)

≤ Cx𝜉1+1y𝜉2L∗
1
(x) L∗

2
(y)

(
1 +

𝜆1
𝛼max

)−(1−𝜓)x(
1 +

𝜆2
𝛽max

)−y+(log y)2

, y → +∞.

S3(𝜓x, 𝛿y) ≤ 𝛿yP(T2 > y − 𝛿y)P(S2 + S3 > 𝜓x)

≤ y(log y)2𝜉2L∗
2
((log y)2)(1 +

𝜆2
𝛽i0

)−(log y)
2

P(S2 + S3 > 𝜓x)

= oy(1)P(S2 + S3 > 𝜓x) = ox(P(S > 𝜓x)).

Xj = �max◦Vj−i0
+
∑
i≠i0

�i◦Vj−i

Yj = �max◦Wj−i0
+
∑
i≠i0

�i◦Wj−i.
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corresponding statement of Proposition 3.1 holds for this case (letting �i0 = �max ) which is 
given in Proposition 3.2. We omit the proof since it is very similar to the given one with a 
few obvious changes.

Proposition 3.2 If (V ,W) satisfies (4) and �max and �max are unique, occurring at the same 
index, then the stationary distribution satisfies

as x, y → +∞ , where

and

for some constant C > 0 and � ∈ (0, 1) satisfying (12).

Now we investigate the limiting behaviour for the bivariate maxima, in case of an iid 
sequence {(Xj, Yj)}.

Theorem 3.1 Let (V ,W) be such that (4) holds and �max and �max are unique, occurring 
either at the same or not the same index. Let

Define the normalizations

and

Then, for x, y real,

1 − FX,Y (x, y) = x�1

(
1 +

�1
�max

)−[x]

L∗∗
1
(x)

(
1 + ox(1)

)

+ y�2

(
1 +

�2
�max

)−[y]
L∗∗
2
(y)

(
1 + oy(1)

)

− H∗(x, y),

L∗∗
1
(x) = L∗

1
(x)E

(
1 +

�1
�max

)S

, L∗∗
2
(y) = L∗

2
(y)E

(
1 +

�2
�max

)T

0 ≤ H∗(x, y) ≤ oy(1)x
𝜉3L∗

3
(x)

(
1 +

𝜆1
𝛼max

)−x(
1 +

𝜆2𝜃
𝛽max

)−y

+

+ Cy𝜉2L∗
2
(y)x𝜉1+1L∗

1
(x)

(
1 +

𝜆1
𝛼max

)−(1−𝜓)x(
1 +

𝜆2
𝛽max

)−y+(log y)2

+ Ox(P
(
S > 𝜓x)

)
,

d1 = 1∕ log(1 +
�1
�max

), d2 = 1∕ log(1 +
�2
�max

).

(24)un(x) = x + d1[log n + �1 log log n + logL∗∗
1
(log n) + �1 log d1]

(25)vn(y) = y + d2[log n + �2 log log n + log L∗∗
2
(log n) + �2 log d2].
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Proof The convergence for the marginal distributions holds by applying Proposition 3.1 
or 3.2 with the chosen normalization sequences. Since un(x) and vn(y) are similar in type, 
we only show the derivation of the first marginal. Because the normalization un(x) is not 
always an integer, we have to consider lim sup and lim inf . Let us deal with the lim sup 
case. Note that

and

For the normalization we get

So

The derivation of the lim inf is similar using [un(x)] ≤ un(x).
Now for the joint distribution we use the bounds of H∗(un, vn) of the two propositions. 

First we consider the case of Proposition 3.1 with �max and �max at different indexes. We 
have to derive the limits of three boundary terms of H∗(un, vn) given in Proposition 3.1 
multiplied by n. The last of these terms tends to 0 because (21) holds and due to the fact 
that from (14), we get

which is bounded.
The first of the three boundary terms of H∗(un, vn) is smaller than

(
1 +

�1
�max

)−x

+

(
1 +

�2
�max

)−y

≤ lim inf
n→∞

n(1 − F(X,Y))(un(x), vn(y))

≤ lim sup
n→∞

n(1 − F(X,Y))(un(x), vn(y)) ≤

(
1 +

�1
�max

)−x+1

+

(
1 +

�2
�max

)−y+1

.

(
1 +

�1
�max

)−d1 log n

=

(
1 +

�2
�max

)−d2 log n

=
1

n

(
1 +

�1
�max

)−d1(�1 log log n+logL
∗∗
1
(log n)+�1 log d1)

=
(d1 log n)

−�1

L∗∗
1
(log n)

.

[un(x)] ≥ x − 1 + d1(log n + �1 log log n + log L∗∗
1
(log n) + �1 log d1) ∼ d1 log n.

n × [un(x)]
𝜉1

(
1 +

𝜆1
𝛼max

)−[un(x)]

L∗∗
1
([un(x)])

≲ n × (d1 log n)
𝜉1

(
1 +

𝜆1
𝛼max

)−x+1−d1(log n+𝜉1 log log n+logL
∗∗
1
(log n)+𝜉1 log d1)

L∗∗
1
(log n)

=
(
1 + 𝜆1∕𝛼max

)−(x−1)
.

nP(S1 > un(x)) = n × (un(x))
𝜉1

(
1 +

𝜆1
𝛼max

)−un(x)

L∗
1
(un(x))

∼
(
1 + 𝜆1∕𝛼max

)−x
L∗
1
(log n)∕L∗∗

1
(log n)

