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Abstract In this paper, we discuss the application of con-

cept of data quality to big data by highlighting how much

complex is to define it in a general way. Already data qual-

ity is a multidimensional concept, difficult to characterize in

precise definitions even in the case of well-structured data.

Big data add two further dimensions of complexity: (i) being

“very” source specific, and for this we adopt the interest-

ing UNECE classification, and (ii) being highly unstructured

and schema-less, often without golden standards to refer to

or very difficult to access. After providing a tutorial on data

quality in traditional contexts, we analyze big data by pro-

viding insights into the UNECE classification, and then, for

each type of data source, we choose a specific instance of

such a type (notably deep Web data, sensor-generated data,

and Twitters/short texts) and discuss how quality dimensions
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can be defined in these cases. The overall aim of the paper is

therefore to identify further research directions in the area of

big data quality, by providing at the same time an up-to-date

state of the art on data quality.

Keywords Data quality · Big data · Quality dimensions ·

Information quality

1 Introduction

We are currently in the era of big data [21], and whereas

no exact definition of what big data are has been agreed

upon in the research community and among practitioners,

the “common sense” suggests that large data sets, featur-

ing 3 V’s (volume, variety, and velocity), and interesting for

analytic tasks that can be carried out over them in order to

discover interesting patterns, are what defines big data.

The common vision of big data emphasizes quantity over

quality of data, arguing that the very large amount of data is

sufficient to offset any distortion or defects that data might

contain. This view is probably too simplistic, and critical

research direction is to develop effective and efficient meth-

ods for assessing the quality of data and the reliability of

inferences made through quality-aware algorithms.

But what is then big data quality? In this paper, we will

show, in a nonformal way but trough examples and case stud-

ies, how difficult is to define a unique concept of big data

quality. We will argue that devising a unique data quality

concept is not meaningful at all. Conversely, there are many

notions of quality, to be applied to specific types of big data,

that should be carefully considered when dealing with big

data sets and analytics over them.

The rest of this paper is structured as it follows: Sect. 2

introduces the notion of data and information quality, as

addressed in general terms by the literature, in order to pro-
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Table 1 A relation Movies

with data quality problems
ID Title Director Year #Remakes LastRemakeYear

1 Casablanca Weir 1942 3 1940

2 Dead poets society Curtiz 1989 0 Null

3 Rman Holiday Wylder 1953 0 Null

4 Sabrina Null 1964 0 1985

vide a basic background; then, Sect. 3 focuses on big data,

by referring to the UNECE classification, in order to provide

a discussion of big data quality in the Sect. 4. Section 5 con-

cludes the paper by highlighting its main contributions and

identifying further research directions for quality of big data.

2 Data and Information Quality

Quality, in general, has been defined as the “totality of char-

acteristics of a product that bear on its ability to satisfy stated

or implied needs” [29], as “fitness for (intended) use” [31],

“conformance to requirements” [9], “user satisfaction” [52].

When people think about information quality, they often

reduce quality just to accuracy, e.g., the city name “Chicago”

misspelled as “Chcago.” Indeed, information is normally

considered to be of poor quality if typos are present or wrong

values are associated with a concept instance, such as an

erroneous birth date or age associated with a person. Hence,

information quality is more than simply accuracy. Other sig-

nificant dimensions such as completeness, consistency, and

currency are necessary in order to fully characterize the qual-

ity of information. Table 1 provides some examples of these

dimensions for structured data, from [1]. The relational table

describes movies, with title, director, year of production,

number of remakes, and year of the last remake. The cells

with data quality problems are bold faced. At first, only the

cell corresponding to the title of movie 3 seems to be affected

by a data quality problem. Indeed, there is a misspelling in

the title, where Rman stands for Roman, thus causing an

accuracy problem. Nevertheless, another accuracy problem

is related to the exchange of the director between movies 1

and 2: Weir is actually the director of movie 2 and Curtiz

the director of movie 1. Other data quality problems are: a

missing value for the director of movie 4, causing a com-

pleteness problem, and a 0 value for the number of remakes

of movie 4, causing a currency problem because a remake

of the movie has actually been proposed. Finally, there are

two consistency problems: first, for movie 1, the value of

LastRemakeYear cannot be lower than Year; second,

for movie 4, the value of LastRemakeYear cannot be dif-

ferent from null, because the value of #Remakes is 0.

