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Abstract. This paper investigates genetic drift in multi-parent genetic
algorithms (MPGAs). An exact model based on Markov chains is pro-
posed to formulate the variation of gene frequency. This model iden-
tifies the correlation between the adopted number of parents and the
mean convergence time. Moreover, it reveals the pairwise equivalence
phenomenon in the number of parents and indicates the acceleration of
genetic drift in MPGAs. The good fit between theoretical and experi-
mental results further verifies the capability of this model.

1 Introduction

Multi-parent genetic algorithms (MPGAs) are genetic algorithms using multi-
parent crossovers. Traditionally, genetic algorithms (GAs) adopt two parents in
crossover to reproduce offspring. This idea is reasonable because, to the best of
our knowledge, the form of sexual reproduction on the Earth is absolutely of two
parents. Multi-parent crossovers break through this natural limitation by allow-
ing more than two parents in the process of crossover. In a sense, multi-parent
genetic algorithms can be viewed as multi-parent generalization of genetic algo-
rithms. In light of MPGAs, several multi-parent crossovers have been proposed
and shown their power in a variety of optimization problems [5,7,15]. However,
most of these crossovers are validated empirically; only a few theoretical analyses
of multi-parent crossovers are conducted.

Genetic drift is a phenomenon that a finite population, even if no selection
pressure is applied, will ultimately converge to a uniform population. The rate
of genetic drift serves as an important index of how fast population diversity
is lost. Schippers [14] studied the genetic drift of two multi-parent crossovers:
uniform scanning crossover (U-Scan) and occurrence based scanning crossover
(OB-Scan). His work revealed that U-Scan has no influence on genetic drift whilst
OB-Scan induces severe genetic drift, as the number of parents is increased.
Nevertheless, the strength of genetic drift in his work is determined by comparing
the probabilities of drift in and drift out. The rate of genetic drift in MPGAs is
still an open question.

This paper investigates in theory the rate of genetic drift in MPGA using
OB-Scan. Specifically, we propose an exact model for the mean convergence
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time — the principal measure of genetic drift rate [2]. First, we analyze the gene
frequency altered by multi-parent crossovers. Based on gene frequency, we model
the behavior of MPGAs through Markov chains. This Markov model affords the
correlation between parent numbers and mean convergence time. In addition, the
theoretical results reveal the pairwise equivalence of parent numbers in OB-Scan.
These theoretical results are further verified by a series of experiments.

The rest of this paper is organized as follows. Section 2 describes OB-Scan
and Section 3 analyzes its effect on gene frequency. Next, we model MPGAs with
Markov chains. Theoretical results and experimental validation are presented in
Section 5. Finally, conclusions are drawn in Section 6.

2 Occurrence Based Scanning Crossover (OB-Scan)

Occurrence based scanning crossover is one of the scanning crossovers proposed
by Eiben et al. [6]. Scanning crossovers are multi-parent generalization of uni-
form crossover — a widely used crossover in GAs. In uniform crossover, the
donor for each locus is randomly picked from two selected parents. Extended
to more than two parents, scanning crossovers choose the donor at random or
using heuristics. According to different strategies, Eiben et al. proposed three
variations of scanning crossovers: uniform scanning crossover (U-Scan), occur-
rence based scanning crossover (OB-Scan), and fitness based scanning crossover
(FB-Scan). In this paper, we only discuss OB-Scan.

Rather than at random, OB-Scan determines offspring genes depending on
the occurrence of parental genes at that locus. Specifically, it picks the majority
of parental gene values as the offspring gene for each locus. Note that in this
paper OB-Scan is defined to break ties by randomly1 choosing a binary. Examples
of 2-parent OB-Scan (corresponding to uniform crossover) and 4-parent OB-Scan
are given in Fig. 1. The formal definitions of the components of GAs and OB-
Scan are drawn below.

