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Abstract. The concept of independence has been frequently mentioned in climate science research, but has
rarely been defined and discussed in a theoretically robust and quantifiable manner. In this paper we argue that
any discussion must start from a clear and unambiguous definition of what independence means and how it
can be determined. We introduce an approach based on the statistical definition of independence, and illustrate
with simple examples how it can be applied to practical questions. Firstly, we apply these ideas to climate
models, which are frequently argued to not be independent of each other, raising questions as to the robustness of
results from multi-model ensembles. We explore the dependence between models in a multi-model ensemble, and
suggest a possible way forward for future weighting strategies. Secondly, we discuss the issue of independence
in relation to the synthesis of multiple observationally based constraints on the climate system, using equilibrium
climate sensitivity as an example. We show that the same statistical theory applies to this problem, and illustrate
this with a test case, indicating how researchers may estimate dependence between multiple constraints.

1 Introduction

Approximately 30 climate models contributed to recent it-
erations of the CMIP databases, and they generally agree,
at least on broad statements: the world is warming, anthro-
pogenic emissions of CO2 is the major cause of this, and if
we continue to emit it in large quantities then the world will
continue to warm at a substantial rate for the foreseeable fu-
ture (Stocker et al., 2013). The consensus across models is
also strong for more detailed statements regarding, for exam-
ple, the warming rates of land versus ocean, high versus low
latitudes, and the likely changes in precipitation over many
areas. Even where models disagree qualitatively amongst
themselves (for example, concerning changes in ocean cir-
culation and some regional details of precipitation patterns),
their range of results is still quantitatively limited. Climate
models are probably the most widely used tool for predicting
future climate changes, and their spread of results is com-
monly used as an indication of what future changes might
occur.

But should this consensus between models really lead to
confidence in these results? If we were to re-run the same
scenario with the same model 30 times, we would get the

same answer 30 times, whether it be a good or bad model.
This repetition of one experiment would not tell us how good
the model is, and the behaviour of the real climate system
would almost certainly lie outside this narrow range of re-
sults. Different model development teams share code, and
even if the code is rewritten from scratch, the underlying al-
gorithms and methods are often linked (Knutti et al., 2013).
Furthermore, many fundamental theories are common across
all models. So how much confidence can we draw from the
fact that multiple models provide consistent answers? How
likely is it that common biases across all models are greater
than their spread of results, such that the ensemble range does
not provide trustworthy bounds on the behaviour of the cli-
mate system? These questions have proved difficult to an-
swer, and indeed there appears little consensus as to how
we can even address them. Further related issues arise from
the increasingly prevalent situation where a single modelling
centre contributes multiple simulations to the CMIP archive,
some of which may only differ in terms of the settings of un-
certain parameters in the climate model, or even just the ini-
tial state of the atmosphere–ocean system. A common heuris-
tic when performing multi-model analyses based on a gener-
ation of the CMIP ensemble has been to use a single simula-
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tion from each modelling centre (e.g. Leduc et al., 2016), but
it is not clear where to draw the line when different centres
may have shared a common core or sub-models. Is there a
better way to select models, and should we use a weighted
ensemble? In this case, further questions arise as to how the
weights should be defined, either in terms of model perfor-
mance relative to observations of the real climate or else in
terms of their relationship to other models, or some combina-
tion of both. Another related question that has been posed in
recent years is whether the scientific community could col-
laboratively design or select ensemble members to contribute
to CMIP in a more rational and scientifically defensible way
than the current ad hoc “ensemble of opportunity”. It may be
possible to address this issue in terms of statistical sampling
and experimental design, but appropriate methods and even
language do not yet appear to be well developed in this area.

In Part 1 of this paper, we consider this question of model
independence and discuss how it may be addressed in a math-
ematically precise and well-founded manner. We present an
approach which links the usage in climate science to the sta-
tistical definition of independence. We start by reviewing,
in Sect. 2, how the concept of independence has been dis-
cussed in the recent literature. In Sect. 3 we present a theo-
retical and statistical viewpoint of independence within the
Bayesian paradigm, which we argue has direct relevance to
this question. We consider how this statistical viewpoint re-
lates to the question of model independence in Sect. 4, and
also present some ideas for how to make practical use of
these ideas. We emphasise, however, that the purpose of our
paper is to provide a direction and motivation for future in-
vestigations rather than attempting to present a complete so-
lution.

In Part 2, we illustrate how the theoretical basis for statisti-
cal independence can also apply to the question of synthesis-
ing observational constraints on the behaviour of the climate
system, particularly the equilibrium climate sensitivity. The
equilibrium climate sensitivity S represents the equilibrium
change in global mean surface temperature following a dou-
bling of atmospheric CO2, and while this parameter is far
from a comprehensive description of our future climate, it is
commonly used as a summary of the potential magnitude of
changes which we might observe in the long term. Different
approaches have been proposed for constraining S, for exam-
ple using data drawn from the modern instrumental period, or
looking to the palaeoclimate record and particularly the Last
Glacial Maximum (LGM; 19–23 ka), where global tempera-
tures were far below those of the present day for a sustained
period, or searching for constraints that emerge when process
studies examine how well different models simulate various
aspects of the climate system such as seasonal and interan-
nual variation. It has previously been proposed that multiple
constraints can be considered “independent” and the result-
ing constraints combined into an overall estimate (Annan and
Hargreaves, 2006). However, the principles underlying this
approach have not be clearly investigated. In Sect. 6 we con-

sider how this problem has been addressed in the previous
literature, and in Sect. 7 we consider how the statistical prin-
ciples apply in both theoretical and practical terms by means
of a simple example.

Part 1 – Climate model independence

2 The literature on model independence in climate

research

The question of independence has featured widely in climate
research, but the research community has not yet arrived at
a clear and unambiguous definition. Different authors have
approached the question of independence in different ways,
and their approaches are often mutually inconsistent.