The above examples and considerations show that:

– Data quality is a multifaceted concept, and different

dimensions concur to define it;

– Quality problems related to some dimensions, such as

accuracy, can be easily detected in some cases (e.g., mis-

spellings) but are more difficult to detect in other cases

(e.g., where admissible but not correct values are pro-

vided);

– A simple example of a completeness error has been shown,

but as it happens with accuracy, completeness can also be

very difficult to evaluate (e.g., if a tuple representing a

movie is entirely missing from the relation Movie);

– Consistency detection does not always localize the errors

(e.g., for movie 1, the value or the LastRemakeYear

attribute is wrong).

The described examples concern a table in a relational

database. Problems change significantly when other types of

information, different from relational data, are involved. An

unbelievable vast amount of information about realities of

interest is indeed represented by information which is not

encoded as structured data. Reality is typically represented

by a piece of information either in its realistic inherent char-

acter (e.g., a photograph of a landscape or a photograph of a

group of students in a class or a map and a descriptive text

in a travel guide) or in other ways, e.g., in novels and poetry

as a virtual representation of the reality itself. Hence, quality

issues and techniques may differ depending on the informa-

tion representation, e.g., images, maps, and unstructured text.

Therefore, in what follows, we briefly characterize the

concept of information quality for both structured data (this

is referred specifically as data quality) and other types of

information, by defining information quality’s dimensions,

together with possible metrics to measure them. We remark

that the purpose of the section is not to provide a complete

overview of the information quality concept (the interested

reader can refer to the book [1] for a comprehensive techni-

cal coverage of information quality), but rather to allow the

reader to understand the intrinsic complexity of the concept

itself, and the many facets that information quality can have.

On the basis of such a characterization, next sections will

elaborate on the concept of information quality in a specific

way for elected types of big data sources.

2.1 On the Definition and Measurement of Information

Quality: Dimensions and Metrics

Dimensions for information quality can be grouped into clus-

ters according to [2]. Dimensions are included in the same

cluster according to their similarity with respect to their abil-
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ity to capture an information quality aspect. Clusters are

defined in the following list, where the first item in italics

is the representative dimension of the cluster, followed by

other member dimensions, namely:

1. Accuracy, correctness, validity, and precision focus on

the adherence to a given reality of interest.

2. Completeness, pertinence, and relevance refer to the

capability of representing all and only the relevant aspects

of the reality of interest.

3. Consistency, cohesion, and coherence refer to the capa-

bility of the information to comply without contradictions

to all properties of the reality of interest, as specified in

terms of integrity constraints, data edits, business rules,

and other formalisms.

4. Redundancy, minimality, compactness, and conciseness

refer to the capability of representing the aspects of the

reality of interest with the minimal use of informative

resources.

5. Readability, comprehensibility, clarity, and simplicity

refer to ease of understanding and fruition of informa-

tion by users.

6. Accessibility and availability are related to the ability of

the user to access information from her own culture, phys-

ical status/functions, and technologies available.

7. Trust, including believability, reliability, and reputation,

focuses on how much information derives from an author-

itative source.

8. Usefulness is related to the advantage the user gains from

the use of information.

Dimensions are usually defined in a qualitative way, refer-

ring to general properties of data, and the related definitions

do not provide any tool or methodology for assigning values

to the dimensions themselves. Specifically, definitions do not

typically provide quantitative measures, but one or more met-

rics are to be associated with dimensions as separate, distinct

properties. In the following, for each cluster of dimensions

described above, we provide definitions for some selected

dimensions and examples of possible metrics.

Moreover, as shown in Table 2, the first three dimen-

sions are specifically discussed for structured data, the fourth

dimension for linked data (as structured Web data), the fifth

dimension for texts (unstructured data), the sixth and seventh

dimensions for Web data in general, and the eighth dimen-

sion for images. The rationale for this choice is to give the

reader an overview as richer as possible of what information

quality means for different information types, and to con-

sider information types which are relevant in the context of

big data sources.

