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ON THE MAXIMUM PRINCIPLE FOR VISCOSITY
SOLUTIONS OF FULLY NONLINEAR ELLIPTIC EQUATIONS

IN GENERAL DOMAINS

I. CAPUZZO DOLCETTA - A. VITOLO

We analyze the validity of the Maximum Principle for viscosity so-
lutions of fully nonlinear second order elliptic equations in general un-
bounded domains under suitable structure conditions on the equation al-
lowing notably quadratic growth in the gradient terms.

1. Introduction

Consider the fully nonlinear partial differential equation

F
(
x,u(x),Du(x),D2u(x)

)
= 0 , x ∈ Ω (PDE)

Here Du, D2u denote, respectively, the gradient and the Hessian matrix of the
function u. We will assume that the continuous function F : Ω× IR× IRN ×
S N → IR is non-decreasing in the matrix variable with respect to the partial
order on the space S N of real N ×N symmetric matrices induced by positive
semi-definiteness.
Due to the fully nonlinear character of the degenerate elliptic equation (PDE), it
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is appropriate to understand solutions in the generalized viscosity sense. A com-
prehensive well-posedness and regularity theory has been developed for viscos-
ity solutions of equations of the above type, mainly in the case of a bounded
domain Ω, see for example [9], [17], [21], [25] and the references therein.
Our purpose here is to present a few recent results, mostly taken from [13]
and [15], concerning some qualitative properties, related to the validity of the
Maximum Principle, of viscosity solutions of (PDE) in a general, possibly
unbounded domain Ω⊂ IRN . More precisely, we will analyze the validity of the
Alexandrov-Bakelman-Pucci Maximum Principle and of the Phragmen-Linde-
löf Principle for viscosity solutions of (PDE). In this context, a relevant role will
be played by some measure-geometric properties of the unbounded domain Ω,
but not on its smoothness. Let us point that our results can be seen as extensions
in several directions (namely, nonlinearity of the equation, generality of the do-
main and non smoothness of solutions) of the corresponding results for strong
solutions (i.e., twice Sobolev-differentiable functions) of linear uniformly ellip-
tic equations in non-divergence form

Tr(A(x)D2u)+b(x) ·Du+ c(x)u = 0 , x ∈ Ω (LPDE)

see for example [1], [3], [5], [28], [31].
Indeed, our results in Section 6 and 7 extend the validity of the Maximum Prin-
ciple to bounded above viscosity subsolutions of (PDE) for degenerate elliptic
nonlinear differential operators satisfying

F(x, t, p,X)≤P+
λ ,Λ(X)+b(x)|p|+b2|p|2 + c(x)t ,

where P+
λ ,Λ is the Pucci maximal operator, see Section 2, in unbounded do-

mains Ω such as spirals, complements of infinite hypersurfaces, periodic lattices
of balls which can be seen as wide generalizations of cones and cylinders, see
Section 5 and Subsection 7.2 for more examples.
Let us point out explicitly that we only suppose c(x) to be non-positive and
even, in the special case of narrow domains, we allow c(x) to be bounded above
by a small positive constant. It is well-known that if c is bounded above by a
negative constant, then the Maximum Principle holds in any domain, see [23],
[22]. On the other hand, as explained in Section 4, the Maximum Principle fails
in exterior domains in the case c(x)≤ 0.
In Section 8 we show the boundedness of subsolutions from above can be
relaxed in order to obtain some qualitative Phragmèn-Lindelöf theorems for
subsolutions with polynomial (respectively, exponential) growth at infinity in
domains of conical (respectively, cylindrical) type. Analogous results can be
shown for supersolutions.
The somewhat related issue of Liouville type theorems for viscosity solutions of
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(PDE) will not be touched in the present paper. Recent results in this direction
can be found in [16], [12], [35].

After two short sections on basic assumptions, viscosity solutions and a
quick review of results in the linear case, the paper addresses the following
topics:

• the Alexandrov-Bakelman-Pucci Maximum Principle for (LPDE),

• G- and wG- domains,

• the Alexandrov-Bakelman-Pucci ABP Maximum Principle for (PDE),

• some extensions of ABP Maximum Principle for (PDE) to more general
domains, solutions with exponential growth in narrow domains, equations
with quadratic growth in Du,

• Phragmèn-Lindelöf theorems for (PDE),

• Minimum Principles for (PDE).

2. Basic assumptions

Let S N be the set of N×N symmetric matrices endowed with partial ordering:

X ≥ Y if and only if X −Y positive semidefinite.