∼
(
1 + 𝜆1∕𝛼max

)−x
∕E

(
1 +

𝜆1
𝛼max

)S

,
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because 𝜌∕B > 0 with B given by (13).
The second boundary term of H∗(un, vn) is smaller than

since 1 − 𝜓 > 0 and where C1 represents a generic positive constant.
Thus the limiting distribution is proved in case of Proposition 3.1.
Now let us consider the changes of the proof for the case of Proposition 3.2. Again we 

have to deal with the three boundary terms of H∗(un, vn) where the last two are as in Propo-
sition 3.1. In the first of these terms we have similarly

since d2 log
(
1 +

𝜆2𝜃

𝛽max

)
> 0 . Thus the statements are shown.   ◻

4  Main result

We consider now the stationary sequence {(Xj, Yj)} . From extreme value theory it is known 
that the behaviour of their extremes is as in the case of an iid sequence {(Xj, Yj)} if the fol-
lowing two conditions hold: a mixing condition, called D(un, vn) , and a local dependence 
condition, called D�(un, vn) . In our bivariate extreme value case we consider the conditions 
D(un, vn) and D�(un, vn) of Hüsler (1990) (see also Hsing (1989) and Falk et  al. (1990)). 
The condition D(un, vn) is a long range mixing one for extremes and means that extreme 
values occurring in largely separated (by �n ) intervals of positive integers are asymptoti-
cally independent. The condition D�(un, vn) considers the local dependence of extremes and 
excludes asymptotically the occurrences of local clusters of extreme or large values in each 

non(1)

(
1 +

�1
�max

)−un(x)
(
1 +

�2�
�i0

)−�vn(y)

(un(x))
�3L∗

3
(un(x))

= non(1)

(
1 +

�1
�max

)−d1 log n+o(log n)
(
1 +

�2�
�i0

)−�d2 log n+o(log n)

(d1 log n)
�3L∗

3
(log n)

= on(1)(log n)
�3L∗

3
(log n) exp

(
−�d2 log n log

(
1 +

�2�
�i0

)
+ o(log n)

)

= on(1)(log n)
�3L∗

3
(log n) exp

(
−(�∕B) log n(1 + on(1))

)

= on(1),

nC1(d1 log n)
�1+1(d2 log n)

�2L∗
1
(log n)L∗

2
(log n)

×

(
1 +

�1
�max

)−(1−�)d1 log n+o(log n)
(
1 +

�2
�max

)−d2 log n+(log(d2 log n))
2

≤C1(log n)
�1+�2+1L∗

1
(log n)L∗

2
(log n) exp (log n − (1 − �) log n − log n + o(log n))

=on(1),

non(1)(un(x))
�3L∗

3
(un(x))

(
1 +

�1
�max

)−un(x)
(
1 +

�2�
�max

)−vn(y)

= on(1)(log n)
�3L∗

3
(log n) exp

(
−d2 log n log

(
1 +

�2�
�max

)
+ o(log n)

)

= on(1),
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individual margin of {(Xj, Yj)} as well as jointly in the two components. We write un, vn for 
short because x, y do not play a role in the following proofs.

Definition 4.1 The sequence {(Xj, Yj)} satisfies the condition D(un, vn) if for any integers 
1 ≤ i1 < ... < ip < j1 < ... < jq ≤ n, for which j1 − ip > �n, we have

for some �n,�n
 with lim

n→+∞
�n,�n

= 0 , for some integer sequence �n = o(n).

We use the following D�(un, vn) condition.

Definition 4.2 Let {sn} be a sequence of positive integers such that sn → +∞ . The 
sequence {(Xj, Yj)} satisfies the condition D�(un, vn) if

In the following we use the sequences {sn}, {�n} and �n,�n
 such that

Such a sequence {sn} in (26) exists always. Take e.g. for the given �n and �n,�n
 in con-

dition D(un, vn) the sequence sn = min(
√
n∕�n, 1∕

√
�n,�n

) → +∞ . In our proof we use 
simpler sequences.

Write M(1)
n

= max{X1,⋯ ,Xn} and M(2)
n

= max{Y1,⋯ , Yn} . For the stationary 
sequence {(Xj, Yj)} satisfying D(un, vn) and D�(un, vn) , the limiting behaviour of the 
bivariate maxima 

(
M(1)

n
,M(2)

n

)
 , under linear normalization, is given in Theorem 3.1, as if 

the sequence {(Xj, Yj)} would be a sequence of independent (Xj, Yj).
In Theorem 3.1 we derived upper and lower bounds of the limiting distribution of the 

maximum term of non-negative integer-valued moving average sequences which leads 
to a “quasi max-stable” limiting behavior of the bivariate maximum in the sense of 
Anderson’s type. So the main result of the maximum of this bivariate discrete random 
sequence is the following.

Theorem 4.1 Consider the stationary sequences {(Xj, Yj)} defined by

||P
( p⋂

s=1

{Xis
≤ un, Yis ≤ vn},

q⋂
t=1

{Xjt
≤ un, Yjt ≤ vn}

)

−P
( p⋂

s=1

{Xis
≤ un, Yis ≤ vn}

)
P
( q⋂

t=1

{Xjt
≤ un, Yjt ≤ vn}

)|| ≤ �n,�n
,

n

[n∕sn]∑
j=1

{
P
(
X0 > un,Xj > un

)
+ P

(
X0 > un, Yj > vn

)

+ P
(
Y0 > vn, Yj > vn

)
+ P

(
Y0 > vn,Xj > un

)}
→ 0, n → +∞.

(26)lim
n→+∞

s−1
n

= lim
n→+∞

sn�n

n
= lim
n→+∞

sn�n,�n
= 0.

(Xj, Yj) =

(
+∞∑
i=−∞

�i◦Vj−i,

+∞∑
i=−∞

�i◦Wj−i

)
.
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Suppose that the innovation sequence {(Vi,Wi)} is an iid sequence of non-negative inte-
ger-valued random vectors with df of the form (4), the sequences of {�i} and {�i} satisfy (3) 
and �max and �max are unique. Then,

for all real x and y and where un(x) and vn(y) are defined by (24) and (25).

To prove this theorem, it remains to show that the conditions D(un, vn) and D�(un, vn) 
hold with un and vn given by (24) and (25).

