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ON THE MAXIMUM OF SUMS OF RANDOM VARIABLES AND
THE SUPREMUM FUNCTIONAL FOR STABLE PROCESSES

C. C. HEYDE*, University of Manchester

1. Introduction

Let X;, i=1,2,3,--- be a sequence of independent and identically distributed
random variables which belong to the domain of attraction of a stable law of index
« Write So =0, S, = 22, X;,n 2 1, and M, = max,<;<, S;- In the case where
the X; are such thatX.y n~'Pr(S, > 0) < oo, we have lim,_,, M, = M which is
finite with probability one, while in the case where X1 n 'Pr(S,<0)< o,
alimit theorem for M, has been obtained by Heyde [9]. The techniques used in [9],
however, break down in the case X7n " 'Pr(S, <0) = o0, X7n" 'Pr(S, > 0) = «©
(the case of oscillation of the random walk generated by the S,) and the only
results available deal with the case a = 2 (Erdgs and Kac [5]) and the case where
the X; themselves have a symmetric stable distribution (Darling [4]). In this paper
we obtain a general limit theorem for M, in the case of oscillation. Specifically,
if {B,,n=1,2,3,--+} is a monotone sequence of constants such that B, 1S, con-
verges in distribution to the stable law with characteristic function

68} exp{ — A tl“(l + iﬂsgnttanz—a)},

A>0,0<a=2,B=0ifa=1,|p| <lifa<1,|B| 2 1if1<a<2,weshallfind

H(x) = limPr (B, 'M, < x).
n—oo

In connection with the parameter restrictions, we note that the stable law with
characteristic function (1) is one-sided if a <1, Iﬁl =1 (e.g., Lukacs [12],
page 106) so that the random walk generated by the S, does not oscillate ([9],
Lemma). The case « = 1, 50 introduces a normalization complication and is not
amenable to treatment by the methods of this paper.

It is possible to approach the problem of finding H(x) in various ways. For, if
Y(t), t =0, Y(0) =0, is the separable stable process with stationary independent
increments which is based on (1), then also,
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420 C. C. HEYDE

H(x) = Pr(sup Y(¥) <x).
0=<t=s1
The double Laplace transform of Pr(sup,<,<,Y(#) < x) has, in this context,
been obtained by Baxter and Donsker [1]. Their results are, however, not in a
sufficiently explicit form to enable any of the properties of H(x) to be deduced.
In the present work, we make a more detailed investigation leading to considerably
more illuminating results.

2. The supremum functional for a stable process

In this section, we shall deal with the case where the X, themselves have a stable
distribution with characteristic function (1) (and, of course, the specified parameter
restrictions). This will be followed in the next section by an invariance theorem
to establish the generality of the limiting distribution found in the present context.

Under the present circumstances, it is a simple matter to establish the existence
of a limiting distribution for n=**M,. In fact, if Y(¢), t =0, Y(0) =0, is the
separable stable process with stationary independent increments which is charac-
terised by

Eexp{iuY(T)} =exp { — TA!u\“ (1 + iﬁsgnutan%“—)},

and if we take

_ k k—'l No—1 _ . N
Xk—[Y(z—)—Y(ZN )]2 k=122,

then it follows readily from Lemma 2 of Baxter and Donsker [1], that

) lim Pr(n~ " M, < x) = H(x),

where

(3) H(x)=Pr ( sup Y(H) <x )
05t=1

and also

Pr( sup  Y(r) <x ) = H(xT™'*).

O0=t=sT
We shall proceed, using methods of Darling [4], to obtain an expression for H(x).
For s real and positive, let
ds) = Pr(S,£0) + E(exp{—sSn};S,>0)
=Pr(X<0) + E(exp{—sn'"X}; X > 0),

since n”'* S, and X, have the same distribution. Then, using Theorem 4 of
Zolotarev [18], we obtain the unilateral Laplace transform
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_ 1 > sinzp
sX, - — b
4 E(e ™ X>0)=— L exp { = ()%} x2 + 2xcosmp + p4%

where

1/2
6 A= /1(1+ﬁ2tan2—7%x—) ,p=%+ ﬂ—laarctan[ — f tan nTcx] =Pr(X > 0),
(the result p = Pr(X > 0) was obtained by Chung-Teh [2]), so that for 0=t < 1,

n” 1g,(s)