Following [9], we consider the class of continuous functions F : Ω× IR× IRN ×
S N → IR such that

λTr(Q)≤ F(x, t, p,X +Q)−F(x, t, p,X)≤ ΛTr(Q) for any Q ≥ O (1)

for given positive constants λ and Λ (in the above, Tr denotes the trace of a
matrix).
The left-hand side inequality is a uni f orm ellipticity condition. Note that con-
ditions above imply that F is monotonically increasing and Lipschitz continuous
in the matrix variable.
Our basic assumptions on F will be however a bit less restrictive; we will as-
sume indeed just non-decreasing monotonicity (that is, degenerate ellipticity)
in the matrix variable of function F and some extra structure condition that will
be specified next.
The class of functions defined by condition (1) contains two extremal operators
which will play a crucial role in our analysis. For

Aλ ,Λ =
{

A ∈S N : λ I ≤ A ≤ ΛI
}
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a compact convex subset of S N , the convex function

X → sup
A∈Aλ ,Λ

Tr(AX) := P+
λ ,Λ(X)

is the Pucci maximal operator, which is positively homogeneous

P+
λ ,Λ(tX) = t P+

λ ,Λ(X), t ≥ 0

and subadditive

P+
λ ,Λ(X +Y )≤P+

λ ,Λ(X)+P+
λ ,Λ(Y ).

Since any X ∈S N can be decomposed as X = X+−X− with X+ ≥ 0, X− ≥ 0
and X+X− = 0, it follows that

P+
λ ,Λ(X) = ΛTr(X+)−λ Tr(X−)

Respectively, the concave function

X → inf
A∈Aλ ,Λ

Tr(AX) := P−
λ ,Λ(X)

is the Pucci minimal operator which is positively homogeneous and superaddi-
tive. Note that

P−
λ ,Λ(X) =−P+

λ ,Λ(−X) = λ Tr(X+)−ΛTr(X−),

and, moreover,
P−

λ ,Λ(X +Y )≤P−
λ ,Λ(X)+P+

λ ,Λ(Y ).

Note also that for any F satisfying (1) the following holds

P−
λ ,Λ(X)+F(x, t, p,O)≤ F(x, t, p,X)≤P+

λ ,Λ(X)+F(x, t, p,O). (2)

Assuming F to be non-increasing with respect to t ∈ [0,+∞) and that

F(x,0, p,O)≤ b(x)|p|

for some non-negative function b(x) ∈C(Ω)∩L∞(Ω), from the right-hand side
of (2) we derive the above structure condition:

F(x, t, p,X)≤P+
λ ,Λ(X)+b(x)|p|, (ASC)

which will be sufficient for most results concerning viscosity subsolutions of
(PDE). The symmetric below structure condition

F(x, t, p,X)≥P−
λ ,Λ(X)−b(x)|p| (BSC)
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will be used for supersolutions.

We point out that while condition (1) implies (ASC) and (BSC), the con-
verse is not true except in special cases. For instance, if F is linear in the ma-
trix variable, then (ASC) is enough to imply uniform ellipticity of the operator
F(x, t,0,X). Indeed,

−F(x, t,0,−Y ) = F(x, t,0,X +Y )−F(x, t,0,X) = F(x, t,0,Y )

so, using the relationship between the extremal Pucci operators, for Y ≥ 0 we
get

λTr(Y )≤P−
λ ,Λ(Y ) =−P+

λ ,Λ(−Y )≤

≤ F(x, t,0,X +Y )−F(x, t,0,X)≤P+
λ ,Λ(Y )≤ ΛTr(Y ).

Some nonlinear degenerate elliptic operators fulfill our assumptions but not (1),
for example

F(X) = Λ

(
N

∑
i=1

ϕ(µ
+
i )

)
−λ

(
N

∑
i=1

ψ(µ
−
i )

)
Here, µ

±
i , i = 1 , . . . N, are the positive and negative eigenvalues of the matrix

X(x) ∈ S N and ϕ , ψ : [0,+∞) → [0,+∞) are continuous and nondecreasing
functions such that

ϕ(s)≤ s ≤ ψ(s) .

We will also consider the case of quadratic growth in the gradient. In this case
we will employ the structure conditions

F(x, t, p,X)≤P+
λ ,Λ +b(x)|p|+b2|p|2 (QASC)

and
F(x, t, p,X)≥P−

λ ,Λ−b(x)|p|−b2|p|2, (QBSC)

where b2 is a positive constant.

3. Viscosity solutions

A function u ∈USC(Ω) is a viscosity subsolution of (PDE) if the inequality

F(x0,u(x0),Dϕ(x0),D2
ϕ(x0))≥ 0

holds at any point x0 ∈ Ω and for all quadratic polynomials ϕ touching from
above the graph of u at x0, i.e. ϕ(x0) = u(x0) and u(x)≥ ϕ(x) in a neighborhood
of x0.
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Observe that u is a viscosity solution of ∆u ≥ 0 if and only if u is subharmonic
function in the sense of potential theory: for any ball B ⊂ Ω and for all h such
that ∆h = 0 in B, the inequality u ≤ h on ∂B implies u ≤ h in B, see [10]

Viscosity supersolutions are defined in a symmetric way: a function u ∈
LSC(Ω) is a viscosity supersolution of (PDE) if the inequality

F(x0,u(x0),Dϕ(x0),D2
ϕ(x0))≤ 0

holds at any point x0 ∈ Ω and for all quadratic polynomials ϕ touching from
below the graph of u at x0.
A viscosity solution of (PDE) is a function u ∈C(Ω) which is both a sub- and
a supersolution. Observe also that any u ∈USC(Ω)∩C2(Ω) satisfying (PDE)
in the viscosity sense is a classical solution of the equation and, conversely, that
any classical solution u∈C2(Ω) is a viscosity solution. Main general references
on viscosity solutions are [17], [9], [14].