Proof of D(un, vn):
Let 1 ≤ i1 ≤ ⋯ ≤ ip < j1 ≤ ⋯ ≤ jq ≤ n with j1 − ip > 2�n , with separation �n = n� , 

where 𝜙 < 1 . We select � later. We use the following notation:

and

Note that

and

are independent.
a) We have as upper bound

lim sup (lim inf)P
(
M(1)

n
≤ un(x),M

(2)
n

≤ vn(y)
)
≶

≶ exp

(
−

(
1 +

𝜆1
𝛼max

)−(x−0(1))

−

(
1 +

𝜆2
𝛽max

)−(y−0(1))
)
,

X⋆
j
=

+∞∑
k=𝓁n

𝛼k◦Vj−k , X⋆⋆
j

=

−𝓁n∑
k=−∞

𝛼k◦Vj−k

Y⋆
j
=

−𝓁n∑
k=−∞

𝛽k◦Wj−k , Y⋆⋆
j

=

+∞∑
k=𝓁n

𝛽k◦Wj−k.

{
Xi − X⋆⋆

i
, Yi − Y⋆

i
, i ≤ ip

}
=

{
+∞∑

k=−𝓁n+1

𝛼k◦Vi−k,

+∞∑
k=−𝓁n+1

𝛽k◦Wi−k , i ≤ ip

}

(27)
{
Xj − X⋆

j
, Yj − Y⋆⋆

j
, j ≥ j1

}
=

{
𝓁n−1∑
k=−∞

𝛼k◦Vj−k,

𝓁n−1∑
k=−∞

𝛽k◦Wj−k , j ≥ j1

}

(28)

P

( p⋂
s=1

{Xis
≤ un, Yis

≤ vn},

q⋂
t=1

{Xjt
≤ un, Yjt

≤ vn}

)

≤ P

( p⋂
s=1

{Xis
− X⋆⋆

is
≤ un, Yis

− Y⋆
is
≤ vn}

)
P

( q⋂
t=1

{Xjt
− X⋆

jt
≤ un, Yjt

− Y⋆⋆
jt

≤ vn}

)

≤ P

( p⋂
s=1

{Xis
≤ un +M(1,1)

n
, Yis

≤ vn +M(1,2)
n

}

)
×

× P

( q⋂
t=1

{Xjt
≤ un +M(2,1)

n
, Yjt

≤ vn +M(2,2)
n

}

)
,

2389Methodology and Computing in Applied Probability (2022) 24:2373–2402



1 3

where M(1,1)
n = max0≤j≤n X

⋆⋆
j

 , M(1,2)
n = max0≤j≤n Y

⋆
j
 , M(2,1)

n = max0≤j≤n X
⋆
j
 , and M(2,2)

n = max0≤j≤n Y
⋆⋆
j

.
We split furthermore this upper bound.

The last four terms in (29) tend to 0 as it is proved in Hall (2003) depending on �n . We 
show it for one term.

for some generic constant C and {�k} satisfying (3) with 𝛿 > 2 . Selecting 𝜙 > 1∕(𝛿 − 1) , 
this bound tends to 0. The sum of the bounds of the last four terms in (29) gives the bound 
�n,�n

= Cn�1−�
n

 , which tends to 0.
b) In the same way we establish the lower bound of (28). In fact, using again the inde-

pendence mentioned in (27), we get

(29)

P

( p⋂
s=1

{Xis
≤ un, Yis ≤ vn},

q⋂
t=1

{Xjt
≤ un, Yjt ≤ vn}

)

≤

[
P

( p⋂
s=1

{Xis
≤ un +M(1,1)

n
, Yis ≤ vn +M(1,2)

n
},M(1,1)

n
= 0,M(1,2)

n
= 0

)

+ P

(
M(1,1)

n
≥ 1 ∨M(1,2)

n
≥ 1

)]

×

[
P

( q⋂
t=1

{Xjt
≤ un +M(2,1)

n
, Yjt ≤ vn +M(2,2)

n
},M(2,1)

n
= 0,M(2,2)

n
= 0

)

+ P

(
M(2,1)

n
≥ 1 ∨M(2,2)

n
≥ 1

)]

≤

[
P
( p⋂

s=1

{Xis
≤ un, Yis ≤ vn}

)
+ P

(
M(1,1)

n
≥ 1 ∨M(1,2)

n
≥ 1

)]

×

[
P
( q⋂

t=1

{Xjt
≤ un, Yjt ≤ vn}

)
+ P

(
M(2,1)

n
≥ 1 ∨M(2,2)

n
≥ 1

)]

≤ P

( p⋂
s=1

{Xis
≤ un, Yis ≤ vn}

)
× P

( q⋂
t=1

{Xjt
≤ un, Yjt ≤ vn}

)

+ 2P
(
M(1,1)

n
≥ 1

)
+ 2P

(
M(1,2)

n
≥ 1

)
+ 2P

(
M(2,1)

n
≥ 1

)
+ 2P

(
M(2,2)

n
≥ 1

)
.

(30)

P
(
M(1,1)

n
≥ 1

)
≤(n + 1)P

(
−𝓁n∑

k=−∞

�k◦V−k ≥ 1

)

≤(n + 1)

−𝓁n∑
k=−∞

E(�k◦V−k) = (n + 1)

−𝓁n∑
k=−∞

�kE(V−k)

≤Cn

+∞∑
k=𝓁n

1

k�

≤Cn𝓁1−�
n

,
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using (29) and (30). Hence the condition D(un, vn) holds.

In the proof of D�(un, vn) , we need also that sn�n,�n
→ 0 . With sn = n� we select � such 

that snn�1−�
n

= n1+�−�(�−1) → 0 , which holds for 1 + 𝜁 < 𝜙(𝛿 − 1).

Proof of D�(un, vn):
We have to consider first the sums on the terms P

(
X0 > un, Yj > vn

)
 and on the terms 

P
(
Y0 > vn,Xj > un

)
.