2.1.1 The Accuracy Cluster

Accuracy is defined as the closeness between a data value v

and a data value v′, considered as the correct representation

Table 2 Clusters and information types

Cluster Information type

Accuracy Structured data

Completeness Structured data

Consistency Structured data

Redundancy Linked data—structured Web data

Readability Texts—unstructured data

Accessibility Web sites’ data

Trust Web data sources

Usefulness Images

of the real-life phenomenon that the data value v aims to rep-

resent. As an example, if the name of a person is John, the

value v′ = John is correct, while the value v = Jhn is incor-

rect. The world around us changes (velocity is one of the 3

V’s of big data), and what we have referred in the above defi-

nition as “the real-life phenomenon that the data value v aims

to represent” reflects such changes. So, there is a particular

yet relevant type of data accuracy that refers to the rapidity

with which the change in real-world phenomenon is reflected

in the update to the data value; we call temporal accuracy

such type of accuracy, in contrast to structural accuracy (or,

simply, accuracy), that characterizes the accuracy of data as

observed in a specific time frame, where the data value can be

considered stable and unchanged. In the following, we con-

sider first structural accuracy and later temporal accuracy.

Two kinds of (structural) accuracy can be identified, namely

a syntactic accuracy and a semantic accuracy.

Syntactic accuracy is the closeness of a value v to the

elements of the corresponding definition domain D. In syn-

tactic accuracy, we are not interested in comparing vwith the

true value v′; rather, we are interested in checking whether

v belongs to D, whatever it is. So, if v = Jack, even if v′

= John, v is considered syntactically correct, as Jack is

an admissible value in the domain of persons’ names. Syn-

tactic accuracy is measured by means of functions, called

comparison functions, that evaluate the distance between v

and the values in D. The edit distance is a simple example

of a comparison function, taking into account the minimum

number of character insertions, deletions, and replacements

to convert a string s to a string s′. More complex compari-

son functions exist, e.g., taking into account similar sounds

or character transpositions (see [8]).

Semantic accuracy is the closeness of the value v to the

true value v′. Let us consider again the relation Movies of

Table 1. The exchange of directors’ names in tuples 1 and 2

is an example of a semantic accuracy error. Indeed, for movie

1, a director named Curtiz would be admissible, and thus,

it is syntactically correct. Nevertheless, Curtiz is not the

director of Casablanca; therefore, a semantic accuracy
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error occurs. The above examples clearly show the differ-

ence between syntactic and semantic accuracy. Note that,

while it is reasonable to measure syntactic accuracy using

a distance function, semantic accuracy is measured better

with a <yes, no> or a <correct, not correct>

domain. Consequently, semantic accuracy coincides with the

concept of correctness. In contrast with what happens for

syntactic accuracy, in order to measure the semantic accu-

racy of a value v, the corresponding true value has to be

known, or, else, it should be possible, by considering addi-

tional knowledge, to infer whether that value v is or is not

the true value. In a general context, a technique for checking

semantic accuracy consists of looking for the same data in

different data sources and finding the correct data by com-

parisons. This latter approach also requires the solution of an

object identification problem, i.e., the problem of understand-

ing whether two tuples refer to the same real-world entity or

not [14].

As anticipated, a relevant aspect of data is their change and

update during time. Temporal accuracy can be characterized

in terms of currency, volatility, and timeliness:

Currency concerns how promptly data are updated with

respect to changes occurred in the real world. As an exam-

ple in Table 1, the attribute #Remakes of movie 4 has

low currency because a remake of movie 4 has been done,

but this information did not result in an increased value

for the number of remakes. Similarly, if the residential

address of a person is updated, i.e., it corresponds to the

address where the person lives, then the currency is high.

Volatility characterizes the frequency with which data

vary in time. For instance, stable data such as birth dates

have volatility equal to 0, as they do not vary at all. Con-

versely, stock quotes, a kind of frequently changing data,

have a high degree of volatility due to the fact that they

remain valid for very short time intervals.

Timeliness expresses how data are current for the task at

hand. The timeliness dimension is motivated by the fact

that it is possible to have current data that are actually

useless because they are late for a specific usage. For

instance, the timetable for university courses is current if

contains the most recent data, but it is not timely if it is

available only after the start of the classes.