4. The ABP Maximum Principle for linear inequalities

The classical (ABP) estimate in a bounded domain Ω of IRN , see [20], is

sup
Ω

u ≤ sup
∂Ω

u+ +C diam(Ω) || f ||LN(Ω) (ABP)

where u is any C(Ω)
⋂

W 2,N(Ω) solution of the uniformly elliptic inequality

Tr
(
A(x)D2u

)
+b(x) ·Du ≥ f (x) in Ω .

As an immediate consequence of (ABP), the Maximum Principle holds:
if c ≤ 0 and u ∈C(Ω)

⋂
W 2,N(Ω) satisfies

Tr
(
A(x)D2u

)
+b(x) ·Du+ c(x)u ≥ 0 in Ω , (3)

then
u ≤ 0 on ∂Ω implies u ≤ 0 in Ω. (MP)

Extensions of (ABP) and (MP) to unbounded domains of finite measure have
been established in [4] for bounded above solutions of (3), substituting (ABP)
the dependence on diam(Ω) with the Lebesgue measure |Ω| of the domain:

sup
Ω

u ≤ sup
∂Ω

u+ +C |Ω|
2
N || f ||L∞(Ω),

On the other hand, it is well-known that (MP) does not hold in an arbitrary
unbounded domain of infinite measure:

u(x) = 1−1/|x|N−2, N ≥ 3 ,
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is harmonic on the exterior domain Ω = IRN \B1(0), u ≡ 0 on ∂Ω but u > 0 in
Ω.
Note also that (MP) may not hold for unbounded above solutions:

u(x) = u(x1,x2) = ex1 sinx2

is harmonic and unbounded on the unbounded plane strip

Ω =
{

x = (x1,x2) ∈ IR2 : |x2|< π
}

and u ≡ 0 on ∂Ω, but u changes sign in Ω. To enforce the validity of (MP)
in unbounded domain of infinite measure some condition on the domain needs
therefore to be imposed. For the results in Sections 6 and 7 we will consider
only bounded above solutions, while this restriction will be relaxed in Section 8

5. G- and wG- domains

An improved form of the (ABP) estimate for bounded above strong solutions of
linear inequalities as above has been established in [5]:

sup
Ω

u ≤ sup
∂Ω

u+ +C R(Ω) || f ||Ln(Ω) (ABP)G

depending on a new geometric constant R(Ω) for domains satisfying the follow-
ing condition (G) requiring, roughly speaking, that there is enough boundary
near every point in Ω:

(G) for fixed numbers σ ,τ ∈ (0,1), there exists a positive real number R(Ω)
such that for any y ∈ Ω there exists an N-dimensional ball BRy of radius Ry ≤
R(Ω) satisfying

y ∈ BRy , |BRy \Ωy,τ | ≥ σ |BRy |

where Ωy,τ is the connected component of Ω∩BRy/τ
containing y.

Note that condition (G) implies in particular

sup
y∈Ω

dist(y,∂Ω) < ∞ .

Condition (G) is satisfied by domains with finite measure with

R(Ω) = C(N)|Ω|
1
N
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and also for a large class of unbounded domains with infinite measure. For
instance, cylinders and slabs:

Ω = IRk×ω, k ≥ 1,

where ω is a bounded domain in IRN−k of diameter d satisfy (G) with R(Ω) = d.
For this the reason we will sometimes in the sequel refer to G - domains as to
cylindrical domains. As another example, the complement of a periodic lattice
of balls of period l:

Ω = IRN\ ∑
k∈ZN

(lk+B1(0)),

satisfy (G) with R(Ω) = l. A further example is provided by the complement of
a plane spiral with constant step σ , in polar cohordinates

Ω = IR2\{ρ =
σ

2π
θ}

In this case, R(Ω) = s.

More general domains, which satisfy a weaker form (wG) of condition (G),
have been considered in [7], [37]. Condition (wG) is as follows:

(wG) there exist constants σ ,τ ∈ (0,1) such that for all y∈Ω there is a ball
BRy of radius Ry containing y such that

|BRy \Ωy,τ | ≥ σ |BRy |

where Ωy,τ is the connected component of Ω∩BRy/τ containing y.

Observe that condition (wG) with Ry = O(1) as |y| → ∞ implies condition (G)
.