One common approach has been to interpret model in-
dependence as meaning that the models can be consid-
ered as having errors which are independent, identically
distributed (i.i.d. in common statistical parlance) samples
drawn from some distribution (typically Gaussian) with zero
mean (Tebaldi and Knutti, 2007). This is the so-called “truth-
centred” or “truth plus error” hypothesis. Although it has not
generally been explicitly stated, even a small ensemble of
samples drawn from such a distribution would be an incred-
ibly powerful tool. If we could sample models from such a
distribution, then we could generate arbitrarily precise state-
ments about the climate, including future climate changes,
merely by proceeding with the model-building process in-
definitely and taking the ensemble mean. This would obviate
the need both for computational advances and also for any
additional understanding of how to best simulate the climate
system. As an illustration of the power of such a (hypothet-
ical) truth-centred ensemble, if the 19 CMIP3 models listed
in Table 8.2 of Randall et al. (2007) provided independent
(in this sense) estimates of the equilibrium climate sensitiv-
ity S, then we could immediately generate a 95 % confidence
interval for the real value for S of 3.2 ± 0.3 ◦C based on the
assumption that the samples are drawn from a Gaussian dis-
tribution of a priori unknown variance.

However, the truth-centred hypothesis is clearly refuted
by numerous analyses of the ensemble. In particular, the er-
rors of different models are observed to be strongly related,
as can be shown by the positive correlations between spa-
tial patterns of biases in climatology (Knutti et al., 2010,
Fig. 3). As a corollary of this, although the mean of the en-
semble generally outperforms most if not all the ensemble’s
constituent models (Annan and Hargreaves, 2011b), it does
not actually converge to reality as the ensemble size grows.
Rather, the ensemble mean itself appears to have a persis-
tent and significant bias. There have been some attempts to
compensate for this shared bias, for example by estimating
the number of “effectively independent” models contained
in the full ensemble (Jun et al., 2008a, b; Pennell and Reich-
ler, 2011). However, the theoretical basis for these calcula-
tions does not appear to be clearly justified, and the results
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presented would, if valid, have startling implications. For ex-
ample, if we accept the arguments of Pennell and Reichler
(2011) that the CMIP3 ensemble contains eight “effectively
independent” models then its full range of sensitivity values,
2.1–4.4 ◦C, would still be a legitimate 99 % confidence inter-
val for the true sensitivity, as the probability of eight inde-
pendent (in this sense) estimates all simultaneously falling
either below or above the truth is only 1 part in 27. The
same argument would apply to any other output or derived
parameter of the model climates. That is, we could be “vir-
tually certain” (to use the IPCC calibrated language) that the
model ensemble bounds multiple aspects of the behaviour of
the climate system, even with this very modest number of
number of “effectively independent” models. This confident
conclusion does not seem very realistic when we consider
the limitations which are common to all climate models, and
therefore we are forced to question the appropriateness and
validity of the assumptions underlying such analyses.

Abramowitz and Gupta (2008) define independence purely
in terms of inter-model differences and suggest down weight-
ing models that are too similar in outputs. This approach has
the potential weakness that models that agree because they

are all accurate will be discounted, relative to much worse
models, without any allowance being made for their good
performance relative to reality. A challenge for this and re-
lated approaches is that the use of a distance measure does
not readily suggest a threshold at which models can be con-
sidered absolutely independent. All models are designed to
simulate the real climate system, and are tuned towards ob-
servations of it (Hourdin et al., 2016). Therefore it should
not be surprising that climate models appear broadly similar,
since the maximum distance (in any relevant metric space)
between a pair of models can be no more than the sum
of the distances between each of these models and reality.
Bishop and Abramowitz (2013) use the pairwise correlations
of model errors in their analysis, but only after first debiasing
the model simulations, and thus exclude a priori one of the
factors which is usually considered a fundamental aspect of
both model performance and model similarity.

Some approaches to model independence have been less
quantitative in nature. Masson and Knutti (2011) define their
interpretation as “independent in the sense that every model
contributes additional information”, but information in this
context is not further defined or quantified. In fact, the clus-
ter analysis presented by Masson and Knutti (2011) may be
more precisely described by the phrasing in the related pa-
per by Knutti et al. (2013), which states that independence is
used “loosely to express that the similarity between models
sharing code is far greater than between those that do not”.
While that pair of papers certainly establishes that point con-
vincingly, there is again no indication of how much similarity
should be expected or tolerated between truly “independent”
models, or whether absolute independence is even a mean-
ingful concept in their terms. The interesting philosophical
discussions of Parker (2011) and Lloyd (2015) both consider

the interpretation and implications of consensus across an en-
semble of models that are not independent, but the premise
of model dependence is adopted from the literature and these
two authors do not themselves attempt to further define this
term in a quantifiable manner.

Perhaps the most constructive and complete approach to
date is that of Sanderson et al. (2015). In this work, depen-
dence is again defined in terms of inter-model differences in
output, and this distance measure is used to remove or down-
weight the models which are most similar to other models
in output. By comparing the inter-model distances both to
model–data differences and to what might be expected by
chance with independent samples from a Gaussian distribu-
tion that summarises the full distribution, the authors intro-
duce a threshold at which they argue model differences may
be considered appropriately large. However, the epistemic
nature of their resulting ensemble is unclear and the resulting
reduced ensemble is still only described in terms of reducing

rather than eliminating dependency.
To summarise, the literature presents a strong consensus

that the models are not independent, but does not appear to
present such a clear viewpoint concerning what to do about
this, or even the precise meaning of this term. Given this lack
of clarity, it is perhaps unsurprising that the IPCC does not
address this topic in detail, while nevertheless acknowledg-
ing its importance (Cubasch et al., 2013, Sect. 1.4.2). Thus,
we see not only the opportunity but also the necessity of mak-
ing further progress.

3 The statistical context for independence

In probability theory, independence has a straightforward
definition. Two events, A and B, are defined to be inde-
pendent if the probability of A, P (A), is not affected by
the occurrence of B, so that P (A|B) = P (A) (e.g. Wilks,
1995, Sect. 2.4.3). Since the joint probability of both events
P (A∩B) is given by P (A|B)P (B), we see that two events are
independent if their joint probability is equal to the product of
their individual probabilities, i.e. if P (A ∩ B) = P (A)P (B).
Independence is therefore a symmetric property: A is inde-
pendent of B if and only if B is independent of A. The con-
cept of independence can also be generalised to the case of
conditional independence: two events, A and B, are defined
to be conditionally independent given a third event, S, if their
joint probability conditional on S, P (A∩B|S), is equal to the
product of their individual probabilities both conditional on
S, P (A|S)P (B|S). Independence and conditional indepen-
dence generalise naturally both to continuous distributions
p(), which is more appropriate for the situations considered
in this paper, and also to more than two events.
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As we have seen in Sect. 2, much research on model in-
dependence either ignores or explicitly disavows any direct
link to this mathematical/statistical definition. Conversely,
the primary goal of this paper is to argue that this definition
must be central to any usable, quantitative theory.