Currency can be typically measured with respect to meta-

data concerning the last update, i.e., the last time stamp at

which the specific data were updated. For data types that

change with a fixed frequency, the last update metadata allow

us to compute currency straightforwardly. Conversely, for

data types whose change frequency can vary, one possibility

is to calculate an average change frequency and perform the

currency computation with respect to it, thus tolerating some

errors. As an example, if a data source stores product names

that are estimated to change every five years, then a product,

having its last update metadata reporting a date correspond-

ing to a month before the observation time, can be assumed to

be current; conversely, if the date reported is ten years before

the observation time, it can be assumed to be not current.

Volatility is a dimension that inherently characterizes cer-

tain types of data. A metric for volatility is given by the

timespan (or its inverse) that data remain valid.

Timeliness implies that data not only are current, but

are also in time for events corresponding to their usage.

Therefore, a possible measurement consists of (i) a currency

measure and (ii) a check that data are available before the

planned usage time.

2.1.2 The Completeness Cluster

Completeness can be generically defined as “the extent to

which data are of sufficient breadth, depth, and scope for

the task at hand” [51]. In [43], three types of completeness

are identified. Schema completeness is defined as the degree

to which concepts and their properties are not missing from

the schema. Column completeness is defined as a measure

of the missing values for a specific property or column in

a table. Population completeness evaluates missing values

with respect to a reference population.

If focusing on a specific data model, a more precise char-

acterization of completeness can be given. In the following,

we refer to the relational model and to the case of the

Closed World Assumption with null values (see [1] for further

details). Another example of completeness characterization

is related to Web data [42].

In the model with null values with CWA, specific def-

initions for completeness can be provided by considering

the granularity of the model elements, i.e., values, tuples,

attributes, and relations, as shown in Fig. 1. Specifically, it is

possible to define

– a value completeness to capture the presence of null val-

ues for some fields of a tuple;

– a tuple completeness to characterize the completeness of

a tuple with respect to the values of all its fields;

– an attribute completeness to measure the number of null

values of a specific attribute in a relation;

– a relation completeness to capture the presence of null

values in a whole relation.

As an example, in Table 3, a Student relation is shown.

The tuple completeness evaluates the percentage of speci-

fied values in the tuple with respect to the total number of

attributes of the tuple itself. Therefore, in the example, the

tuple completeness is 1 for tuples 6754 and 8907, 0.8 for tuple

6587, 0.6 for tuple 0987, and so on. A possible way to mea-

sure the tuple completeness is to measure the information

content of the tuple with respect to its maximum potential
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Fig. 1 Completeness of different elements in the relational model

Table 3 Student relation exemplifying the completeness of tuples,

attributes, and relations

Student ID Name Surname Vote Examination date

6754 Mike Collins 29 07/17/2004

8907 Anne Herbert 18 07/17/2004

6578 Julianne Merrals Null 07/17/2004

0987 Robert Archer Null Null

1243 Mark Taylor 26 09/30/2004

2134 Bridget Abbott 30 09/30/2004

6784 John Miller 30 Null

0098 Carl Adams 25 09/30/2004

1111 John Smith 28 09/30/2004

2564 Edward Monroe Null Null

8976 Anthony White 21 Null

8973 Marianne Collins 30 10/15/2004

information content. With reference to this interpretation,

we are implicitly assuming that all values of the tuple con-

tribute equally to the total information content of the tuple.

Of course, this may not be the case, as different applications

can weight the attributes of a tuple differently.

The attribute completeness evaluates the percentage of

specified values in the column corresponding to the attribute

with respect to the total number of values that should have

been specified. In Table 3, let us consider an application cal-

culating the average of the votes obtained by students. The

absence of some values for the Vote attribute simply implies

a deviation in the calculation of the average; therefore, a char-

acterization of Vote completeness may be useful.

The relation completeness is relevant in all applications

that need to evaluate the completeness of a whole relation

and can admit the presence of null values on some attributes.

Relation completeness measures how much information is

represented in the relation by evaluating the content of the

information actually available with respect to the maximum

possible content, i.e., without null values. According to this

interpretation, completeness of the relation Student in

Table 3 is 53/60.

2.1.3 The Consistency Cluster

The consistency captures the violation of semantic rules

defined over (a set of) data items, where items can be tuples

of relational tables or records in a file. With reference to the

relational theory, integrity constraints are an instantiation of

such semantic rules. The reader can consider [15] for details

about consistency detection and correction in the relational

model.