Typical examples of unbounded domains satisfying (wG) but not (G) are
nondegenerate cones of IRN (and their unbounded subsets). For those sets, (wG)
holds with Ry = O(|y|) as |y| → ∞. Such domains will be referred to as conical
domains.
A less standard example of wG-domain is the complement of the logarithmic
spiral; in polar cohordinates,

Ω = IR2 \
{

ρ = eθ , θ ≥ 0
}

Condition (wG) is satisfied with Ry = O(|y|) as |y| →∞. Observe in this respect
that in the case

Ω = IR2 \{ρ = h(θ) , θ ≥ 0} ,
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with h(θ) growing faster than exponentially, condition (wG) might not be veri-
fied with the above bound Ry = O(|y|).

In a conical domain, the following variant of the improved (ABP) estimate
of [5] was proved in [37] for bounded above strong solutions of (3), provided
that b(x) = O(1/|x|) as |x| → ∞,

sup
Ω

u ≤ sup
∂Ω

u+ +C sup
y∈Ω

||(|x|+1) f (x)||Ln(Ωy,τ ) (ABP)con

This yields (MP) under the above assumptions. However, no bound on the
growth of Ry at infinity is required to have (MP) in the case b ≡ 0, see [7].
The above mentioned results are based on a suitable version of the Krylov-
Safonov Growth Lemma, which can be obtained using a boundary weak Har-
nack inequality.
Recently, interior estimates as Harnack inequalities have been extended to vis-
cosity setting, where it is natural to carry out up to the boundary [36], [8], [9],
[27], [25].

6. The ABP Maximum Principle for (PDE)

The next result from [13] is a generalization of (ABP)G and (ABP)con estimates
and, consequently, of the Maximum Principle to viscosity solutions of fully
nonlinear equations.

Theorem 1. Let u ∈USC(Ω) with supΩ u < +∞ be a viscosity solution of

F(x,u,Du,D2u)≥ f (x) , x ∈ Ω ,

where f ∈C(Ω)∩L∞(Ω) and Ω is a domain of IRN satisfying condition (wG) .
Assume that F is continuous and elliptic and that (ASC) holds for given con-
stants 0 < λ ≤Λ and some 0 < b∈C(Ω)

⋂
L∞(Ω). Assume moreover that (wG)

is satisfied for some Ry such that

Rb := sup
y∈Ω

Ry ‖b‖L∞(Ωy,τ ) < ∞ . ( b)

Then,
sup

Ω

u ≤ sup
∂Ω

u+ +C sup
y∈Ω

Ry ‖ f−‖LN(Ωy,τ ) (ABP)wG

for some positive constant C depending on N, λ , Λ, σ , τ and Rb.
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We refer for the proof to [13]. As an immediate consequence of (ABP)wG,
the Maximum Principle holds:
if u ∈USC(Ω) is bounded above and

F(x,u,Du,D2u)≥ 0 , x ∈ Ω ,

then
u ≤ 0 on ∂Ω implies u ≤ 0 in Ω. (MP)

Indeed, if b ≡ 0, i.e. when F does not depend on first-order derivatives,
condition ( b) is trivially satisfied in any (wG)-domain. In general, however,
some condition relating the size of the domain with the size of first order terms
is crucial for the validity of (MP) in unbounded domains. Indeed,

u(x) = u(x1,x2) =
(

1− e1−xα
1

) (
1− e1−xα

2

)
with 0 < α < 1, is bounded and strictly positive in the cone

Ω =
{

x = (x1,x2) ∈ IR2 : x1 > 1, x2 > 1
}

while satisfying

u|∂Ω
= 0 , ∆u+B(x) ·Du = 0 in Ω

with B given by

B(x) = B(x1,x2) =

(
α

x1−α

1
+

1−α

x1
,

α

x1−α

2
+

1−α

x2

)

Since Ω satisfies (wG) with Ry = O(|y|) as |y| → ∞ and that the structure
condition (ASC) holds with b(x) = |B(x)|, condition ( b) fails in this example.
If one only suppose b to be bounded, then in order to enforce ( b) the require-
ment is that supy∈Ω Ry ≤ R0 < +∞ in (wG), i.e. the stronger condition (G),
so that the (ABP)wG estimate reduces in this case to the (ABP)G estimate in
[5]. For a convex conical domain, one can always choose balls BRy in condi-

tion (wG) in such a way that
dist(BRy ,0)

|y| ≥ ε > 0 for all y ∈ Ω. Hence, choosing

|b(x)| ≤ b0

(1+|x|2)
1
2

, then ( b) is fulfilled and this leads to the (ABP)con estimate

for convex conical domains, see [13].
In the intermediate case of parabolically shaped domains, defined for k > 1 by
the inequalities

|x′| ≡

√
N−1

∑
i=1

xi < x1/k
N ,xN > 0,
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for which (wG) holds with R = O(x1/k
N ), a similar argument can be used to show

that ( b) holds provided b(x) = O(1/x1/k
N ) as |x| →∞. Note that cylindrical and

conical domains can be seen as limiting cases of above situation when, respec-
tively, k →+∞ and k → 1.