Bayes’ theorem tells us how to update a prior probabilistic
estimate of an unknown, p(S), in light of some observations
or event A via the equation

p(S|A) = p(A|S)p(S)/p(A). (1)

p(A|S) is known as the likelihood function (particularly
when A is held fixed, and S treated as a variable).

If we have two events A and B then the corresponding
equation is

p(S|A ∩ B) = p(A ∩ B|S)p(S)/p(A ∩ B). (2)

The first term on the right-hand side of this equation can be
expanded by the laws of probability, resulting in the equiva-
lent formulation

p(S|A ∩ B) = p(A|B ∩ S)p(B|S)p(S)/p(A ∩ B). (3)

Either of these two equations can in principle be used to cal-
culate the posterior probability of S conditional on both of
the events A and B, though in practice it may not be straight-
forward to determine the terms on the right-hand sides.

If A and B are conditionally independent given S, then
p(A∩B|S) can also be decomposed as p(A|S)p(B|S). Thus,
in this case,

p(S|A ∩ B) = p(A|S)p(B|S)p(S)/p(A ∩ B). (4)

In practice, the term “independent” is frequently used to re-
fer to conditional independence, especially when A and B

are being discussed primarily as observations of, or evidence
concerning, some unknown S. The significance of this con-
ditional independence is that if we already have likelihoods
p(A|S) and p(B|S), then conditional independence allows us
to directly create the joint likelihood p(A∩B|S) by multipli-
cation, rather than requiring the construction of p(A|B∩S) as
an additional step. Inspection of Eqs. (3) and (4) shows that
the conditional independence of A and B given S is equiva-
lent to the condition that p(A|B∩S) = p(A|S). This equation
states that the predictive probability of A, given both S and
B, is equal to the predictive probability of A given S. In other
words, if we know S, then additionally learning B does not
change our prediction of A. This formulation can be a useful
aid to understanding when independence does and does not
occur.

3.1 The Bayesian perspective

The above elementary probability theory applies equally to
the frequentist and Bayesian paradigms. Within the frequen-
tist paradigm, the probability of an event is defined as the

limit of its relative frequency over a large number of repeated
but random trials. Within the Bayesian paradigm, the proba-
bility calculus may be used to describe the subjective beliefs
of the researcher. In the remainder of this paper, we exclu-
sively adopt this paradigm, since all the relevant uncertain-
ties discussed here are epistemic in nature (relating to imper-
fect knowledge) and not aleatory (arising from some intrinsic
source of “randomness”). Thus, rather than considering “the
pdf of S” it is more correct to refer to “my pdf of S” or per-
haps “our pdf for S” in the case that many researchers share
a consensus view.

It should be noted that Bayesian probabilities, being per-
sonal in nature, are in general conditional on some personal
“background” set of beliefs of the researcher �p. Thus, p(S)
could be more precisely written as p(S|�p). However, this
background knowledge will usually be omitted for conve-
nience, and conditioning will usually be explicitly included
only when there is some specific information that may be
considered particularly relevant (and which is not assumed
to be widely known).

As we have seen, the question of (conditional) indepen-
dence boils down to the question of whether p(A|B ∩ S) is
equal to p(A|S). Our discussion of the subjective nature of
likelihood within the Bayesian probabilities should make it
clear that there is not an objectively correct answer to this
question, but rather it depends on the subjective view of the
researcher in question. Posing the question presupposes that
the researcher already has likelihoods p(A|S) and p(B|S) in
mind, or else the observations A and B would not be consid-
ered useful evidence on S. Would knowing B change their
predictive distribution for A (i.e. the likelihood p(A|S)? If
it would not, then A and B are conditionally independent
given S, for this researcher. That is, if the researcher does
not know how to use the additional information B in order to
better predict A, then A and B are conditionally independent
to that researcher. Thus, ignorance implies independence. If,
conversely, B does provide helpful information in addition to
S, then their improved prediction is the new likelihood func-
tion p(A|B ∩ S), which directly enables the joint likelihood
p(A ∩ B|S) to also be created.

4 Model independence in the Bayesian framework

We now explore how this Bayesian framework can be ap-
plied to the question of model independence. We first con-
sider the “truth-centred” hypothesis which is perhaps most
clearly presented by Tebaldi et al. (2005). In that work, the
outputs of the models, Mi (where 1 < i < n indexes the dif-
ferent models) are assumed to be samples from a multivariate
Gaussian distribution centred on the truth T . The likelihood
for each model p(Mi |T ) is therefore a Gaussian of the same
width centred on the model outputs. The joint likelihood for
multiple models is equal to the product of their individual
likelihoods, which as we have seen above is equivalent to
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considering that the models are independent conditional on
the truth. The joint likelihood will therefore be a Gaussian
centred on the ensemble mean and its width will narrow in
proportion to the square root of the number of models con-
sidered, which is the mathematical justification for the sup-
position that the ensemble mean will converge to the truth.
As we have already mentioned, this behaviour is contradicted
by analysis of the model outputs (Knutti et al., 2010). Thus,
although such a definition of the concept of model indepen-
dence could be presented in terms of the statistical definition
of independence, it does not describe the behaviour of the
models adequately because the models do in fact generally
share common biases.

In light of this failure of the truth-centred approach, we
now present two alternative interpretations of statistical inde-
pendence that we believe could be more relevant and appro-
priate in application to the ensemble of climate models. We
use CMIP3 here, rather than CMIP5, primarily in order that
the ideas developed here can in the future be tested against
a somewhat new sample, so as to defend against the risk of
data mining.

Consider firstly the case where the outputs of a subset
of the models which contributed to CMIP3 are labelled as
M1, . . .,Mn, so as to conceal the underlying model names.
If told that one of these models M1, . . .,Mn was actually
MIROC, say, then a researcher who was asked to identify
which outputs came from this specific model and who did
not have unusually detailed knowledge of this and other cli-
mate models would quite possibly assign uniform probabil-
ities across these sets of outputs. Now consider how the sit-
uation would change if another set of outputs M∗ (not in-
cluded in the original set) was provided and identified as hav-
ing been generated by the MRI model. If the same researcher
was again asked to predict which of M1, . . .,Mn was from
MIROC, then their answer would either change or it would
not, depending on their beliefs concerning the relationship
between these two climate models (which were contributed
by neighbouring institutes in Japan and have some common
origins). In the case that their answer did not change, this
would imply that they considered the MRI and MIROC mod-
els to be independent, conditional on the unlabelled ensemble
of model outputs. If, on the other hand, they thought MRI and
MIROC were likely to be particularly similar among the en-
semble of climate models (due either to the legacy of shared
code or development methods), then it would be rational of
them to assign higher probabilities to the sets of outputs that
were closer to M∗ in some metric.