We show it for the sum of the first terms, since for the second one the proof follows in 
the same way. Let �n = n� with 𝜈 < 1 − 𝜁 , which implies that �n = o(n∕sn) = o(n1−� ) . For 
j < 2𝛾n , we write

Note that �i0 = �max for some i0 and �j0 = �max for some j0 . For one j we have i0 + j = j0 , 
i.e. j = j0 − i0 . Hence the maximum terms occur at the same index for V−i0

 and W−i0
 if 

j = j0 − i0 . If j0 = i0 , hence j = 0 , but this case does not occur in the sum. For all other j’s 
the maxima is occurring at different indexes. We consider the bound established in Propo-
sition 3.1 and 3.2 for H∗.

For j = j0 − i0 , we showed in the proof of Theorem 3.1 that nH∗(un, vn) → 0.

For j ≠ j0 − i0 , we have 𝛽i0+j < 𝛽max for the terms P(X0 > un, Yj > vn) and deduce from 
Proposition 3.1 the following upper bound for H∗(un, vn)

with �,� ∈ (0, 1) defined in (12) and (13). Note that � = �(j) should be such that (
1 +

𝜆2𝜃
𝛽i0+j

)𝜌(j)

< 1 +
𝜆2
𝛽max

 , for all j ≠ j0 − i0 that (13) is satisfied. It means that the term B in 

(13) depends on j, i.e. B = Bj . Note that Bj may be larger or smaller than 1, but is bounded 

P
( p⋂
s=1

{Xis
≤ un, Yis ≤ vn}

)
P
( q⋂
t=1

{Xjt
≤ un, Yjt ≤ vn}

)

≤P
( p⋂
s=1

{Xis
− X⋆⋆

is
≤ un, Yis − Y⋆

is
≤ vn}

)
P
( q⋂
t=1

{Xjt
− X⋆

jt
≤ un, Yjt − Y⋆⋆

jt
≤ vn}

)

=P
( p⋂
s=1

{Xis
− X⋆⋆

is
≤ un, Yis − Y⋆

is
≤ vn},

q⋂
t=1

{Xjt
− X⋆

jt
≤ un, Yjt − Y⋆⋆

jt
≤ vn}

)

≤P

(
p⋂

s=1

{Xis
≤ un +M(1,1)

n
, Yis ≤ vn +M(1,2)

n
} ,

q⋂
t=1

{Xjt
≤ un +M(2,1)

n
, Yjt ≤ vn +M(2,2)

n
}

)

≤P

( p⋂
s=1

{Xis
≤ un, Yis ≤ vn},

q⋂
t=1

{Xjt
≤ un, Yjt ≤ vn}

)
+ Cn�1−𝛿

n

(X0, Yj) =

(
+∞∑
i=−∞

�i◦V−i ,

+∞∑
i=−∞

�i+j◦W−i

)
.

(31)

on(1)

(
1 +

𝜆1
𝛼max

)−un
(
1 +

𝜆2𝜃
𝛽i0+j

)−𝜌vn

u
𝜉3
n L

∗
3
(un) + Cu𝜉1+1

n
v𝜉2
n
L∗
1
(un)L

∗
2
(vn)×

×

(
1 +

𝜆1
𝛼max

)−(1−𝜓)un
(
1 +

𝜆2
𝛽max

)−vn+(log vn)
2

+ O
(
P(S > 𝜓un)

)
,
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above by log(1 + �2∕�max)∕ log(1 + �2�∕�max) = B∗ . For Bj > 1 , we select 𝜖 < 1 large such 
that (1 − 𝜖)B∗ < 1 , which implies that (1 − 𝜖)Bj < 1 , thus we select 𝜌(j) > (1 − 𝜖)Bj . In case 
Bj ≤ 1 , we select also 𝜌(j) > (1 − 𝜖)Bj.

It implies that there exists an 𝜖 > 0 to select �(j) for every j ≠ j0 − i0 such that

a) Now the sum of the first term in the bound (31) of H∗(un, vn) multiplied by n, for 
{j ≤ 2�n, j ≠ j0} , is bounded by

if also � is such that 𝜈 < 1 − 𝜖.
The sum of the second term in (31) multiplied by n, for {j ≤ 2�n, j ≠ j0} , tends to 0 

because

if also 𝜈 < 1 − 𝜓 . Hence we choose 𝜈 < min{1 − 𝜖, 1 − 𝜁 , 1 − 𝜓}.
It remains to deal with the sum of the third terms in (31) for {j ≤ 2�n, j ≠ j0} . We 

showed that P(S > 𝜓x) = O((1 + 𝜆)−𝜓x) in (20) with (1 + 𝜆)𝜓 > 1 +
𝜆1
𝛼max

 in (12). Let 
�̃� > 1 such that (1 + 𝜆)𝜓∕�̃� = 1 +

𝜆1
𝛼max

 . This sum on {j ≤ 2�n, j ≠ j0} multiplied with n is 
bounded by

if also 𝜈 < �̃� − 1 and C is a generic positive constant.
Thus combining these three bounds it shows that

if 𝜈 < min{1 − 𝜖, 1 − 𝜁 , 1 − 𝜓 , �̃� − 1}.
b) We consider now the sum on j with 2𝛾n < j ≤ n∕sn and write

log

(
1 +

𝜆2
𝛽max

)
> 𝜌(j) log

(
1 +

𝜆2𝜃
𝛽i0+j

)
> (1 − 𝜖) log

(
1 +

𝜆2
𝛽max

)
.

on(1)n
1+𝜈

(
1 +

𝜆1
𝛼max

)−d1 log n+o(log n)
(
1 +

𝜆2𝜃
𝛽i0+j

)−𝜌(j)d2 log n+o(log n)

(d1 log n)
𝜉3L∗

3
(log n)

< on(1) exp

{
(log n)

(
1 + 𝜈 − d1 log

(
1 +

𝜆1
𝛼max

)
− d2(1 − 𝜖) log

(
1 +

𝜆2
𝛽max

))
+ o(log n)