7. Some extensions

In this section we propose a few results establishing the validity of the Max-
imum Principle in some situations not directly covered by Theorem 1: more
general domains, solutions with exponential growth in narrow domains and, fi-
nally, equations with quadratic growth in Du.

7.1. More general domains

The next result, whose proof consists in a globalization argument based on it-
erated applications of Theorem 1, see [7], [37], shows the validity of (MP) in
domains which are, roughly speaking, piecewise -(wG) .

Theorem 2. Let u ∈USC(Ω) with supΩ u < +∞ be a viscosity solution of

F(x,u,Du,D2u)≥ 0 , x ∈ Ω , (PDE)

where f ∈ C(Ω)∩ L∞(Ω). Assume that F is continuous and elliptic and that
(ASC) holds for given constants 0 < λ ≤ Λ and some 0 < b ∈C(Ω)∩L∞(Ω).
Assume moreover that there exists a closed set H with the following properties:

(i) (MP) holds for bounded from above viscosity solutions in each connected
component of Ω\H,

(ii) there exist constants σ ,τ ∈ (0,1) such that for all y ∈H there is a ball BRy

of radius Ry containing y such that

|BRy \Ωy,τ | ≥ σ |BRy |

where Ωy,τ is the connected component of Ω∩BRy/τ containing y,

(iii)
sup

y∈H∩Ω

Ry ‖b‖L∞(Ωy,τ ) < ∞ ( b)H

Then the Maximum Principle holds:

u ≤ 0 on ∂Ω implies u ≤ 0 in Ω. (MP)
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By Theorem 1, condition (i) holds in particular if each connected component
Ω′ of Ω\H is a wG-domain satisfying condition ( ′b).
Theorem 2 applies, for example, to non-convex cones such as

Ω = {(x1,x2) ∈ IR2 : x2 >−|x1|}

(take H = {(x1,x1) ∈ IR2 : x1 > 0}∪{(x1,−x1) ∈ IR2 : x1 < 0}). Using again
Theorem 2, (MP) can therefore be extended to the cut plane

Ω = IR2 \
{
(x1,0) ∈ IR2 : x1 ≤ 0

}
by taking H =

{
(x1,−x1) ∈ IR2 : x1 < 0

}
.

A similar argument works for further general domains, even in higher dimen-
sions, for instance in the complement Ω = IRN\H of a hypersurface H = ϕ(Γ),
where Γ is a (N−1) - dimensional cone, e.g.

Γ = {x = (x1, . . . ,xN) ∈ IRN : xi ≤ 0, i = 1, . . . ,N−1, xN = 0}

and ϕ a continuous function with sub-linear growth, i.e.

|ϕ(x)| ≤ h+ k|x|.

Let K ⊂ IRN be the set of all closed balls with some fixed radius ρ centered at
the points of a (N− 1) - dimensional cone Γ with integer coordinates; one can
check that Ω = IRN\K turns out to be an admissible domain for Corollary 2.

7.2. Narrow domains

The next result shows that the Maximum Principle may hold for unbounded
solutions of (PDE), provided the unbounded domain satisfies an appropriate
narrowness condition, related to the rate of growth at infinity of the solution.
More precisely, consider the unbounded cylinder

Ω = IRk×ω with k +h = N, h,k ≥ 1 ,

where ω is a bounded domain of IRh with diameter diam(ω). As pointed out
before above this is typical example of G-domain.

Theorem 3. For F as in Theorem 1 and Ω as above, suppose ‖b‖L∞(Ω) ≤ b1 and
let

u ∈USC(Ω) , F(x,u,Du,D2u)≥ 0 ,x ∈ Ω ,

with
u ≤ 0 on ∂Ω , u+(x) = o(eβ |x|) as |x| →+∞ .

Then, for any β > 0 there exists d = d(N,λ ,Λ,b1,β ) > 0 such that, if diam(ω)
< d, then u≤ 0 in Ω. Conversely, for any fixed d > 0 there exists β = β (N,λ ,Λ,
b1,d) such that if diam(ω) < d, then u ≤ 0 in Ω.
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Qualitative results of this type for general linear uniformly elliptic opera-
tors can be found in [1], see also [6] for semilinear operators. Note that when
F(D2) = ∆ and Ω is the 2 - dimensional strip IR×(0,d), there is a precise quan-
titative relationship between the diameter d and the growth exponent β , namely
β = π/d, see [18].

The proof of Theorem 3 is based on the construction of a suitable sequence
of smooth barrier functions Φk on finite cylinders C̄k = B̄k(0)× ω̄ , k ∈ IN, such
that

P+ (D2
Φk(x)

)
+b1 |DΦk(x)| ≤ 0 in Ck,

Φk ≥ 0 in C̄k, Φk ≥ u+ on ∂C̄k\∂Ω

and for each fixed x ∈ Ω

lim
k→∞

Φk(x) = 0

It is a familiar technique in the case of a linear operator to use (MP) in bounded
domains Ck, considering differences u−Φk, and then passing to the limit as
k → ∞. The difficulty in implementing this procedure in the present nonlinear
setting is overcome by the use of the structure condition (ASC), together with
the superadditivity of the maximal Pucci operator, since standard calculus rules
apply since Φk is twice continuously differentiable, see [13] for details.