While the subjective nature of Bayesian probability pre-
cludes a definitive answer, we expect that, for most re-
searchers and most model pairs where there is no clear insti-
tutional or historical link, they will indeed believe the models
to be independent in this manner (i.e. conditional on the un-
labelled ensemble of outputs). Conversely, if the pair of mod-
els appear to differ in only some very limited manner, such as
being different resolutions of the same underlying code (con-

sider for example the T63 and T42 versions of CCMA which
were submitted to CMIP3) then it might be sensible for a re-
searcher to instead update their prediction of the unknown
model, increasing probabilities of outputs which were closer
(according to some reasonable measure) to the named model,
and with decreasing probabilities assigned to more distant
outputs. The extent to which the probabilities are changed
would be a direct indication of the strength of the dependence
between the models, as judged by the researcher.

An alternative but similar approach can be formulated if,
instead of using the discrete distribution of actual climate
model outputs, we parameterise their distribution, for exam-
ple as a multivariate Gaussian. If given the parameters of
a Gaussian distribution based on the outputs of M1, . . .,Mn

(i.e. M =
∑

i=1...,nMi/n being the mean and σ the standard
deviation of the outputs), and asked to predict the outputs of
MIROC (knowing it to be one of the constituent models), a
researcher might reasonably decide that a reasonable answer
would be to use this Gaussian directly as the predictive distri-
bution. Additionally, learning the outputs and true name of an
additional model M∗ will leave their prediction unchanged if
and only if the researcher thinks that this model is indepen-
dent of MIROC, conditional on the ensemble distribution. If
the researcher thinks that the model M∗ is related to MIROC,
then they might plausibly modify their prediction, for exam-
ple by shifting the original Gaussian towards M∗ in some
way. A numerical example is provided in Sect. 4.1 below.

These approaches, we believe, encapsulate many of the
same ideas as the model similarity analyses of Abramowitz
and Gupta (2008), Knutti et al. (2013), Sanderson et al.
(2015) and others. However, our approaches have the advan-
tage that independence here can be defined in absolute terms
(conditional on a clearly defined background knowledge) and
is not merely a measure of relative difference. If a researcher
does not know how to improve their prediction of a particu-
lar model, in light of being given a particular set of outputs
from another named model, then this pair of models is in fact
absolutely independent to them in statistical terms.

4.1 Example

To provide a concrete demonstration of the previous ideas,
we analyse the models which contributed to the CMIP3
database. Several modelling centres contributed more than
one model version and we expect, based on the existing lit-
erature such as Knutti et al. (2013), that these may be no-
ticeably more similar to each other than two models from
different randomly selected centres would be. In total, we
use the outputs of 25 climate model simulations and anal-
yse two-dimensional climatological fields of surface air tem-
perature (TAS), precipitation (PREC) and sea level pressure
(PSL) for their pre-industrial control simulations. We can
identify nine pairs of models where both were contributed by
the same institute and use these as examples of models that
we expect to show dependency, but note that this approach
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does not make use of any detailed knowledge of model de-
velopment or shared code and other researchers might make
different choices if asked to predict dependence among the
ensemble.

We use as a simple distance metric the area-weighted root
mean square (RMS) difference between the climatological
data fields (of commensurate variables) after regridding to a
common 5 ◦ Cartesian grid. For example, randomly selected
models from the ensemble have an area-weighted RMS dif-
ference of around 3 ◦C. Given the model fields – or even just
their pairwise RMS differences – it would surely be difficult
for most researchers to identify with any confidence which
field came from a specific model such as CSIRO3.0, and if
asked to provide a probabilistic prediction, they might rea-
sonably assign uniform probabilities across the set. However,
if the researcher is then given the outputs of a new model
M∗ and told that it was in fact CSIRO3.5, it would now be
reasonable to expect that CSIRO3.0 was more likely to be
one of its near neighbours rather than relatively distant from
it, under the assumption that the changes arising from the
development between these model versions were relatively
modest. A simple way to account for this expected similar-
ity, in terms of formulating a probabilistic prediction for the
outputs of CSIRO3.0, would be to assign probabilities to the
unnamed sets of outputs, in some way such that the prob-
ability decreases with distance from CSIRO3.5. By way of
demonstration, we order the unnamed models by increasing
distance from CSIRO3.5 and assign them probabilities that
decrease proportional to the sequence 1/1,1/2,1/3, . . .,1/n.
The choice of this particular sequence was of course highly
subjective and many different distributions could have been
used instead.

A researcher who applied this probabilistic strategy to
each of the 9 pairs of models identified as coming from the
same centre would assign a typical (geometric mean) proba-
bility of around 0.09 to the correct field of outputs, when av-
eraged over all model pairs and over the three types of fields
TAS, PREC and PSL. The naive uniform distribution would
in contrast only assign a probability of 1/24 ≃ 0.04 to the
correct field. Thus, taking account of the shared origins can
typically increase the probability of a correct prediction by
a factor of more than 2, and we may conclude that models
from the same institute are not independent, conditional on
knowing the pairwise distances between their outputs. This
is of course little more than a mathematical interpretation
of the similarities noted by Masson and Knutti (2011) and
others. Thus, the result is not surprising, but we believe it
is worthwhile to demonstrate how those earlier empirical in-
vestigations can be explained and expressed directly in terms
of statistical independence. The results for each pair of re-
lated climate models, and for each of the three climate fields
considered here, are presented graphically in Fig. 1.