}

= on(1) exp
{
−(log n)(1 − 𝜖 − 𝜈 + on(1))

}
→ 0, n → +∞,

n1+�
(
1 +

�1
�max

)−(1−�)un
(
1 +

�2
�max

)−vn+(log vn)
2

exp(o(log n))

= n1+�
(
1 +

�1
�max

)−(1−�)d1 log n+o(log n)
(
1 +

�2
�max

)−d2 log n+o(log n)

exp(o(log n))

= exp {(log n)[1 + � − (1 − �) − 1] + o(log n)}

= exp
{
(log n)[� + � − 1 + on(1)]

}
→ 0, as n → +∞,

Cn1+𝜈
(
1 +

𝜆1
𝛼max

)−�̃�un

= C exp
{
(log n)

[
1 + 𝜈 − �̃� + on(1)

]}
→ 0, n → +∞,

n
∑
j≤2𝛾n

P
(
X0 > un, Yj > vn

)
→ 0, n → +∞,

2392 Methodology and Computing in Applied Probability (2022) 24:2373–2402



1 3

and

Note that X′
0
 and Y ′

j
 are independent. We have, for j > 2𝛾n and some k > 1 (chosen later, 

not depending on n),

Similar to Hall (2003), the last two probabilities are sufficiently fast tending to 0. For, 
we have

We select hn such that hn𝛾1−𝛿n
= C > 0, for some constant C. For i ≤ −�n − 1 and 𝛿 > 2 

and some positive constant C∗ , it follows that

by the assumption (3) on the sequence {�i} . It implies again that

where the expectations exist, and, due to Lemma 3.1,

X�
0
=

+∞∑
i=−�n

�i◦V−i , X��
0
=

−�n−1∑
i=−∞

�i◦V−i,

X�
j
=

�n∑
i=−∞

�i◦Vj−i , X��
j
=

+∞∑
i=�n+1

�i◦Vj−i

Y �
j
=

�n∑
i=−∞

�i◦Wj−i , Y ��
j
=

+∞∑
i=�n+1

�i◦Wj−i.

P
(
X0 > un, Yj > vn

)
= P

(
X�
0
+ X��

0
> un, Y

�
j
+ Y ��

j
> vn

)

≤P
(
X�
0
> un − X��

0
, Y �

j
> vn − Y ��

j
,X��

0
< k, Y ��

j
< k

)

+ P
(
X��
0
≥ k

)
+ P

(
Y ��
j
≥ k

)

≤P
(
X�
0
> un − k, Y �

j
> vn − k

)
+ P

(
X��
0
≥ k

)
+ P

(
Y ��
j
≥ k

)

≤P
(
X0 > un − k

)
P
(
Yj > vn − k

)
+ P

(
X��
0
≥ k

)
+ P

(
Y ��
j
≥ k

)

=O
(
1

n

)
O
(
1

n

)
+ P

(
X��
0
≥ k

)
+ P

(
Y ��
j
≥ k

)
.

P
�
X��
0
≥ k

�
=P

�
−𝛾n−1�
i=−∞

𝛼i◦V−i ≥ k

�

=P
�
(1 + hn)

∑−𝛾n−1

i=−∞
𝛼i◦V−i > (1 + hn)

k
�

≤

E
�
(1 + hn)

∑−𝛾n−1

i=−∞
𝛼i◦V−i

�

(1 + hn)
k

.

0 < 𝛼ihn ≤ C∗|i|−𝛿hn ≤ C∗(𝛾n + 1)−𝛿hn = O(1∕𝛾n) → 0, n → +∞,

E
�
(1 + hn)

∑−�n−1

i=−∞
�i◦V−i

�
=

−�n−1�
i=−∞

E
�
(1 + �ihn)

V−i
�
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by the choice of hn . Note that hn = C��−1
n

= Cn�(�−1) → +∞ . Now, select k depending on � , 
� and � such that n2∕((1 + hn)

ksn) ∼ n2∕(Cknk�(�−1)n� ) = o(1) which holds for 
k > (2 − 𝜁 )∕(𝜈(𝛿 − 1)) . This choice implies that (n2∕sn)P

(
X��
0
≥ k

)
→ 0 . In the same way 

we can show that also n
∑

j≤n∕sn
P
�
Y ��
j
≥ k

�
→ 0 for such a k, since also �i ≤ C |i|−� for 

|i| ≥ �n and some constant C > 0.
c) In order to deduce

we use the same arguments as for P
(
X0 > un, Yj > vn

)
 . In this case, since X′

0
 and X′

j
 are 

independent, we get for some positive k

As above we can show that n
∑

j≤n∕sn
P
�
X��
j
≥ k

�
→ 0 and (n2∕sn)P

(
X��
0
≥ k

)
→ 0 . In 

the same way it follows also that

 
Hence condition D�(un, vn) holds.

5  Simulations

We investigate the convergence of the distribution of the bivariate maxima (M(1)
n
,M(2)

n
) to 

the limiting distribution as given in Theorem 4.1. We notice that the thinning coefficients �i 
and �i have an impact on the norming values of the bivariate maxima, besides of the distri-
bution of the (Vi,Wi).

Let us consider the bivariate geometric distribution for (Vi,Wi) mentioned in Example 
2.1 and a finite number of positive values �i and �i . As mentioned, the bivariate geometric 
distribution satisfies the conditions of the general assumptions of the joint distribution 
of (Vi,Wi) . We assumed a strong dependence with p00 = 0.85, p01 = 0.03, p10 = 0.02 and 
p11 = 0.1.