~ M8

dx
x2+2xcosmp+1°

sin zp

= — (1 - p)log(1—1) -

fwlog [1—texp{ — (sx)%}

But, using (4),

sinmp f°° dx _
7 Jo X2+ 2xcosmp+1 P
and therefore,
[ee]
log(l~0+ X n 1t"(s)
1
__sinmp foolo 1 —texp {—(sx)*A;} dx
B T Jo & 1—1 x? 4+ 2xcosmp +1°

Consequently, as t11,

log(1— )+ X n~'t",[(1— H)t/es]» — S0P f log(1 + 5" 4)
1

7 o X*+2xcosmp+1

and, using the Spitzer-Pollaczek Identity (see for example Prabhu [13], page 218,
Theorem 4.1),

[e o]
(6) liTm (1—1) X E(exp{-s(l — )"} M,) = g(s),
til 0
where
sintp [ log(l + s%*A,)
7 — exp| —
™ 8(s) exp{ 7 fo x2 4+ 2xcosmp + 1 )

Precisely the argument of Darling [4] then yields the relation
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_ G(1 —5)
® Al = IrAd—srqd —o-t+sa-t)’

l.%sl sufficiently small, between the Mellin transforms,

A(s) = J;w x*"1dH(x),

G(s) = fo x*71 g(x) dx.

As with [4], it follows that H(x) is an absolutely continuous distribution function
and upon inverting in (8) we obtain the density function

ds,

c+ioo - —s
iH(x) =_1_. J‘ G(1 s)_x
dx 278 Jocjeo T —)I(L — o=t + sa—1)
(see for example Widder [17], pages 246, 247). We have thus established the

following theorem.
Theorem 1. If 0<cx§2andﬁ=0ifoz=1,lﬁl <lifa<1,

Bl £1ifl <ax<2,

then

d N A G - 5)x~*
©) o A =—5 Jc_m Id—-srd—at+ soc‘l)ds’
where

6 = [ " e g,

g(x) being given by (7).

The expression in (9) does not in general simplify conveniently. We shall go on
to examine an alternative method which is illuminating in its own right and has
the advantage of providing more recognisable results in certain particular cases.
This is based on the representation of M, in the form

M, =0 if R,=0
Mn=Zl+Z2+“.+ZRn’ lfRn;].,

where the Z; are successive strong ascending ladder steps for the random walk
generated by the S, (that is, Z; has the distribution of the minimum S with S; > 0)
and R, is the number of strong ascending ladder indices in the first n steps of the
random walk,
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Firstly, we need to investigate the distribution of R,. We easily see that the
occurrence of a strong ascending ladder index is a recurrent event in the usual
sense of Feller. This we shall denote by &, so that R, is the number of occurrences
of & in n steps. R, can be expressed as a sum of indicator random variables in the
following way:

where
5 { 1 if & occurs at the kth step,
k =

0 otherwise,

and we can study R, via the §,. If N, is the number of positive terms in the
sequence Si,S,, .S,

Pr(5k=1) = PI‘(Sk>0, Sk>Sls'“9Sk >Sk—1)

k
(10) = Pr(5,>0, X X,>0,---,X,>0)
2
= Pr(Nk=k)’

the X, being identically distributed. We now define sequences {u,, n = 0},
{fs» n =1}, as follows:

ug =1, u,=Pr(6,=1), nz=1,
fn = PI‘(51 = 0, 52 =0,"',5n_1 = O, 5n = 1), n _Z 1,

and introduce the generating functions

[o20] [o.0)
Uty = Zut", Fi= Xfl", 0=5t<L
n=0 n=1

These, of course, satisfy the standard identity of recurrent event theory,
v U=[1-F®H]', 0=gt<l.

Then, using a well-known result of Sparre-Andersen (see for example Spitzer [16],
page 219) together with (5) and (10), we have

(12) U(t) = exp E k™ 'Pr(X > 0)} =(1-0".
1

Lemma. The recurrence time distribution of & belongs to the domain of
attraction of the stable law of index 1 — p.
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Proof. Ifq,= X2 ,..f. we have

A=) [ =FO] = X af=(1 -0,

using (11) and (12), so that

0
1= gt"=1,

n=0

and applying a standard Tauberian theorem (see for example Feller [7],
page 423, Theorem 5),

1
"N—-——n
T =p)

-9

as n — oo. The result of the lemma then follows immediately by appeal to Theorem
la, page 303 of Feller [7]. Then, using the lemma in conjunction with Theorem 7
of Feller [6], we readily obtain:

Theorem 2. Let G, be the distribution function of the stable law whose
characteristic function is given by

np ., . TP
g,(1) =exp { — ltl” (0057 — isin —2—sgnt)},
where p = Pr(X > 0). Then,
(13) limPr(n™ R, £x)=1-G,(x"/"), x=0.

n— oo

Remark. Only in the case p = 1 is it possible to give a convenient alternative
form for the limit distribution in (13). We have, making use of a result due to Lévy
(see for example Lukacs [12], page 107),

d . -
- Gy =477 x fexp{—1/4x}, x>0,

so that
(14) % [1- G%(x_z)] =1 *exp{— 1/4x2} .

Thus, the limit distribution is a truncated normal.
Next, we need to examine the limit properties of the Z,, We have (see for
example Prabhu [13], page 210, Theorem 2.2)
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o0
1 — Ee " = exp{ — X n ' E(exp{—sSn};S,> 0);
1

= exp{ — X n 'E(exp{—sn'"X}; X > 0)}
1

= eXp{Sin::p Lwlog [1 —exp{— (sx)“ll}] & }’

x2 + 2xcoswp + 1

using (4). Furthermore, if

dx
x2 4+ 2xcosmp + 1

[e.¢]
1) = [ o[t - exp{~ ()%)]
0
then we can write I(s) = I,(s) + I,(s), where

_(® log b(sx) _ jw log [(sx)*4,]
L) = J(; x2 + 2xcosmp + 1dx, L) = o X2+ 2xcosmp+1

and b(u) = [1 —exp{ — u“A,}]/(u®A,). Then, I;(s) >0 as s -0 using dominated
convergence. Also,

f‘” dx np f‘” log x dx
= — s = 0,
o X2+ 2xcosmp+1 sinp o X%+ 2xcosmp + 1

using (4) and Gradshteyn and Ryzhik [8], page 533, respectively, so that

__mp
I,(s) = sinﬁp(log/l1 + alogs)
and hence
sT(1 — Ee™%) = 57 exp{ L) + 149)) 1
(15) — Jfexp {geh(s)}

%7 Pr(X>0)
> ¥ = [,1(1 +ﬂ2tan2%a—) ]

as s » 0. Now it is easily checked from (5) that op < 1, with equality if and only if
l<a=<2and f=1whenoa <2.Thus,if0<a=<lorl<a<2and —1Z2f<1,
n~*(Z, +... + Z ) converges in distribution to the stable law with characteristic
function

exp{ - M | t|“”(1 — isgnttan n—;—p—)},

while if 1 <« <2 and f =1 when o < 2, we have ap = 1 so that
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+11/a 1/a
sT'(1 — Ee™*%) - [l(l + tan? n—;) ] = [Asec(n—g?)] ,

and therefore,
1/a
(16) EZ = [lsec(rc —~ ?)] < .

These results clarify those of Rogozin [15], where it is not possible to calculate
specifically the constant in (15). We are now in a position to establish the following
limiting result.

Theorem 3. Ifl<a<2and =1 when o <2, [ﬁ[glwhen o = 2, then

a7n H(x)=1-— Gl/a( - lsec%x““), x=0,
where G, is the distribution function of the stable law whose characteristic
function is given by

T

_ _ 1/a s E
gl/a(t)—exp{ lt‘ (cosza isin 2asgnt)}.

Proof. We may write

(18) Mn _Z1+“.+ZRn _Rn .Zl+“.+ZRn
nile nile T il R ’

n

Now, in view of (16) and using Theorem 2 of Richter [14],
san 1/“
(19) Z_1+R—+ZR" L EZ = [ p sec(n . %)] ,

(““p>* stands for convergence in probability). Also, we have from Theorem 1 that

(20) lim Pr(n "R, £ x) =1 — Gy,,(x™%).

n—>o

Then, using a standard convergence result (see for example Cramér [3], page 254),
it follows from (18), (19) and (20) that

H(x) =limPr(n""*M, < x) = lim Pr(n"'"R,EZ < x)

n— o n— 0

= ]_ - Gl/a(— ASCC%X_G) .

This completes the proof of the theorem. In the particular case « = 2, we see from
(14) that

(21) H( )——1~ T A f T e gy
X) = \/TC . e u = \/(TIA) . e .
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The result (21) is wellknown and has a long history. Different methods of derivation
can be seen in Erdés and Kac [5], Lévy [11], page 85, and Darling [4].