Similar results can be obtained when the analysis is per-
formed in parametric terms, when rather than using the sets
of model outputs, only a statistical summary of the en-

semble of outputs is provided in the form of multivariate
Gaussian approximation to their distribution N (M,σ ), where
M =

∑
iMi/n is the ensemble mean and σ is the standard

deviation of the distribution. In this case, we consider a re-
searcher who is asked to predict the location of an additional
model Mn+1. A natural prediction is simply the distribution
N (M,σ ). The question of dependence then rests on whether,
when told the location of a plausibly related model Mj al-
ready contained in the ensemble, the researcher changes their
prediction. One interesting detail to note is that for most
model pairs (Mj ,Mn+1) provided by a single modelling cen-
tre, the outputs of Mj actually provide a marginally worse
prediction of Mn+1 (in the sense of being further away) than
the ensemble mean M does. However, this very small in-
crease in distance suggests that an interpolation almost half-
way from the ensemble mean to Mj might provide a better
prediction still, and we find that this is indeed the case. Using
M ′

n+1 = 0.6M + 0.4Mj as a predictor for Mn+1 generates a
measurably lower prediction error, typically by 10 % or so
across the three data fields used, than the original ensemble
mean M did. Therefore, the original prediction of N (M,σ )
can be replaced by N (M ′

n+1,0.9×σ ) to give a better predic-
tion of the unknown model Mn+1. This result demonstrates
empirically and numerically that two models contributed by
a single research centre are not conditionally independent
given M and σ . These results are also presented graphically
in Fig. 1.

4.2 Accounting for model dependence via weighting

A natural question to ask is whether some weighting scheme
could be developed to account for model dependence of this
type. If we anticipate that a pair of models will be partic-
ularly similar, then including both in the ensemble without
downweighting either of them will tend to shift the ensem-
ble mean towards this pair of models. The correct weight to
prevent this can easily be calculated according to the interpo-
lation formula in the following manner. If we anticipate that
a particular model Mj will help to predict a new model Mn+1

via an interpolated prediction M ′
n+1 = (1 − α)M + αMj for

some coefficient 0 < α ≤ 1, then adding Mn+1 to the ensem-
ble without any adjustment to weights (i.e. with all model
weights equal by default) will result in an a priori expecta-
tion that the ensemble mean will be shifted towards Mj , with
the effect being stronger the closer α is to one. One simple
approach to counteract this effect would be to discard the
candidate new model, effectively giving it a weight of zero.
However, the resulting ensemble would be sensitive to the
order in which models are added, and the symmetry of the
dependence relationship suggests that it would be more rea-
sonable to apply an equal weight to each model in the de-
pendent pair. If an equal weight of 1/(1 + α) is applied to
both models (relative to unit weighting on the other models),
then the prior expectation will be that the ensemble mean is
unchanged by the inclusion of the additional model. Perhaps
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Figure 1. Analysis of CMIP3 models. The x axis indexes the
nine model pairs being considered. Crosses represent TAS, circles
PREC and diamonds PSL. Grey symbols indicate RMS distances of
all models from the target model of the pair. Black symbols indicate
distance of target model from mean of residual ensemble, blue sym-
bols indicate distance of target model from plausibly related model,
and red indicates distance of target model from interpolated pre-
diction described in the text. The blue symbols being closer to zero
than almost all grey symbols shows that related models are typically
closer together than randomly selected models, and comparing red
and black symbols shows that the interpolation improves as a pre-
dictor over the ensemble mean in almost all individual cases, and
overall.

the simplest way to show this is to start from the identity that
for the original ensemble
∑

i

(Mi − M) = 0 (5)

due to the definition of the mean. If the additional model has
an expected output of M ′

n+1 = (1−α)M+αMj and we apply
the same weight w to both models Mj and Mn+1, then our
prior expectation for the equivalent sum over the weighted,
augmented ensemble is given by
∑

i 6=j

(Mi −M)+w(Mj −M)+w((1−α)M +αMj −M), (6)

which simplifies to
∑

i 6=j

(Mi − M) + w(1 + α)(Mj − M) − w(1 + α). (7)

This sum equals zero when w = 1/(1 + α).
For example, if a second identical replicate of an existing

model were to be contributed to the ensemble (in which case

α = 1) then both models will receive a weight of 0.5, pre-
cisely cancelling out the duplication. In the numerical exam-
ple presented above, we have chosen α = 0.4 and thus the ap-
propriate weight would be 1/1.4 ≃ 0.7. Weighting the mod-
els will not be expected a priori to affect ensemble spread,
as we have no expectation that the dependent models are
systematically closer to, or further away from, the ensemble
mean when compared to the rest of the ensemble. The effect
of weighting on ensemble mean performance is also expected
to be very small as the change in effective ensemble size
(which can be defined as 1/

∑
iw

2
i , where

∑
wi = 1 are the

relative weights) will be modest. If we have an initial ensem-
ble of, say, 15 independent models and then 8 of these models
are effectively assigned relatively higher weights of 1.4 by
addition of near-replicates to the ensemble, then the effective
ensemble size will only decrease from the original 15 to a
new value of 14.6. This is a negligible difference that cannot
be expected to affect ensemble performance in any measur-
able way. Figure 3c and d of Knutti et al. (2010) shows that
the typical performance of a randomly selected sub-ensemble
of, say, 20 models is only very marginally worse than the full
set of 23 used in that paper. However, if a future CMIP en-
semble were dominated by a large number of near-replicates
of a small subset of models, then this issue would undoubt-
edly become more important.

5 Discussion

We have presented a coherent statistical framework for un-
derstanding model independence, and demonstrated how this
framework can be applied in practice. Climate models can-
not sensibly be considered independent estimates of real-
ity, but fortunately this strong assumption is not required
in order to make use of them. A more plausible, though
still optimistic, assumption might be to interpret the ensem-
ble as merely constituting independent samples of a distri-
bution which represents our collective understanding of the
climate system. This assumption is challenged by the near-
replication of some climate models within the ensemble, and
therefore sub-sampling or re-weighting the ensemble might
be able to improve its usefulness. We have shown how the
statistical definition of (conditional) independence can apply
and how it helps in defining independence in a quantifiable
and testable manner.

The definition we have presented is certainly not the only
possible one and we expect that others may be able to suggest
improvements within this framework. For instance, experts
with knowledge of the model structures might be able to pre-
dict more detailed similarities between the outputs of model
pairs. Moreover, there is no requirement that, in applying our
principles, a researcher would use the most naive ignorant
prediction of uniform probabilities across the ensemble of
outputs, or the Gaussian summary of the distribution, as their
predictions of the target model. However, our result here is
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sufficient to illustrate how the concept of statistical indepen-
dence can be directly applied in a quantitative mathematical
sense to the question of model independence, while encapsu-
lating much of what is discussed in the literature.