E
�
(1 + hn)

∑−�n−1

i=−∞
�i◦V−i

�
≤

−�n−1�
i=−∞

�
1 + �ihnE(V0)(1 + on(1))

�

= exp

�
E(V0)hnO(1)

−�n−1�
i=−∞

�i�−�
�

= exp
�
O(1)hn�

1−�
n

�
= O(1), n → +∞,

n

[n∕sn]∑
j=1

P
(
X0 > un,Xj > un

)
→ 0, n → +∞,

P
(
X0 > un,Xj > un

)

≤P
(
X�
0
> un − k,X�

j
> un − k

)
+ P

(
X��
0
≥ k

)
+ P

(
X��
j
≥ k

)

=O
(
1

n2

)
+ P

(
X��
0
≥ k

)
+ P

(
X��
j
≥ k

)
.

n

[n∕sn]∑
j=1

P
(
Y0 > vn, Yj > vn

)
→ 0, n → +∞.
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We consider quite different models with different �i and �i to investigate the convergence 
rate. Let in the first case �1 = 0.8, �2 = 0.6, �3 = 0.4, �1 = 0.6, �2 = 0.45, �3 = 0.3 and 
�i = 0 = �i for i > 3, and in the second case �1 = 0.6, �2 = 0.35, �3 = 0.1, �1 = 0.5, �2 =

0.3, �3 = 0.1 and �i = 0 = �i for i > 3.

For each of these first two models we simulated 10’000 time series, selected n = 100 
and 500 and derived the bivariate maxima (M(1)

n
,M(2)

n
 ). Thus we compared the empirical 

(simulated) distribution functions (cdf) with the asymptotic cdf.
We plotted two cases with P(M(1)

n
− ũn ≤ x,M(2)

n
− ṽn ≤ x + 𝛿) where ũn = un − x and 

ṽn = vn − y with un, vn given in (24) and (25), respectively, using � = 0 and 2 (see Figs. 1 
and 2).

We notice from these simulations that the convergence rate is quite good, but it depends 
on the dependence, which is given by the thinning factors �i and �i . We find that the con-
vergence rate is slower for the more dependent time series (the first case, Fig. 1) and that 
the factor � has a negligible impact. This is even more clear in the second cases shown in 
Fig. 2.

In some additional models we considered larger and more thinning factors different from 
0. We show the simulations of the cases with �i = (0.7)i, �i = (0.6)i , for i ≤ 25 , and also with 
�i = (0.9)i, �i = (0.8)i , for i ≤ 40 . These cases are close to a infinite MA series, since �i, �i are 
very small for i > 26 or i > 41 , respectively. It means that such small values have an impact 
on the maxima. We figured out that the number of positive values is not so important. How-
ever, in these cases the second largest value of �i or �i is closer to the maximal value (=1), in 

Fig. 1  Simulated cdf with upper and lower asymptotic cdf, first case, where ai = �
i
, bi = �

i
 , i = 1, 2, 3
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particular in the second of these additional models. Considering the results of again 10’000 
simulations (Fig. 3), we show that the convergence rates are quite slower than in the first two 
models (Figs. 1 and 2). We show the results of the two cases with n = 100 and 500 with � = 0 
only. We also figured out from the simulations of other models and distributions that if the 
correlation of the two components of the sequence is stronger, then the convergence to the 
limiting distribution (with asymptotic independence) is slower.

Proofs

Proof of Proposition 2.1:
Observe first that

By using the representation (4) for v and w large, and w > v > A (some large constant A) 
we deduce, for v ≤ w − 1,

P(V = v,W = w) = P(V ≤ v,W ≤ w) − P(V ≤ v − 1,W ≤ w)

− P(V ≤ v,W ≤ w − 1) + P(V ≤ v − 1,W ≤ w − 1).

Fig. 2  Simulated cdf with upper and lower asymptotic cdf, second case, where ai = �
i
, bi = �

i
 , i = 1, 2, 3
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where �∗(v,w) ⟶ �2(1 + �1 − �) , as v,w → +∞.
For v ≥ w + 1 , with v > w > A (some large constant A), the steps are similar, with �∗(v,w) 

such that

For v = w > A, A large, we get with similar steps as above

P(V = v,W = w) =
(
1 + �1

)−v(
1 + �2

)−w
�v−1v�3w�4L3(v)L4(w)�(v,w)×[

� − (1 + �1)
(
1 −

1

v

)�3 L3(v − 1)

L3(v)

�(v − 1,w)

�(v,w)

−(1 + �2)�
(
1 −

1

w

)�4 L4(w − 1)

L4(w)

�(v,w − 1)

�(v,w)

+(1 + �1)(1 + �2)
(
1 −

1

v

)�3(
1 −

1

w

)�4 L3(v − 1)L4(w − 1)

L3(v)L4(w)

�(v − 1,w − 1)

�(v,w)

]

= (1 + �1)
−v(1 + �2)

−w�v−1v�3w�4L3(v)L4(w)L(1 + o(1))�∗(v,w),

lim
v,w

�∗(v,w) =� − �(1 + �1) − (1 + �2) + (1 + �1)(1 + �2)

=�1(1 + �2 − �).

Fig. 3  Simulated cdf with upper and lower asymptotic cdf, third and fourth model where ai = �
i
, bi = �

i
 for 

i ≤ 25 (third model), and i ≤ 40 (fourth model), respectively, with n = 100, and 500 and � = 0
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where �∗(v, v) ⟶ 𝜆1𝜆2 + 𝜃 − 1 > 0 as v → +∞ , a positive constant by assumption. □

Proof of Proposition 2.2:
Denoting B(n, p) a binomially distributed random variable with parameters n and p, 

we have for the pgf of (X, Y)

Proof of Lemma 2.1:
We have

The first partial sum is finite. The second one is bounded by (s
m+1
1

−1)

s1−1

∑+∞

�=n+1
s�
2
P(W = �) 

which is finite for s2 < 1 + 𝜆2 due to (5). Analogously, the third one is bounded by 
(sn+1

2
−1)

s2−1

∑+∞

k=m+1
sk
1
P(V = k) which is finite for s1 < 1 + 𝜆1.