In the area of Official Statistics, data edits are another

example of semantic rules that allow for the checking

of consistency. As an example, data coming from survey

questionnaires have a structure corresponding to the ques-

tionnaire schema. The semantic rules are thus defined over

such a structure in a way very similar to relational constraints

and are called edits. Data editing is defined as the task of

detecting inconsistencies by formulating rules that must be

respected by every correct set of answers. Such rules are

expressed as edits, which denote error conditions. After the

detection of erroneous records, the act of correcting erro-

neous fields by restoring correct values is called imputation.

The problem of localizing errors by means of edits and imput-

ing erroneous fields is known as the edit-imputation problem

and solutions to that date back to mid-1970s [17].

2.1.4 The Redundancy Cluster

We define conciseness for the particular case of linked data

[5] that have the property to be structured data on the Web.

Conciseness for linked data refers to the presence of irrele-

vant elements with respect to the domain or the minimization

of redundant schema and data elements.

There are two major notions of conciseness:

– intensional conciseness, which refers to the case when

the data set does not contain redundant schema elements

(properties and classes). Only essential properties and

classes are included in the schema;

– extensional conciseness, which refers to the case when

the data set does not contain redundant objects (instances).

Intensional conciseness measures the number of unique

schema elements (i.e., properties and classes) of a data set

in relation to the overall number of schema elements in a

schema [39]. Extensional conciseness measures the number

of unique entities in relation to the overall number of entities

in the data set [39]. Further, extensional conciseness can be

measured as the total number of instances that violate the

uniqueness rule in relation to the total number of relevant
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instances [20,35]. An example of intensional conciseness

would be a particular flight, e.g., A123, being represented by

two different properties in the same data set, such as http://

flights.org/airlineID and http://flights.org/name. In this case,

redundancy between airlineID and name can ideally be

solved by merging the two properties and keeping only one

unique identifier. In other words, conciseness should push

stakeholders to reuse as much as possible schema elements

from existing schemata/ontologies rather than creating new

ones since the reuse will support data interoperability.

Representational conciseness refers to the extent to which

information is compactly represented. As an example, con-

sider a flight portal that represents the URIs for the destina-

tions compactly with the use of the airport codes, e.g., MXP

is the airport code for Milano Malpensa; therefore, the URI

is http://airlines.org/MXP. This short representation of URIs

helps users share and remember them easily.

Representational conciseness can be measured as: (a)

detection of long URIs or those that contain query para-

meters [26], or (b) detection of RDF primitives, i.e., RDF

reification, RDF containers, and RDF collections [26]. The

concise representation of data not only contributes to the

human readability of that data, but also influences the per-

formance of data when queried. Keeping URIs concise and

human readable is highly recommended for large scale and/or

frequent processing of RDF data as well as for efficient index-

ing and serialization.

2.1.5 The Readability Cluster

Readability is a relevant dimension especially for texts; there-

fore, in the following, the specific focus is on this type of

information that is highly unstructured. Readability is defined

as reading easiness. Readability is also defined as what makes

some texts easier to read than others [13]. [34] defines read-

ability as “the ease of understanding due to the style of

writing.” This definition focuses on writing style as separate

from issues such as content, coherence, and organization.

Readability is then concerned with the relative difficulty of

reading written text. Readability should not to be confused

with legibility, which is concerned with typeface and layout.

Readability research largely traces its origins to an initial

study by Kitson [33] that demonstrates tangible differences

in sentence lengths and word lengths, measured in syllables,

between two newspapers and two magazines (see also [55]

for an historical perspective of readability). The majority of

metrics proposed for readability are based on factors that

represent two broad aspects of comprehension difficulty: (i)

lexical or semantic features and (ii) sentence or syntactic

complexity. According to [7], formulas that depend on these

variables are popular because they are easily associated with

text simplification.

As a consequence of the above perspective, readability is

usually measured by using a mathematical formula that con-

siders syntactic features of a given text, such as word length

and sentence length. Over 200 formulas have been reported

for readability in the English language [13] from 1920s to

1980s, among them the Gunning-Fox index [24], the Auto-

mated Readability Index (ARI) [46], the Flesch Reading Ease

[16,19], and the Flesch Kincaid Grade Level [32]; we briefly

discuss a few of them in order to provide some intuition of the

ideas behind. The Gunning-Fox index produces an approxi-

mate grade level required to understand the document. The

basic idea in the index is that the longer sentences are and the

greater is the complexity of words used in them, the higher is

the difficulty to read the text. The formula for the Gunning-

Fox index is shown in Fig. 2.