An important point to note is that this interpretation of
independence is entirely unrelated to model and indeed en-
semble performance (e.g. Reichler and Kim, 2008; Annan
and Hargreaves, 2010). Here we consider these questions to
be separate topics, which require study in their own right.
Reality (e.g. observations of the real climate system) does
not enter into any of the calculations or definitions above.
Thus, the two concepts of performance and independence
as used here are entirely unrelated. It remains a challenge
to develop some useful interpretation of (conditional) inde-
pendence which does use real data and which is informative
regarding both model performance and pairwise similarity.
However, the definition as presented here does have obvious
applications in terms of interpreting and using the model en-
semble. It suggests that we may be able to usefully reduce the
full CMIP ensemble to a set which are independent (condi-
tional on the ensemble statistics, as above). This will provide
a smaller set of models for analysis and use in downstream
applications including downscaling to higher resolution re-
gional simulations of climate change. This is likely to be in-
creasingly important and necessary given the heterogenous
nature of simulations which will likely be submitted to fu-
ture CMIP databases. An additional point which should not
be overlooked is that the numerical example presented here
was undertaken purely in terms of the modern climatologies
of the models, and does not consider future climate changes.
However, the underlying principles of independence do ap-
ply more broadly to any consideration of model outputs, and
the conclusions reached may be different depending on the
data sets used.

While the question of model similarity and ensemble
member selection has already been considered by others (e.g.
Sanderson et al., 2015), the work here provides a more clear-
cut definition of what it means to be independent, which is
directly testable. If researchers can demonstrate dependence
(in terms of an improved prediction of model outputs as il-
lustrated here) then independence is violated, and if not, it
may be reasonably assumed. Another important difference
between the approach presented here, and that of many other
authors, is that independence is determined a priori in terms
of the anticipated outputs of the models, rather than a pos-
teriori in light of the model outputs. Pairwise similarity be-
tween model outputs may arise through convergence of dif-
ferent approaches to understanding the climate system, and
not merely through copying of ideas, and this would not in-
dicate any dependence as defined here. In fact, one pair of
models which exhibit unusually similar temperature fields in
our analysis consists of the model from CNRM and one of
the GFDL models, which do not share any particularly obvi-
ous relationship. We do not believe that coincidentally simi-
lar behaviour should be penalised by downweighting of these

models, as it may represent a true “emergent constraint” on
system behaviour. An obvious future test of our ideas would
be to apply this analysis to the CMIP5 and CMIP6 ensem-
bles of climate models, to check whether the interpolation
and dependence ideas presented here apply generally to en-
sembles of climate models rather than being an example of
over-enthusiastic data mining.

Part 2 – Independence of constraints on climate

system behaviour

In Part 1, we discussed how the concept of independence ap-
plies to the sets of models which form the CMIP ensembles
of opportunity. In Part 2, we discuss estimation of climate
sensitivity, although the principles presented here apply more
generally to observational constraints on climate system be-
haviour. While initially it may seem that this topic has little in
common with that of Part 1, we will show how the concept of
probabilistic independence also relates directly to this ques-
tion. Thus, the probabilistic background of Sect. 3 is directly
relevant and applicable here.

6 The literature concerning observational

constraints on the climate sensitivity

The magnitude of the equilibrium climate sensitivity S (the
globally averaged equilibrium temperature response to a dou-
bling of atmospheric CO2) has long been one of the funda-
mental questions of climate change research (Charney et al.,
1979). A wide range of approaches have been presented
which attempt to estimate this number. Most commonly, a
Bayesian approach is used in which some prior estimate is
updated by means of an observationally based likelihood
function to form a posterior estimate. The observations fre-
quently relate to the warming observed during the instru-
mental period (which we refer to for convenience as the
20th century, although the relevant observational data avail-
able does extend into the 19th and 21st centuries) (Tol and
De Vos, 1998; Forest et al., 2006; Skeie et al., 2014), but
analyses have also been presented which use longer-term cli-
mate changes seen during the palaeoclimate record (Annan
et al., 2005; Köhler et al., 2010), or short-term variations seen
at seasonal to interannual timescales (Wigley et al., 2005;
Knutti et al., 2006). In each case, however, the observations
are not a direct measure of the sensitivity S per se but must
be related to it through the use of a climate model or mod-
els, which may be simple or complex. Collins et al. (2013,
Box 12.2) and Annan (2015) survey and discuss some recent
analyses which use a variety of observational data sets and
modelling approaches, and Rohling et al. (2012) cover the
palaeoclimate field in some detail.

The question naturally arises as to whether these different
constraints could, and should, be synthesised. In most of the
Bayesian analyses, the prior is typically chosen to be vague,
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though there is some debate concerning this choice (An-
nan and Hargreaves, 2011a; Lewis, 2014). Irrespective of the
choice of prior, the posterior after updating with observa-
tions is typically substantially narrower. One might reason-
ably wonder what the results would look like if this result-
ing posterior was then used as the prior in a new analysis in
which it was updated by a different data set. This question
was first explicitly raised by Annan and Hargreaves (2006),
who made an assumption of independence between the con-
straints and thus implemented a straightforward process of
sequential updating using Eq. (4) which resulted in a substan-
tially tighter constraint than had previously been obtained.
Hegerl et al. (2006) similarly updated a posterior arising from
an estimate based on the 20th century warming, with a sepa-
rate data set relating to climate changes over earlier centuries.
However, the validity of these analyses is not immediately
obvious, as the independence of different constraints has not
been clearly explained or demonstrated. Nevertheless, we al-
ways expect to learn from new observations (Lindley, 1956),
so it is reasonable to expect that an analysis which accounts
for multiple lines of evidence will generate a more precise
and reliable result than analyses that do not. It is therefore
surprising that there has been very little discussion of this
topic in the climate science literature, and very few recent at-
tempts to combine diverse data sources, although this topic
is now receiving some fresh attention (Stevens et al., 2016).

7 Independence of constraints in the Bayesian

context

It should be clear from the discussion in Sect. 3 that the
concept of independence in relation to multiple constraints
on the equilibrium climate sensitivity S is more precisely
expressed as conditional independence of these constraints
given S. The issue is whether it is valid to replace the term
p(A ∩ B|S) in Eq. (3) with p(A|S)p(B|S) to form Eq. (4),
or equivalently whether p(B|S ∩ A) = p(B|S). This is es-
sentially the same concept as the “truth-centred” approach
to model independence discussed briefly in Sect. 4, although
the skewed and asymmetric forms of general likelihood func-
tions means that it is not necessarily appropriate to think of
them as being centred on the true value of S.