1 0 1 1 0 0 0 1Parent 1

1 0 0 1 1 1 0 1Parent 2

1 0 1 0 1 1 0 1Offspring

0 0 1 0 1 1 0 0Parent 3

1 1 0 1 0 1 1Parent 4 0

1 0 1 1 0 0 0 1Parent 1

1 1 0 1 1 1 0 1Parent 2

1 1 0 1 0 1 0 1Offspring

the majority

random selection

Fig. 1. Examples of 2-parent OB-Scan (left) and 4-parent OB-Scan (right)

1 In the original version of OB-Scan [6], OB-Scan breaks ties by directly inheriting
the genes of the first selected parent. However, random tie break conforms to gener-
alization of uniform crossover.
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Definition 1 (Chromosome and Population).

1. A chromosome c is encoded as a bit string, i.e. c
def= (c1, . . . , cl) ∈ {0, 1}l,

where ci denotes a gene and l is the chromosome length.
2. A population C is a set of chromosomes: C

def= {c1, . . . , cm}, where ci ∈
{0, 1}l and m is the population size.

Definition 2 (OB-Scan). Given n parents c1, . . . , cn ∈ C selected from pop-
ulation C, OB-Scan reproduces the offspring c′ = Xob(c1, . . . , cn) = (c′1, . . . , c′l)
by

c′i =

⎧
⎪⎨

⎪⎩

0 if
∑n

j=1 (cj)i < n
2

1 if
∑n

j=1 (cj)i > n
2

rand(0, 1) otherwise
for i = 1, . . . , l,

where (cj)i denotes the ith gene of the chromosome cj, and rand (0, 1) is a binary
random function.

3 Variation of Gene Frequency

Gene frequency is widely used as a quantitative measure of genetic variation in
population genetics [9]. It also suffices to clue us in on the course of evolution
in GAs. In this section we analyze the variation of gene frequency caused by
OB-Scan.

Definition 3 (Gene Frequency). The gene frequency pk(α, t) is defined as
the proportion of allele α at locus k in the population at time t. Let C =
{c1, . . . , cm} be a population at time t and let Ck(α) = {c ∈ C | ck = α} be
the subset of population where chromosomes possess allele α at locus k. The
gene frequency

pk(α, t) def=
|Ck(α)|

|C| ,

where |C|and |Ck(α)| represent the cardinality of set C and Ck(α).

As above defined, chromosomes are represented as binary strings. Thus there
exists exactly two gene frequencies pk(1, t) and pk(0, t) with pk(1, t) = 1−pk(0, t)
for every locus k and time t. For simplicity, we refer to the gene frequency pk(1, t)
as pk(t) and refer to pk(0, t) as (1 − pk(t)).

Definition 4 (Variation of Gene Frequency in GAs). Let ps
k(t), px

k(t), pm
k (t)

be the gene frequencies after performing selection, crossover, and mutation at
generation t. The variation of gene frequency in GAs can be expressed as

pk(t) selection−−−−−→ ps
k(t) crossover−−−−−−→ px

k(t) mutation−−−−−−→ pm
k (t) survivor−−−−−→ pk(t + 1), (1)

To investigate genetic drift, random selection and no mutation is assumed. In
this paper we focus on generational GAs. As a result, the gene frequency in
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the process of GA is only affected by the sampling of random selection and the
process of crossover. These influences will be analyzed in Lemma 1. Incidentally,
the symbol pk(t) is referred to as pk while the indication of time t is not in effect.

Before conducting the analysis of OB-Scan, we introduce the incomplete beta
function for simplifying the expression of equations .

Definition 5 (Incomplete Beta Function). The incomplete beta function
is defined as

Ix(a, b) def=
1

Beta(a, b)

∫ x

0
ta−1(1 − t)b−1dt,

where a, b > 0 and Beta(a, b) is the beta function.

The incomplete beta function holds the following properties:

1. (26.5.24 [1]) For binomial distribution B(n, p),

n∑

i=a

B(i; n, p) = Ip(a, n − a + 1). (2)

2. (26.5.16 [1])

Ix(a, b) =
1

a · Beta(a, b)
xa(1 − x)b + Ix(a + 1, b). (3)

Using the above definition and properties, we embark on the analysis of OB-
Scan’s influence on gene frequency.