Finally, for the last partial sum we use Proposition 2.1. For simplicity we write 
gi(k) = sk

i
(1 + �i)

−kk�i+2Li+2(k) , for k ∈ ℕ , i = 1, 2 . Then, for large k,� and some positive 
constants C1,C2 , we get that this sum is bounded by

P(V = v,W = v) =

=
(
1 + �1

)−v(
1 + �2

)−v
�v−1v�3+�4L3(v)L4(v)�(v, v)×[

� − (1 + �1)
(
1 −

1

v

)�3 L3(v − 1)

L3(v)

�(v − 1, v)

�(v, v)
− (1 + �2)

(
1 −

1

v

)�4 L4(v − 1)

L4(v)

�(v, v − 1)

�(v, v)

+(1 + �1)(1 + �2)
(
1 −

1

v

)�3+�4 L3(v − 1)L4(v − 1)

L3(v)L4(v)

�(v − 1, v − 1)

�(v, v)

]

= (1 + �1)
−v(1 + �2)

−v�v−1v�3+�4L3(v)L4(v)L(1 + o(1))�∗(v, v),

GX,Y (s1, s2) =

=

+∞∑
j1=0

+∞∑
j2=0

+∞∑
k1=j1

+∞∑
k2=j2

P(X = j1, Y = j2|V = k1,W = k2)P(V = k1,W = k2)s
j1
1
s
j2
2

=

+∞∑
j1=0

+∞∑
j2=0

+∞∑
k1=j1

+∞∑
k2=j2

P(X = j1|V = k1)P(Y = j2|W = k2)P(V = k1,W = k2)s
j1
1
s
j2
2

=

+∞∑
j1=0

+∞∑
j2=0

+∞∑
k1=j1

+∞∑
k2=j2

P(B(k1, �) = j1)P(B(k2, �) = j2)P(V = k1,W = k2)s
j1
1
s
j2
2

=

+∞∑
k1=0

+∞∑
k2=0

(
k1∑

j1=0

P(B(k1, �) = j1)s
j1
1

)(
k2∑

j2=0

P(B(k2, �) = j2)s
j2
2

)
P(V = k1,W = k2)

=

+∞∑
k1=0

+∞∑
k2=0

(
�s1 + 1 − �

)k1(�s2 + 1 − �
)k2P(V = k1,W = k2)

=GV ,W (�s1 + 1 − �, �s2 + 1 − �).□

E(sV
1
sW
2
) =

m∑
k=0

n∑
�=0

sk
1
s�
2
P(V = k,W = �) +

m∑
k=0

+∞∑
�=n+1

sk
1
s�
2
P(V = k,W = �)

+

+∞∑
k=m+1

n∑
�=0

sk
1
s�
2
P(V = k,W = �) +

+∞∑
k=m+1

+∞∑
�=n+1

sk
1
s�
2
P(V = k,W = �).
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The sums 
∑

�≥k g2(�) and 
∑

k≥� g1(k) are finite by applying the ratio criterium for g2(�) and 
g1(k) . These sums are bounded by Cg2(k) and Cg1(�) , respectively, with C a generic con-
stant if si < (1 + 𝜆i) . Then the convergence of the last sum is obtained for s1s2 <

(1+𝜆1)(1+𝜆2)

𝜃
. 

Proof of Proposition 2.3:
Let q(k,�) = 1 − F(V ,W)(k,�) and p(k,�) = P(V = k,W = �) . Then,

Proof of Proposition 2.4:
Write a1 = �s1 + 1 − � and a2 = �s2 + 1 − � . By Proposition 2.2, for si ≠ 1, i = 1, 2,
we have                                                                                                 

C1

+∞∑
k=m+1

g1(k)
∑

�≥max(n+1,k)

g2(�)�
k + C2

+∞∑
�=n+1

g2(�)
∑

k≥max(m+1,�)

g1(k)�
�

≤C1

+∞∑
k=m+1

g1(k)
∑
�≥k

g2(�)�
k + C2

+∞∑
�=n+1

g2(�)
∑
k≥�

g1(k)�
�

(1 − s1)(1 − s2)

+∞∑
k=0

+∞∑
�=0

(
1 − F(V ,W)(k,�)

)
sk
1
s�
2

=

+∞∑
k=1

+∞∑
�=1

q(k,�)sk
1
s�
2
+

+∞∑
�=1

q(0,�)s�
2
+

+∞∑
k=1

q(k, 0)sk
1
+ q(0, 0)

−

+∞∑
k=1

+∞∑
�=0

q(k − 1,�)sk
1
s�
2
−

+∞∑
k=0

+∞∑
�=1

q(k,� − 1)sk
1
s�
2
+

+∞∑
k=1

+∞∑
�=1

q(k − 1,� − 1)sk
1
s�
2

=

+∞∑
k=1

+∞∑
�=1

(q(k,�) + q(k − 1,� − 1))s
k1
1
s�
2
+ q(0, 0) +

+∞∑
�=1

q(0,�)s�
2
+

+∞∑
k=1

q(k, 0)sk
1

−

+∞∑
k=1

+∞∑
�=1

q(k − 1,�)sk
1
s�
2
−

+∞∑
k=1

q(k − 1, 0)sk
1

−

+∞∑
k=1

+∞∑
�=1

q(k,� − 1)sk
1
s�
2
−

+∞∑
�=1

q(0,� − 1)s�
2

=

+∞∑
k=1

+∞∑
�=1

(q(k,�) + q(k − 1,� − 1) − q(k − 1,�) − q(k,� − 1))sk
1
s�
2

+

+∞∑
�=1

q(0,�)s�
2
+

+∞∑
k=1

q(k, 0)sk
1
−

+∞∑
k=1

q(k − 1, 0)sk
1
−

+∞∑
�=1

q(0,� − 1)s�
2
+ q(0, 0)

=

+∞∑
k=1

+∞∑
𝓁=1

(−p(k,𝓁))sk
1
s𝓁
2
+

+∞∑
k=1

(−p(k, 0))sk
1
+

+∞∑
𝓁=1

(−p(0,𝓁))s𝓁
2
+ 1 − p(0, 0)