In Sect. 3.1, we argued that ignorance of any dependency
implies independence. Given a likelihood p(A|S) we ask our-
selves, how can we change this by additionally including B

to form p(A|S∩B)? If the answer is that B provides no addi-
tional information regarding A (conditional on knowing S),
then A and B are conditionally independent given S. This
answer may seem a little unsatisfactory, as it relies on a dog-
matically subjectivist and personal interpretation of proba-
bility. While we emphasise that Bayesian probability is at its
heart a fundamentally subjective concept, it is quite usual to
use numerical or mathematical models as a tool to represent
and understand our uncertainties.

While the subjective nature of Bayesian priors (i.e. p(S) =

p(S|�p), where �p is the researcher’s personal background
knowledge) has been regularly discussed in the literature,
it is less widely appreciated that the likelihood p(A|S) =

p(A|�p ∩ S) is also a fundamentally subjective concept
within the Bayesian paradigm. Even if S is a well-defined
property of the real world (which is not always immediately
clear when S is defined in sufficiently abstract terms), there is
then no alternative world in which S takes a different value,
with which we could check to see which events take place in
this case. Therefore, while the likelihood should give a rea-
sonable prediction of the evidence A when the correct value
of S is used, there is no objective constraint or check on
what the likelihood should predict for some alternative in-
correct choice of S. The only practical way in which a like-
lihood can be constructed is via some model which allows S

to vary, either as an explicit parameter in a simple model or
perhaps as an emergent property of a more complex model
which includes multiple sources of uncertainty. There can be
no “correct” way to vary S, again because there is no world in
which S takes a different value against which to validate our
choices. Within the Bayesian paradigm, therefore, the likeli-
hood can only reflect the researcher’s subjective beliefs and
modelling choices rather than any physical truth. Different
models will in principle lead to different likelihoods, though
in practice there may be a reasonable level of agreement be-
tween researchers.

7.1 Example

Here we explore these ideas in a little more detail in order
to illustrate how it is possible to provide a credible basis
for what are fundamentally subjective judgements. Typically,
a likelihood p(A|S) is generated not as a purely subjective
matter of belief but instead justified via a model or ensem-
ble of models. For example, if the equilibrium sensitivity is
varied across an ensemble of energy balance models (along
with other input parameters: S here may be used as a short-
hand for a vector of relevant uncertainties) then we will find
that in simulations of the 20th century, the warming observed
will vary across the ensemble. This can then be used as the
basis for the likelihood function (e.g. Tol and De Vos, 1998;
Forest et al., 2006; Skeie et al., 2014). Similarly, for another
observable B such as the cooling during the LGM, which
may require another set of simulations using the same en-
semble. We now outline how it is possible to test whether B

is conditionally independent of A given S, in the context of
this model.

A simple example is used to illustrate the point. We use a
zero-dimensional energy balance model to simulate the cli-
mate changes of both the 20th century and the LGM. For
simplicity, we only consider a subset of the relevant uncer-
tain parameters: the equilibrium sensitivity S, the planetary
effective heat capacity C, the uncertainties in radiative forc-
ing due to aerosol forcing over the 20th century F , and at-
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mospheric dust and the large ice sheets which existed during
the LGM, D and I respectively.

For the warming of the 20th century, we assume the to-
tal forcing G = G(t) follows a linear forcing ramp from 0
in 1900 to 2 − F in 2000 (using a value of 2 Wm−2 to ap-
proximately represent the sum of all other forcings other
than aerosols, which are dominated by greenhouse gases).
We simulate the climate change with the zero-dimensional
energy balance model which satisfies the equation

C · dT/dt = G(t) − T (t) × 3.7/S, (8)

where T (t) is the temperature anomaly (relative to 1900) at
time t . The radiative forcing due to a doubling of CO2 is
taken to be 3.7 Wm−2. Our first observable A is the change
in global mean surface air temperature over the 20th cen-
tury as estimated by the linear trend over this interval. Dur-
ing the LGM, the climate can be assumed to be at a quasi-
equilibrium and thus the planetary heat capacity (which mod-
erates transient changes) can be ignored. The equilibrium
temperature anomaly B during this period is calculated as

B = (3 + D + I ) × S/3.7, (9)

where the total forcing 3 + D + I is the sum of greenhouse
gases (3 Wm−2), the uncertain dust forcing (D) and the un-
certain effective forcing of the ice sheet (I ) respectively. The
ice sheet forcing uncertainty term used here implicitly ac-
counts for the nonlinearity of how this combines with the
other forcings. For simplicity, we do not consider obser-
vational uncertainties for either the LGM or 20th century
temperature changes, though accounting for these would be
straightforward. We use the following priors which are all
taken to be either uniform distributions U [, ] or Gaussian
N (, ):

S ∼ U [0.5,6]

C ∼ U [10,30]

F ∼ N [1,0.5]

D ∼ N [1,0.5]

I ∼ N [3,1].

A plot of the simulated 20th century warming A versus sen-
sitivity S is shown in Fig. 2a, together with a linear regres-
sion fit to these data. This relationship shown demonstrates
the basis for a likelihood function p(A|S): for any specified
sensitivity we can predict the resulting temperature using the
regression line (albeit with uncertainty), and therefore we
can calculate how the probability of any specific warming
A varies with S. In this example, the linear regression pro-
vides a good fit to the data, though the uncertainty clearly
grows towards larger sensitivity values. Similarly, the LGM
cooling B is also linked to S (Fig. 2b), and this relationship
can be used as the basis for a likelihood function p(B|S).

By construction, we already know that the two constraints
are independent given S, since the other uncertain parame-
ters that relate to each observations are disjoint. However, if
we did not know this analytically a priori but were instead
merely able to use the model as a black box, we could check
for the independence of two sets of constraining evidence
A and B in the following manner. Firstly, we would form
the likelihood p(A|S) as above and use this together with
the known value of S for each ensemble member to gener-
ate a mean prediction (which we denote A′) of the observa-
tion for each. On comparing to the actual observed value A

for each ensemble member, there will typically be a resid-
ual (A − A′) between the predicted and observed values, the
magnitude of which indicates the limited information which
S provides concerning A. We can now explore whether an
additional observable B is informative regarding these resid-
uals, i.e. whether it exhibits any systematic relationship with
them. If it does not, then we may reasonably conclude that B

provides no additional information on, and is conditionally
independent of, A given S. Conversely, if B is informative
regarding the residuals, then this is proof that it is not inde-
pendent of A.