An example of evaluation of the Gunning-Fox index from

[41] is the text in Fig. 3. This passage has seven sentences

and 96 words. The average sentence length is 13.7. There are

nine difficult words (in boldface). The Gunning’s Fox index

is = 0.4 × (13.7 + 9.375) = 9.23.

ARI is a readability measure designed to represent the US

grade level needed to comprehend the text. Unlike the other

indexes, ARI relies on a ratio characters per word, instead

of the usual syllables per word. See the formula for the ARI

index in Fig. 4, where:

– characters are the number of characters in the text;

– words are the number of words in the text;

– sentences are the number of sentences in the text;

– complex words are difficult words defined as those with

three or more syllables.

Fig. 2 Formula for the Gunning-Fox index

Fig. 3 Example of evaluation of the Gunning-Fox index

Fig. 4 Formula for the ARI index
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2.1.6 The Accessibility Cluster

Publishing large amounts of data in Web sites is not a suffi-

cient condition for their availability to everyone. In order to

access it, a user needs to access a network, to understand the

language to be used for navigating and querying the Web,

and to perceive with senses the information made available.

Accessibility measures the ability of the user to access the

data from her own culture, physical status/functions, and

technologies available. We focus in the following on causes

that can reduce physical or sensorial abilities, and, con-

sequently, can reduce accessibility, and we briefly outline

corresponding guidelines to achieve accessibility. Among

others, the World Wide Web Consortium [50] defines the

individuals with disabilities as subjects that (i) may not be

able to see, hear, move, or process some types of information

easily or at all; (ii) may have difficulty reading or compre-

hending text; (iii) may not have to or be able to use a keyboard

or mouse; (iv) may have a text-only screen, a small screen, or

a slow Internet connection; and (v) may not speak or under-

stand a natural language fluently.

Several guidelines are provided by international and

national bodies to govern the production of data, applications,

services, and Web sites in order to guarantee accessibility.

One of the most well-known guidelines related to data acces-

sibility is provided by the World Wide Web Consortium [50];

we will not discuss further as it is out of the scope of this work.

Several countries have enacted specific laws to enforce acces-

sibility in public and private Web sites and applications used

by citizens and employees in order to provide them effective

access and reduce the digital divide.

2.1.7 The Trust Cluster

Trust is a level of subjective and local probability with which

an agent assesses that another agent will perform a particular

action. Trustworthiness is the objective probability that the

trustee performs a particular action on which the interests of

the truster depend. Though trust and trustworthiness are two

distinct concepts, when dealing with techniques for assessing

them, the two concepts play often a single role; hence, in

the following, the two terms will be used interchangeability

unless specific characterizations are needed.

In the following, we elaborate on the three dimensions

useful to characterizing trustworthiness, namely believabil-

ity, verifiability, and reputation.

Believability refers to the extent to which information

is regarded as true and credible. Believability can also be

defined as the subjective measure of user belief that the data

are “true” [30]. An easy way for measuring believability is

by checking whether the contributor is contained in a list of

trusted providers.

Verifiability refers to the degree by which a data con-

sumer can assess the correctness of a data set. Verifiability is

described as the “degree and ease with which the informa-

tion can be checked for correctness” [4]. Similarly, in [18],

the verifiability criterion is used as the means a consumer is

provided with, which can be used to examine the data for cor-

rectness. Verifiability can be measured either by an unbiased

third party, if the data set itself points to the source, or by

the presence of a digital signature. A mean for verifying in

linked data is to provide basic provenance information along

with the data set, such as using existing vocabularies such

as SIOC, Dublin Core, Provenance Vocabulary, the OPMV,1

or the recently introduced PROV vocabulary.2 Yet another

mechanism is the usage of digital signatures [6], whereby a

source can sign either a document containing an RDF serial-

ization or an RDF graph.

Reputation is a judgment made by a user to determine

the integrity of a source. It can be associated with a data

publisher, a person, organization, group of people, or com-

munity of practice, or it can be a characteristic of a data set.