= 1 −

+∞∑
k=0

+∞∑
𝓁=0

p(k,𝓁)sk
1
s𝓁
2
= 1 − G(V ,W)(s1, s2).□
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Proof of Proposition 2.5:
By Proposition 2.4, and the definition of QV ,W we have

Proof of Proposition 2.6:
Using Proposition 2.5, 1 − FX,Y (x, y) is given by the sum of three terms due to the 

assumption (4). Each term, defined by double sums, can be determined or bounded 
by (unique) sums associated to univariate tail functions satisfying Theorem  4 of Hall 
(2003), see also Hall and Temido (2007). The first sum can be approximated for x and y 
large, as

The second sum can be dealt with in the same way.
For the third term observe that due to the fact �(v,w) is a bounded function, with 

bound � , we get, for large integers x and y, 

QX,Y (s1, s2) =
1 − GX,Y (s1, s2)

(1 − s1)(1 − s2)
=

1 − GV ,W (�s1 + 1 − �, �s2 + 1 − �)

(1 − s1)(1 − s2)

=
1 − GV ,W (a1, a2)

1−a1

�

1−a2

�

= ��
1 − GV ,W (a1, a2)

(1 − a1)(1 − a2)
= ��QV ,W (a1, a2).

QX,Y (s1, s2) = ��QV ,W (�s1 + 1 − �, �s2 + 1 − �)

=��

+∞∑
k=0

+∞∑
𝓁=0

(
1 − FV ,W (k,𝓁)

)(
�s1 + 1 − �

)k(
�s2 + 1 − �

)𝓁

=��

+∞∑
k=0

+∞∑
𝓁=0

(
1 − FV ,W (k,𝓁)

) k∑
i=0

(
k

i

)
(1 − �)k−i(s1�)

i

𝓁∑
j=0

(
𝓁

j

)
(1 − �)𝓁−j(s2�)

j

=

+∞∑
i=0

+∞∑
j=0

{
+∞∑
k=i

+∞∑
𝓁=j

(
k

i

)(
𝓁

j

)
(1 − �)k−i(1 − �)𝓁−j�i+1� j+1

(
1 − FV ,W (k,𝓁)

)}
si
1
s
j

2

=

+∞∑
i=0

+∞∑
j=0

(
1 − FX,Y (i, j)

)
si
1
s
j

2
.□

+∞∑
k=x

+∞∑
�=y

(
k

x

)(
�

y

)
(1 − �)k−x(1 − �)�−y�x+1�y+1

(
1 + �1

)−k
k�1L1(k)

=

+∞∑
k=x

(
k

x

)
(1 − �)k−x

(
1 + �1

)−k
k�1L1(k)�

x+1

+∞∑
�=y

(
�

y

)
(1 − �)�−y�y+1

=

+∞∑
k=0

(
k + x

x

)
(1 − �)k

(
1 + �1

)−k−x
(k + x)�1L1(k + x)�x+1

∼ �

(
1 + �1
�1 + �

)�1+1

x�1L1(x)

(
1 +

�1
�

)−x

=

(
1 +

�1
�

)−x

x�1L∗
1
(x).

□
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Proof of Lemma 3.1:
a.) All moments of V exist, since the moment generating function of V exists for small posi-

tive values. Applying Taylor’s expansion to the function f (1 + h) = (1 + h)k, h > 0 , we get, 
for k ≥ 2,

for some 0 < h1 < h < h∗ , h∗ not depending on k. The expectation E(V2(1 + h∗)V ) is 
finite for h∗ < 𝜆 . Thus E(1 + h)V ≤ 1 + hE(V) + h2E(V2(1 + h∗)V ) . Due to the fact that 
(1 + h)k > 1 + hk the proof of the first claim is complete.

b.) Similarly we have

for some h∗ such that 0 < h < h∗ < 𝜆1∕𝛼I . Then

where C1 = E(V)
∑

i∈I �i and C2 = E(V2(1 + �Ih
∗)V )

∑
i∈I �

2
i
 . □
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H(x, y) =P(X > x, Y > y) =

≤ 𝜗

+∞∑
k=x

+∞∑
𝓁=y

(
k

x

)(
𝓁

y

)
(1 − 𝛼)k−x(1 − 𝛽)𝓁−y𝛼x+1𝛽y+1

(
1 + 𝜆1

)−k(
1 + 𝜆2

)−𝓁

× L3(k)L4(𝓁)max(1, 𝜃min(k,𝓁))k𝜉3𝓁𝜉4

≤𝜗

+∞∑
k=x

(
k

x

)
(1 − 𝛼)k−x𝛼x+1

(
1 + 𝜆1

)−k
k𝜉3L3(k)

×

+∞∑
𝓁=y

(
𝓁

y

)
(1 − 𝛽)𝓁−y𝛽y+1

(
1 + 𝜆2

)−𝓁
max(1, 𝜃𝓁)𝓁𝜉4L4(𝓁)

∼𝜗L∗
3
(x)x𝜉3

(
1 +

𝜆1
𝛼

)−x

L∗
4
(y)y𝜉4

(
1 +

𝜆2𝜃
𝛽

)−y

.□

(1 + h)k = 1 + kh +
k(k − 1)

2
h2(1 + h1)

k−2 ≤ 1 + kh +
k(k − 1)

2
h2(1 + h∗)k−2,

E(1 + �ih)
V ≤ 1 + �ihE(V) + (�ih)

2E(V2(1 + �Ih
∗)V ),

E(1 + h)Z =
∏
i∈I

E(1 + h)�i◦Vn−i = exp

(∑
i∈I

E(1 + �ih)
Vn−i

)

≤ exp
(
1 + �ihE(V) + (�ih)

2E(V2(1 + �Ih
∗)V )

)

≤ exp(C1h + C2h
2)
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