In the context of our example, we first create an ensem-
ble with an arbitrary but fixed value of S = 3.5 ◦C, say, and
simulate both the 20th century warming and the LGM state
for each member of this ensemble. The likelihood func-
tion arising from Fig. 2a gives us a predicted warming of
A′ = 0.85 ◦C (with uncertainty of 0.4 ◦C) for these ensem-
ble simulations. We now check the prediction errors to see
whether they exhibit any relationship with B. Figure 2c indi-
cates that they do not, with the regression coefficients being
insignificantly different from zero. The conclusion is that the
additional knowledge of B, once the sensitivity S is known
to be 3.5 ◦C, does not provide any additional help in predict-
ing A. A and B are therefore independent, conditional on
S = 3.5 ◦C. This experiment can be repeated for as many dif-
ferent values of S as is desired, and the same negative result
will be found. This is of course not surprising, as the model
has been constructed in this way.

We now make a small change to the model, and substi-
tute D with F in Eq. (9) to obtain B = (3 + F + I ) × S/3.7.
This modified model now makes the assumption that the
magnitude of effective dust forcing at the LGM is the same
as that of the aerosol forcing during the 20th century. This
is of course again a very simplistic approach, but it is not
completely unreasonable to assume a link of some sort, as
both forcings relate to the effects of condensation nuclei
on clouds. Importantly, the univariate likelihood functions
p(A|S) and p(B|S) are unchanged by this substitution, as
D and F are identically distributed. Therefore, we can gen-
erate the same prediction for A, conditional on a known
S = 3.5 ◦C. However, with this change to the model, the pre-
diction errors are now strongly correlated with B, as is shown
in Fig. 2d. Therefore, a new distribution function p(A|S∩B)
can be created which makes a more precise prediction of A
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Figure 2. Outputs of ensemble simulations (red dots) and linear regression fits (black lines): (a) 20th century warming (A) versus equilibrium
sensitivity; (b) LGM cooling (B) versus equilibrium sensitivity; (c) 20th century prediction residuals (A − A′) versus LGM cooling (B),
independent case; and (d) 20th century prediction residuals (A − A′) versus LGM cooling (B), dependent case.

given knowledge of both S and B. Thus, it can be diagnosed
from the model outputs alone, without direct knowledge of
the model’s internal structure, that A and B are not indepen-
dent conditional on S. This result is of course easily inter-
preted in terms of the known model structure: for a given
sensitivity, a smaller than expected cooling at the LGM sug-
gests a low dust/aerosol forcing, which then implies that the
20th century warming will be greater than would be expected
from knowledge of sensitivity alone.

The linear regressions are not necessarily the best way to
represent a relationship that may in practice be more com-
plex. However, such an approach may be expected to capture
any first-order effect. The central point of these numerical ex-
periments is to demonstrate that this dependence can in prin-
ciple be diagnosed from model outputs directly, without the
need for detailed knowledge or understanding of causal re-
lationships embedded in the model structure. Furthermore, a

conditional likelihood p(A|S∩B) can subsequently be gener-
ated from the ensemble outputs. This then enables us to gen-
erate the joint likelihood p(A∩B|S) = p(A|S∩B)p(B|S) as
required for a Bayesian inversion.

Such analyses may be impractical for the outputs of small
ensembles such as those arising from the CMIP multi-model
experiments which explore structural uncertainties. How-
ever, they may well be plausible for larger ensembles where
parameters are varied within a single model structure. The
key requirement is that the simulations relating to different
observables are performed with the same model in order that
any dependence between constraints can be explored. The re-
sults obtained will of course depend on the model used, but
this is as expected: the likelihood is not a property of reality,
but rather a consequence of the modelling assumptions, as
was discussed in Sect. 7.

www.earth-syst-dynam.net/8/211/2017/ Earth Syst. Dynam., 8, 211–224, 2017



222 J. D. Annan and J. C. Hargreaves: Independence

8 Summary of Part 2

The question of how to combine multiple constraints on
climate sensitivity has been occasionally raised, but more
commonly ignored, in analyses of this parameter. It is well
known that combining constraints should lead to more confi-
dent conclusions, but the difficulty of accounting for possible
dependency appears to have widely discouraged researchers
from attempting this (Collins et al., 2013, Box 12.2). This sit-
uation may start to change (e.g. Stevens et al., 2016), and we
hope that the analysis presented here will encourage others
to consider the question of dependence more directly. In par-
ticular, we have argued that independence is fundamentally
a subjective matter, but we have also shown how it may in
principle be diagnosed from an ensemble of models which
purports to represent our subjective uncertainties. A more
widespread use of model ensembles which simulate multi-
ple observationally constrained periods (such as both modern
and palaeoclimate periods) may enable more progress to be
made.

9 Conclusions

We have discussed and presented a coherent statistical frame-
work for understanding independence, and explained how
this applies in two distinct applications. Climate models can-
not sensibly be considered independent estimates of real-
ity, but fortunately this strong assumption is not required
in order to make use of them. A more plausible, though
still optimistic, assumption might be to interpret the ensem-
ble as merely constituting independent samples of a distri-
bution which represents our collective understanding of the
climate system. This assumption is challenged by the near-
replication of some climate models within the ensemble, and
therefore re-weighting or sub-sampling the ensemble could
improve its usefulness. We have shown how the statistical
definition of (conditional) independence can apply and how
it helps in defining independence in a quantifiable manner.
The definition we have presented is certainly not the only
possible one and we expect that others may be able to sug-
gest improvements within this framework.

When considering the use of observational evidence in
constraining climate system behaviour (including the spe-
cific example of the equilibrium climate sensitivity), obser-
vational uncertainties themselves can generally be regarded
as independent. However, the independence of the resulting
likelihood functions is not so immediately clear, as it typi-
cally also rests on a number of modelling assumptions and
uncertainties. Here we have shown how the question of inde-
pendence can be readily interpreted and understood in terms
of the conditional prediction of observations. These ideas
may be useful in the design and analysis of ensemble experi-
ments underpinning the analysis of observational constraints.

While our examples do not provide complete solutions
to the questions raised, we have shown how the statistical

framework can be usefully applied. Further, we see little
prospect for progress to be made unless it is underpinned by
a rigorous mathematical framework. Therefore, we hope that
other researchers will be able to make use of these ideas in
their future work.
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