3. Limit theorem for maxima of partial sums
We shall establish the following invariance theorem.

Theorem 4. Let X;,i=1,2,3,--- be a sequence of independent and identically
distributed random variables and write S,= X,”.,X;, n=1, S,=0, and
M, = maxy <, <, S;. Suppose that there exists a monotone sequence of constants
{B,, n=1,2,3,---} such that B, 'S, converges in distribution to the stable law with
characteristic function (1). Then,

lim Pr(M, < B,x) = H(x),

n—+ o

the distribution function H(x) being given by (9), (17) or (21).

Proof. LetY,i=1,2,3, - beindependent and identically distributed random
variables with characteristic function (1) and write W, = X'_, Y,. Write also,
H,(x)=Pr(M, < B,x) and for n; = [jk™'n], j =1, k, ([u] here refers to the
integer part of u) H, ;(x) = Pr[max(S,,,S,,,::*,S,) < B,x]. Then, since B, is of
the form n'/L(n) where L(n) is slowly varying as n — oo (Ibragimov and Linnik
[10], Theorem 2.1.1), we have

S0
= < p L n B A
H, (x) = Pr(Max(S,,,S,,, -, S,) = ny "L(ny) (”1) L(nl)x)'
Consequently, it follows from the multidimensional central limit theorem and
Equation (2) that for x > 0,

(22) lim lim H,,(x) = lim Pr ( max W; £ k”“x) = H(x).

k— 00 p— o0 k— 0 125k
Now, for arbitrary ¢ > 0, define
X, if — KeB, < X, <¢B,,
an = { .
0 otherwise,

where K= K(e,n) is chosen such that EX,, = 0. It is easily seen that K(g,n) - K,
a positive constant, as n— oo. Write S, ,, = 20 Xy, where m =n,,,; —r and
ni <r é ni+ 1- Then, ifN = l’li+1 - ni, we haVC

Pr(|S,.,—S.|>¢eB) = Pr(|S,|>eB)
< m[Pr(X < —KeB,) + Pr(X >¢B)]+ Pr(]S,,.|>¢B,)
(23) < N[Pr(X < —KeB,) +Pr(X >¢B,)]| +¢ *B, ’ES?,,

IA

N[Pr(X < —KeB,) + Pr(X > ¢B,)] + N¢ " *B, EX2,
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where we have used Chebyshev’s inequality in obtaining the second last inequality.
Now, nB, 2 EXZ < c¢,e* ", nPr(X < —KeB,) <c,e * ,and n Pr(X>¢B,) < ¢3¢ °
as n — oo, where c,,c,,c5 are positive constants (not depending on &) (Feller [7],
pages 304, 544-546) and, furthermore, N ~ k™ 'n. It follows then, from (23), that
we can choose a positive constant ¢ such that for all i, r, n,

(24) Pr(|S,.,—S.|>¢eB) < ck ™"

Consequently for x > 0,

Pr(M,> Bx)= X Pr( max S;< B,x,S,> an)

r=1 1<j<r—1
k=1

= > Pr( max Sj§B,,x,S,>B,,x,lS,,i+1—S,l>aB,,)
i=0 mi<r=Zni+1 1£jsr—-1
k-1

+ > Pr( max S; < B,x, S, > B,x, [S,,,, — S, §sB,,)
i=0 ni<rinisa 15jsr—1

(25) n
< ckleTr X Pr( max S; < B,x, S,>B,,x>
r=1 1<jsr—1

k—1

+ X )y Pr( max S; £ B,x, S, > B,x, S,,H,—S,|§eBn)
i=0 m<rZm+i 1£jsr—1

< ckTleT + 1 — Hy(x — o),

using (24). Finally, since H,(x) < H, ,(x), and with the aid of (25), we deduce that

(26) Hyy(x — &) — ck '8 ™ < H,(x) < H, ().

In view of (22), the result of the theorem is then immediate if we let n — co and then
k — oo in (26) since H(x) is an absolutely continuous distribution function.

Addendum

The author has been informed by a referee that Theorems 3 and 4 of this paper
are derivable from results of A. V. Skorokhod in “Random Processes with Inde-
pendent Increments” Izdat. Nauk (Moscow) 1964 (in Russian). It has not been
possible to compare methods due to the unobtainability of this book. A number
of improvements to the exposition of this paper have been suggested by the ref-
erees and these the author gratefully acknowledges.
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