A similar result holds for viscosity subsolutions with polynomial growth
u(x) = O(|x|α) in angular sectors Ω = IRk ×ω , where ω is a cone in IRh and
h+ k = N, provided (ASC) holds true with b(x) = O(1/|x|) as |x| → ∞. In this
case, in order to get (MP), the opening of the cone has to be sufficiently small
depending on the exponent α and the various structure parameters.

7.3. Quadratic dependence on Du

We have considered up to now second-order fully nonlinear operators with lin-
ear growth in the gradient variable. Let us briefly describe how the previous re-
sults can be extended to the case of a quadratic growth in the gradient variable.
A fundamental tool in the proof of Theorem 1, see [13], is the weak Harnack in-
equality for functions w ∈ LSC(A) satisfying in the viscosity sense in a domain
A of IRN the partial differential inequality

w ≥ 0, P−
λ ,Λ(D2w)−b(x)|Dw| ≤ g(x) (4)

with b,g ∈C(A)∩L∞(A) , namely:

there exist positive numbers C, p depending on N,λ ,Λ,b1 such that(
1
|B1|

∫
B1

wp
)1/p

≤C
(

inf
B2

w+‖g‖Ln(B4)

)
(5)
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where B1 ⊂ B2 ⊂ B4 ⊂ A are concentric balls of radii 1,2 and 4, respectively
and

b1 = ‖b‖L∞(B4)

see [20] for linear operators and [9] for the case b ≡ 0.
Consider now an additive quadratic gradient term to the operator in the above
inequality,

P−
λ ,Λ(D2v)−b(x)|Dv|−b2|Dv|2 ≤ g(x), (6)

where b2 is a positive constant, and suppose that

0 ≤ v ≤ M in A . (7)

If v is a viscosity solution of (6), the function w = h−1(v), where h is smooth
non-negative increasing and convex, satisfies

P−
λ ,Λ(D2w)+λ

h′′(w)
h′(w)

|Dw|2−b(x)|Dw|−b2h′(w)|Dw|2 ≤ g(x)
h′(w)

in the viscosity sense. The proof of this fact requires some viscosity calculus to-
gether with the superadditivity and the ellipticity of P−

λ ,Λ . Solving the ordinary
differential equation

λh′′(t)−b2(h′)2(t) = 0

one finds

h(t) =
λ

b2
log
(

1− b2t
λ

)−1

,

which satisfies the required properties for t ∈ [0, λ

b2
). Correspondingly, the func-

tion

w =
λ

b2

(
1− e−

b2v
λ

)
is a solution of (4) with right-hand side ĝ = g(1−b2w/λ ) instead of g.
Applying the weak Harnack inequality (5) to w and observing that

1− e−
b2M

λ

b2M
λ

v ≤ w ≤ v ,

we derive a weak Harnack inequality for positive and bounded above solutions
of (6) , namely (

1
|B1|

∫
B1

vp
)1/p

≤C
(

inf
B2

v+‖g‖Ln(B4)

)
(8)
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Observe that the constant C will also depend in this case on b2M. The depen-
dence on the upper bound M in the estimate seems to be unavoidable, see [36]
and [27]. Note that this dependence occurs also in the Alexandrov-Bakelman-
Pucci estimate for second-order elliptic operators, see [26]. Since we will only
need to deal with bounded above non-negative supersolutions and to keep finite
the constants appearing in the estimates, this fact it is not relevant for the appli-
cations, see below in this Section, of estimate (8) to the Maximum Principle.

A boundary version of inequality (8) can be easily obtained in a natural
way in the viscosity framework. Indeed, let A be a bounded domain in IRN and
BR ,BR/τ , τ ∈ (0,1), be concentric balls such that

A∩BR 6= /0 , BR/τ\A 6= /0 .

For v ∈ LSC(Ā), v ≥ 0, consider the following lower semicontinuous extension
of v:

v−m(x) =
{

min(v(x);m) if x ∈ A
m if x 6∈ A

where
m = inf

x∈∂A∩BR/τ

v(x)

Rescaling and using a covering argument as in [5], from (8) we deduce the
boundary weak Harnack inequality( 1

|BR|

∫
BR

(v−m)p
)1/p

≤C∗
(

inf
A∩BR

v+R‖g+‖Ln(A∩BR/τ )

)
(9)

where p and C∗ are positive constants depending on N,λ ,Λ,τ,b2M and on
R‖b‖L∞(A∩BR/τ ) .