Lemma 1. Suppose we have the gene frequency pk of the population. The gene
frequency, denoted by pob

k , of the offspring reproduced by n-parent OB-Scan Xob
with n ∈ N>1 is

pob
k = Ipk

(a, a),

where Ip denotes the incomplete beta function and a =
⌈

n
2

⌉
.

Proof. Let X be the number of parents possessing the allele 1 at locus k among
n selected parents. Since the process of random selection is independent, it is
a Bernoulli process. Performing this selection n times, the number X holds a
binomial distribution with probability mass function

Pr(X = x) = B(x; n, pk) =
(

n

x

)

(pk)x (1 − pk)n−x
.

Let D1 denote the event that OB-Scan assigns the allele 1 to the offspring locus
k. According to Definition 2, OB-Scan yields

Pr(D1 | X = x) =

⎧
⎪⎨

⎪⎩

1 if x > n/2,

0 if x < n/2,
1
2 if x = n/2.



On the Mean Convergence Time of Multi-parent Genetic Algorithms 407

For OB-Scan with an odd number of parents (n = 2a − 1 with a ∈ N>1), from
(2) we have

pob
k = Pr(D1) =

n∑

x=0

Pr(D1 | X = x) · Pr(X = x)

=
2a−1∑

x=a

B(x; 2a − 1, pk) = Ipk
(a, a).

Similarly, for OB-Scan with an even number of parents (n = 2a with a ∈ N),

pob
k =

2a∑

x=a+1

B(x; 2a, pk) +
1
2
B(a; 2a, pk)

= Ipk
(a, a) − 1

aBeta(a, a)
(pk)a (1 − pk)a +

1
2

(
2a

a

)

(pk)a (1 − pk)a

= Ipk
(a, a) +

[

− Γ(2a)
aΓ(a)Γ(a)

+
1
2

(2a)!
a!a!

]

(pk)a (1 − pk)a

= Ipk
(a, a).

��

Corollary 1 (Pairwise Equivalence). Let p
ob(n)
k be the gene frequency pob

k

corresponding to n-parent OB-Scan. For n ∈ 2N and n ≥ 4,

p
ob(n)
k = p

ob(n−1)
k .

Proof. Trivial (since
⌈

n
2

⌉
=

⌈
n−1

2

⌉
in Lemma 1). ��

4 Modeling with Markov Chains

Markov chains have been used to model the exact behavior of GAs [2,8,10] and
to analyze the convergence of GAs [4,11,13]. In this paper, we use Markov chains
to model the evolution of gene frequency. From this Markov model, the mean
convergence time can be derived.

In light of gene frequency, a GA can be viewed as a stochastic process ma-
nipulating the number of allele 1 (or 0) in the population: Let random variables
Gk(t) ∈ {0, 1, . . . , m} be the number of allele 1 at locus k at generation t. The
process of GAs on gene frequency can be represented as {Gk(t) : t ∈ Z∗}. Since
for every i0, i1, · · · , it+1 ∈ {0, 1, . . . , m} the process {Gk(t)} satisfies

Pr{Gk(t + 1) = it+1 | Gk(t) = it, Gk(t − 1) = it−1, . . . , Gk(0) = i0}
= Pr{Gk(t + 1) = it+1 | Gk(t) = it},

the process {Gk(t)} is a Markov chain. The formal definition of the Markov chain
for gene frequency is given as follows.
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Definition 6 (Markov Chain for Gene Frequency). In the Markov chain
{Gk(t)} for gene frequency at locus k ∈ {1, . . . , l} in GAs,

1. the state is defined as the number of allele 1 at locus k in the population and
the state space is thus {0, 1, . . . , m}. A state i in {Gk(t)} implies the gene
frequency at locus k is

pk =
i

m
.

2. The transition matrix of {Gk(t)} is defined as P def= (ρij), where ρij is the
transition probability of state i to state j:

ρij
def= Pr{Gk(t + 1) = j | Gk(t) = i}.