[22] estimates the reputation of an entity (i.e., a publisher

or a data set) either as a result from direct experience or

as recommendations from others. They propose the tracking

of reputation through a centralized authority or, in alterna-

tive, via decentralized voting. There are different possibilities

for determining reputation and can be classified into human-

based or (semi-) automated approaches. The human-based

approach is via a survey in a community or by questioning

other members who can help to determine the reputation of a

source or by the person who published a data set; conversely,

the (semi-) automated approach can be performed by the use

of external links or page ranks.

2.1.8 The Usefulness Cluster

We characterize the usefulness by specifically focusing on

images. A well-known model for image quality is the Fi-

delity-Usefulness-Naturalness (FUN, [11]) that assumes the

existence of three major dimensions: fidelity, usefulness, and

naturalness. Fidelity is the degree of apparent match of the

image with the original. Naturalness is the degree of apparent

match of the image with the viewer’s internal references. This

attribute plays a fundamental role when we have to evaluate

the quality of an image without having access to the corre-

sponding original. We provide in the following more details

on usefulness. Usefulness is the degree of apparent suitability

of the image with respect to a specific task. In many appli-

cation domains, such as medical or astronomical imaging,

image processing procedures can be applied to increase the

image usefulness [23]. An example of image usefulness is

1 http://open-biomed.sourceforge.net/opmv/ns.html.

2 http://www.w3.org/TR/prov-o/.
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Fig. 5 Example of image

usefulness, taken from [1], a a

faithful image, b a

contrast-enhanced image

showing more details in the

background

shown in Fig. 5. The image to the left may be accurate with

respect to the original, but the image to the right shows more

details in the background due to a contrast enhancement algo-

rithm applied. The enhancement processing steps have an

obvious impact on fidelity as well.

3 Big Data

As anticipated in Sect. 1, the term “big data” refers to struc-

tured or unstructured data sets that are impossible to store

and process using common software tools (e.g., relational

databases), regardless of the computing power or the physi-

cal storage at hand. Typically, volume, velocity, and variety

are used to characterize the key properties of big data. They

are the so-called three V’s of big data:

– Volume refers to the size of the data;

– Velocity refers to the data provisioning rate and to the

time within which it is necessary to act on them. Every

minute about 400.000 tweets on Twitter are posted, 200

millions of e-mails are sent, and 2 millions of Google

search queries are submitted [40];

– Variety refers to the heterogeneity of data acquisition,

data representation, and semantic interpretation.

To extract value and make big data effective, the importance

of a fourth V of big data, i.e., veracity, is increasingly being

recognized. Veracity directly refers to inconsistencies and

data quality problems: With the huge volume of generated

data, the fast velocity of arriving data, and the large variety

of heterogeneous data, the quality of data is far from perfect.

According to a classification proposed by UNECE (United

Nations Economic Commission for Europe) [49], there are

three main types of data sources that can be viewed as big

data: human sourced (e.g., blog comments), process medi-

ated (e.g., banking records), and machine generated (e.g.,

sensor measurements), cf. Table 4 for a summary. In the fol-

lowing, we adopt such a classification in order to discuss the

meaningfulness of big data quality, showing complexity of

defining unique concepts for all possible types of sources.

Before, we describe each type of data source in detail.

Table 4 Main characteristics of UNECE data sources

Source Structure Human influence

Human sourced Loosely structured Direct

Process mediated Structured Indirect (e.g., data

entry activities)

Machine generated Well structured None

In a spectrum, human-sourced data are the less structured data and

machine-generated data are the more structured data. Process-based

data have mixed characteristics of human-sourced and machine-

generated data

3.1 Human-Sourced Information Sources

This information is the record of human experiences, pre-

viously recorded in books and works of art, and later in

photographs, audio, and video. Human-sourced informa-

tion is now almost entirely digitized and stored everywhere

from personal computers to social networks. Data are often

ungoverned. This includes a vast amount of data types such

as: social networks (Facebook, Twitter, LinkedIn, etc.), blogs

and comments, Internet searches on search engines (Google,

etc.), videos loaded in the Internet (YouTube, etc.), user-

generated maps, picture archives (Instagram, Flickr, Picasa,

Google Photos, etc.), data and contents from mobile phones

(text messages, etc.), e-mails, and so on.