Observe now that if u ∈USC(Ω̄) is a viscosity solution of

F(x,u(x),Du(x),D2u(x))≥ f (x) , x ∈ Ω,

bounded above by some constant M > 0 and F satisfies the following growth
condition

F(x, t, p,X)≤P+
λ ,Λ +b(x)|p|+b2(x)|p|2 (QASC)

then it is easy to check by viscosity calculus that the function v = M− u+ ∈
LSC(Ω̄) is a bounded above, nonnegative viscosity solution of

P−
λ ,Λ(D2v)−b(x)|Dv|−b2|Dv|2 ≤ f−(x) , x ∈ Ω
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Now, if Ω is a (wG) -domain, then applying the boundary weak Harnack in-
equality (9) to v in A = Ωy,τ with g = f−, then after some computations we
obtain a localized form of the (ABP) estimate:

u+(y)≤ (1−θy) sup
Ω

u+ +θy sup
∂Ω

u+ +Ry ‖ f−‖LN(Ωy,τ ) , (10)

for every y ∈ Ω and some costant θy ∈ (0,1) depending on N, λ , Λ, σ ,τ,b2M
and on y through the quantity Ry ‖b‖L∞(Ωy,τ ).
Note that the above estimate (10) actually holds for all values u(z), z ∈ Ω∩
BRy , and therefore it may be considered as an extension of the Krylov-Safonov
Growth Lemma, see [28], Section 1.4 to the present setting.
Furthermore, under condition ( b), the constant θy in (10) can be bounded
above by a positive constant θ < 1 independent of y. Hence, taking the supre-
mum on both sides of (10) we find again the estimate

sup
Ω

u ≤ sup
∂Ω

u+ +C sup
y∈Ω

Ry ‖ f−‖LN(Ωy,τ ) (ABP)wG

for some positive constant C, which in this case depends on N, λ , Λ, σ , τ, b2M
and Rb.
Therefore, if Ω is a (wG) -domain, F is elliptic, condition (QASC) holds and
u ∈USC(Ω) is bounded above and satisfies

F
(
x,u(x),Du(x),D2u(x)

)
≥ 0 , x ∈ Ω, (PDE)

in the viscosity sense, then the Maximum Principle holds:

u ≤ 0 on ∂Ω implies u ≤ 0 in Ω .

8. Phragmen-Lindelöf type theorems

One form of the classical Phragmèn-Lindelöf Maximum Principle is as follows:
if

∆u ≥ 0

in an unbounded angular sector Ω ⊂ IR2 of opening π

α
and u ≤ 0 on ∂Ω, then

u ≤ 0 on Ω provided

u(x) = O(|x|α) as |x| →+∞ ,

see for example [34]. Several variants and extensions of this result to smooth
solutions of linear and nonlinear elliptic inequalities in more general unbounded
domains of IRN can be found in the literature, see for example [19], [24], [33],
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[32], [34], [1], [31], [30], [38].

Subsection 7.2 contains some qualitative Phragmèn-Lindelöf type results
for viscosity solutions in cylinders and cones. Thus, one may expect that (MP)
should hold in more general (G) - and (wG) - domains of cylindrical or conical
type under a suitable exponential, respectively, polynomial growth of subsolu-
tions at infinity. This can be indeed proved to be true by a suitable refinement of
the techniques previously described. Let us briefly comment on this issue and
refer to [15] for a detailed treatment of this topic.
The construction of the barrier functions used in the proofs of the above men-
tioned results relies heavily on the simple geometry of cylinders and cones and
cannot easily carried over to more general (G) - or (wG) - domains. The exten-
sion to general (G) - and (wG) - domains relies instead on the validity of the
Maximum Principle for operators satisfying the structure condition

F(x, t, p,X)≤P+
λ ,Λ +b(x)|p|+ c(x)t, (ASC+)

where we allow the coefficient c(x) to be positive.
A careful analysis show that if c+(x) is sufficiently small, namely c+(x) ≤ c1 ,
in the case of cylindrical domains, and c+(x) ≤ c1/|x|2 as |x| → ∞ in the case
of conical domains, for a small positive constant c1 depending on the structure
of F and on the geometric parameters occurring in the (G) or (wG) conditions,
then (MP) still holds for viscosity subsolutions of (PDE) provided F satisfies
(ASC+). This remark, coupled with the method of barriers, lead to Phragmèn-
Lindelöf type theorems as announced above. Two model statements in this di-
rection are as follows, see [15]:

Theorem 4. Assume that Ω is a (wG)- domain of conical type and that F sat-
isfies (ASC) with |b(x)| ≤ b0

(1+|x|2)
1
2
. Then, there exists α > 0, depending on F

and Ω, such that if u ∈USC(Ω) is a viscosity solution of

F(x,u,Du,D2u)≥ 0 in Ω

with u ≤ 0 on ∂Ω and u(x) = O(|x|α) as |x| →+∞, then u ≤ 0 in Ω.
The same conclusion holds for solutions of