The previous section has shown how OB-Scan changes the gene frequency. From
those formulae, we derive the transition probabilities of the Markov chain {Gk(t)}
for the evolution of gene frequency in MPGAs.

Theorem 1. For a GA using random selection, n-parent OB-Scan, and no mu-
tation, the transition probability ρij of the Markov chain {Gk(t)} corresponding
to this GA is

ρij = B(j; m, p′k)

with
p′k = I i

m

(⌈n

2

⌉
,
⌈n

2

⌉)
.

Proof. The state i of transition probability ρij suggests the gene frequency pk =
i
m . Given this frequency pk, from Lemma 1 we can obtain the gene frequency p′k
of the offspring reproduced by a GA using random selection, n-parent OB-Scan,
and no mutation:

p′k = pob
k = I i

m

(⌈n

2

⌉
,
⌈n

2

⌉)
.

In generational GAs, population is completely replaced with the subpopulation,
consisting of m offspring reproduced by m times of selection-crossover-mutation
process. Since this process is independent, the number of allele 1 holds a binomial
distribution B(m, p′k). Therefore, the transition probability

ρij = Pr{Gk(t + 1) = j | Gk(t) = i}
= B(j; m, p′k).

��

For the Markov chain {Gk(t)}, of particular interest to us is, if at all, the conver-
gence of {Gk(t)} — at that time the population turns out to be either all-zeros
or all-ones at each locus. For this, first we introduce a special kind of Markov
chains, called absorbing Markov chains [3], which have this convergence prop-
erty, i.e. absorption. Next, we will prove the Markov chain corresponding to
the aforementioned GA belongs to such kind of Markov chains; that is to say,
the corresponding GA will converge. From the properties of absorbing Markov
chains we can further derive the mean convergence time.
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Definition 7 (Absorbing States).

1. The closed set Sc is a set of states whose transition probabilities ρij = 0 for
all i ∈ Sc, j /∈ Sc.

2. A state i is said to be absorbing if and only if ∃Sc : Sc = {i} ⇐⇒ ρii = 1.
3. A Markov chain with absorbing states is called an absorbing Markov chain.

Proposition 1. For the GA given in Theorem 1, its corresponding Markov
chain {Gk(t)} is an absorbing Markov chain with exactly two absorbing states:
0 and m.

Proof. According to the definition of absorption and Theorem 1, we know

{Gk(t)} is absorbing ⇐⇒ ∃i : ρii = 1 ⇐⇒ ∃i : B(i; m, p′k) = 1. (4)

The solutions of B(i; m, p′k) = 1 subject to p′k = I i
m

(⌈
n
2

⌉
,
⌈

n
2

⌉)
and n ∈ N>1 are

(i) i = 0 with p′k = 0 and (ii) i = m with p′k = 1. This leads to, for the Markov
chain {Gk(t)}

ρ00 = ρmm = 1 =⇒ {Gk(t)} is absorbing .

Thus we complete the proof that the Markov chain {Gk(t)} is absorbing with
exactly two absorbing states 0 and m. ��
The above proposition indicates the chain {Gk(t)} will get absorbed into state 0
or m. It means that the process of the predefined GA will ‘drift’ into all-zeros or
all-ones for each locus, that is, reaching convergence. In addition to the existence
of convergence, we are interested in the mean time to reach it. To compute the
mean time for a chain to get absorbed, we introduce the fundamental matrix [3]
and its related property below.

Definition 8 (Fundamental Matrix). For a Markov chain with b absorbing
states, the transition matrix can be rewritten as

P =
(

Ib 0
R Q

)

, (5)

where Ib is a b × b identity matrix. The fundamental matrix for this absorbing
Markov chain is defined as

F def= (I − Q)−1.

Theorem 2 ([12]). Let F be the fundamental matrix of an absorbing Markov
chain. The fundamental matrix F stands for the mean time τij that the process
spends at transient state j starting from transient state i.

Theorem 3 (The Mean Convergence Time of MPGA). Suppose we have
the GA given in Theorem 1. Let F = (τij) be the fundamental matrix of the
Markov chain {Gk(t)} corresponding to this GA. For some locus k ∈ {1, . . . , l},
given the initial state distribution π(0) = (π0(0), . . . , πm(0)), the mean conver-
gence time

τ =
m−1∑

i=1

m−1∑

j=1

πi(0)τij .
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Proof. Let A be the set of absorbing states in {Gk(t)}. Proposition 1 gives A ≡
{0, m}. According to Theorem 2, the fundamental matrix of {Gk(t)} represents
the mean time τij for i, j ∈ A. Hence, the mean time τi that the process spends
among transient states starting from transient state i can be derived by

τi =
∑

j∈A

τij .

Given the initial state distribution π(0), we have the mean convergence time

τ =
m−1∑

i=1

τi Pr(i | t = 0) =
m−1∑

i=1

τiπi(0) =
m−1∑

i=1

m−1∑

j=1

πi(0)τij . ��

5 Theoretical Results and Experimental Validation

This section demonstrates theoretical results obtained from the above theorems.
Moreover, we conduct experiments on single locus (l = 1) to verify these theoret-
ical results. The setting of MPGA used in our experiments is generational GA,
bit-string representation, random selection, and no mutation. Each experiment
setting includes 1000 independent runs.

Figure 2 compares the mean convergence time obtained from Theorem 3 and
from experiments. First, this figure shows that the theoretical and the exper-
imental results fit very well. In addition, it shows that for n ∈ 2N a MPGA
using n-parent OB-Scan performs correspondingly to that using (n−1)-parent
OB-Scan, which confirms the pairwise equivalence claimed in Corollary 1. Sec-
ond, this figure indicates the fact that, compared with two parents, using more
than two parents in OB-Scan causes a drastic decrease in mean convergence
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Fig. 3. The progress of genetic drift of 2-parent OB-Scan (left) and 3-parent OB-Scan
(right) for population size m = 32 with initialization bias β = 1

32

time. Nonetheless, further raising parents yields a relatively small difference.
The mean convergence time (m = 256) for n = 2, for example, needs 351.55
generations while it takes only 10.17 generations for n = 3 (or 4) and 6.94 gener-
ations for n = 5 (or 6). This speedup in convergence reflects that OB-Scan with
more than two parents accelerates genetic drift.

Next, we examine the progress of genetic drift in case of a initialization
bias. We denote by β the bias of initial gene frequency to the allele 1. Figure
3 compares the progress of genetic drift of uniform crossover (i.e. 2-parent OB-
Scan) and 3-parent OB-Scan for population size m = 32 under initialization bias
β = 1

32 . As aforementioned, the genetic drift of 3-parent OB-Scan is much faster
than that of uniform crossover. Interestingly, the distribution of convergence
probability of uniform crossover differs from that of 3-parent OB-Scan either.
Asoh and Mühlenbein [2] have shown the convergence probability of uniform
crossover equals the initialization probability, which is reflected in Fig. 3. Yet,
adopting more parents does not follow this rule. The 3-parent OB-Scan gives
a probability (≈ 0.6) higher than the initialization probability (17

32 ≈ 0.53).
This outcome suggests that using more parents in OB-Scan will intensify the
preference of the initialization.

6 Conclusions

This paper presents an exact model for exploration of genetic drift in MPGAs.
First we analyze the gene frequency altered by OB-Scan. Based on gene fre-
quency, we model the behavior of MPGAs through Markov chains. The mean
convergence time is further derived from this model.

The theoretical results demonstrate that raising parents in OB-Scan shortens
the mean convergence time; that is, it accelerates genetic drift. This outcome not
only reconfirms Schippers’ claims about the genetic drift of scanning crossovers,
but also gives the expected time of convergence. In addition, our analysis reveals
the pairwise equivalence in OB-Scan: n-parent OB-Scan performs analogously
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with (n−1)-parent OB-Scan for n ∈ 2N. Moreover, the progress of genetic drift
under initialization bias suggests raising parents in OB-Scan will intensify the
preference of initialization for allele 0 or 1. The good fit between theoretical and
experimental results validates our theoretical arguments and the capability of
the proposed model.
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