F(x,u,Du,D2u)+ c(x)u ≥ 0 in Ω

if c+(x)≤ c0
1+|x|2 for small enough c0 > 0.
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Theorem 5. Assume that Ω is a (wG) domain of IRN of cylindrical type and
that F satisfies (ASC) with |b(x)| ≤ b0 . Then, there exists α > 0, depending on
F and Ω, such that if u ∈USC(Ω) is a viscosity solution of

F(x,u,Du,D2u)≥ 0 in Ω

with u ≤ 0 on ∂Ω and u(x) = O(eα|x|) as |x| →+∞, then u ≤ 0 in Ω.
The same conclusion holds for solutions of

F(x,u,Du,D2u)+ c(x)u ≥ 0 in Ω

if c+(x)≤ c0 for small enough c0 > 0.

Theorems above extend in particular the results of [28] in the direction of
more general unbounded domains as well as of viscosity solutions of non neces-
sarily uniformly elliptic fully nonlinear differential inequalities containing lower
order terms.
Let us point finally that in view of the discussion in Subsection 7.3, Phragmèn-
Lindelöf type theorems as above could also be proved for second-order fully
nonlinear operators with quadratic growth in the gradient-variable.

9. Minimum Principles

The previous Sections were concerned with Maximum Principles for subsolu-
tions of (LPDE) under the above structure condition (ASC) or also (QASC).
In a similar manner, Minimum Principles can be stated for supersolutions under
the below structure conditions (BSC) and (QBSC). Here below we list briefly
this kind of results.

Theorem 6. Let u ∈ LSC(Ω) such that supΩ u− ≤ M for a positive constant M.
Suppose that u is a viscosity solution of

F(x,u,Du,D2u)≤ f (x) , x ∈ Ω ,

where f ∈C(Ω)∩L∞(Ω) and Ω is a domain of IRN satisfying condition (wG)
for some σ ,τ ∈ (0,1).
Assume that F is continuous and elliptic and that (BSC) holds for given con-
stants 0 < λ ≤ Λ, b2 > 0 and some 0 < b ∈C(Ω)

⋂
L∞(Ω).

Assume moreover that (wG) is satisfied with Ry such that

Rb := sup
y∈Ω

Ry ‖b‖L∞(Ωy,τ ) < ∞. ( b)
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holds, as in Theorem 1. Then,

sup
Ω

u− ≤ sup
∂Ω

u−+C sup
y∈Ω

Ry ‖ f +‖LN(Ωy,τ ) (ABP)wG

for some positive constant C depending on N, λ , Λ, σ , τ,b2M and Rb.

As an immediate consequence of (ABP)wG, the Maximum Principle holds:
if u ∈ LSC(Ω) satisfies

F(x,u,Du,D2u)≤ 0 , x ∈ Ω ,

then
u ≥ 0 on ∂Ω implies u ≥ 0 in Ω. (mP)

Theorem 7. Let u ∈ LSC(Ω) with supΩ u− < +∞ be a viscosity solution of

F(x,u,Du,D2u)≤ 0 , x ∈ Ω , (PDE)

where f ∈C(Ω)∩L∞(Ω).
Assume that F is continuous and elliptic and that (BSC) holds for given con-
stants 0 < λ ≤ Λ, b2 > 0 and some 0 < b ∈C(Ω)∩L∞(Ω). Assume moreover
that there exists a closed set H with the following properties:

(i) (mP) holds for bounded from above viscosity solutions in each connected
component of Ω\H,

(ii) there exist constants σ ,τ ∈ (0,1) such that for all y ∈H there is a ball BRy

of radius Ry containing y such that

|BRy \Ωy,τ | ≥ σ |BRy |

where Ωy,τ is the connected component of Ω∩BRy/τ containing y,

(iii)
sup

y∈H∩Ω

Ry ‖b‖L∞(Ωy,τ ) < ∞ ( b)H

Then the Minimum Principle holds:

u ≥ 0 on ∂Ω implies u ≥ 0 in Ω. (mP)
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The argument of Subsection 7.3 can be used to show that the above results
continue to hold for operators with a quadratic growth in the gradient, i.e. using
condition (QBSC) instead of (BSC).
Similarly, the condition of boundedness from below for supersolutions u can be
weakened to allow a polynomial growth of u− at infinity in the case of conical
domains, an exponential growth in the case of cylindrical domains. This leads
to Phragmèn-Lindelöf Principles for fully nonlinear second-order operators sat-
isfying (BSC) or also (QBSC), analogous to those ones of Theorems 4 and 5.
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219-245.

[17] M.G. Crandall - H. Ishii - P.L. Lions, User’s guide to viscosity solutions
of second order partial differential equations, Bulletin of the AMS 27
1, 1992.

[18] L.E. Fraenkel, Introduction to maximum principles and symmetry in el-
liptic problems, Cambridge University Press, 2000.

[19] D. Gilbarg, The Phragmén-Lindelöf Theorem for Elliptic Partial Differ-
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