3.2 Process-Mediated Sources

Business processes record and monitor business events of

interest, such as registering a customer, manufacturing a

product, and taking an order. The process-mediated data thus

collected include transactions, reference tables, and relation-

ships, as well as the metadata setting the context. Traditional

business data are the vast majority of the information man-

aged and processed by information technologies, in both

operational and Business Intelligence (BI) systems. Process-

mediated data are usually structured and stored in relational

database systems. Examples include: data produced by pub-

lic bodies and institutions (medical records, etc.), and data

produced by the private sector (commercial transactions,

banking/stock records, e-commerce, credit cards, etc.).
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The so-called deep Web [3,25]3 is perhaps the most

notable process-mediated sources of big data. It includes the

contents hidden behind HTML forms, such as banking/stock

records, e-commerce, and medical records. In order to get to

such content, a user has to submit a form filled in with valid

input values and is therefore difficult for search engines to

index it. It represents a large fraction of the structured data

on the Web, and it has been a long-standing challenge for the

database community [28,44,54].

3.3 Machine-Generated Sources

Machine-generated sources leverage the impressive growth

in the number of sensors and machines used to measure and

record the events and situations in the physical world (cf.

the IoT—Internet-of-Things [48] and CPS—Cyber-Physical

Systems [53], trends). The output of these sensors is machine-

generated data, and from simple sensor records to complex

computer logs, it is well structured. As sensors proliferate and

data volumes grow, it is becoming an increasingly impor-

tant component of the information stored and processed

by many businesses. Its well-structured nature is suitable

for computer processing, but its size and speed are beyond

traditional approaches. Examples include: data from fixed

sensors (building automation sensors, weather/pollution sen-

sors, traffic sensors/web cameras, scientific sensors, secu-

rity/surveillance videos/images, etc.), data from mobile sen-

sors, i.e., for tracking or analysis purposes (satellite images,

GPS, mobile phone locations, car devices, etc.), and data

from computer systems (log files, Web logs, etc.).

4 Big Data Quality

Given the variety of big data, a quality characterization of

them should be source specific. Source specificity is most

evident when considering the heterogeneous nature of some

sources. For instance, data streams from a sensor network

can be quality-characterized by the fact that data are often

missing, and when not missing, they are subject to poten-

tially significant noise and calibration effects. In addition,

3 Unfortunately, media and press created confusion about deep Web

and dark Web, being the latter a (very) small portion of the deep

Web that has been intentionally hidden and is inaccessible through

standard Web browsers. The most famous content that resides on the

dark Web is found in the TOR network, i.e., an anonymous network

that can only be accessed with a special Web browser, called the TOR

browser. This is the portion of the Internet most widely known for

illicit activities because of the anonymity associated with the TOR

network. In the following, we use the deep Web in a proper way, not to

include the dark part of it. Cf. http://www.brightplanet.com/2014/03/

clearing-confusion-deep-web-vs-dark-web/, http://brightplanet.com/

wp-content/uploads/2012/03/12550176481-deepwebwhitepaper1.pdf

(both accessed August 2015).

because sensing relies on some form of physical coupling,

the potential for faulty data is high. Depending on where a

fault occurs in the data reporting, observations might be sub-

ject to unacceptable noise levels (e.g., due to poor coupling or

analog-to-digital conversion) or transmission errors (packet

corruption or loss). Conversely, for social media data, data

are highly unstructured, and often not accompanied by meta-

data. This means that high percentages of these data cannot

be simply used by automated processes as they are affected

by high percentages of noise. In the other cases, however,

dedicated and often expensive activities of semantic extrac-

tion must be performed.

This is basically the thesis of this work: Big data quality

in the broad term is a meaningless concept, as it should be

defined in source-specific terms and according to the specific

dimension(s) under investigation (as discussed in Sect. 2).

In addition, the definition of such dimensions for big data,

even if inspired by the traditional ones (discussed in Sect. 2),

is quite complex due to unstructuredeness of data, seman-

tics, etc., and still target of active research nowadays. In the

following, in order to give the reader the intuition of such a

complexity, we describe, for an example case of a data source

type in Table 4 defined by UNECE, a comprehensive set of

source-specific dimensions. We start with the most struc-

tured one and we analyze then the less structured sources

(i.e., human sourced).

4.1 Process-Mediated Sources

A process-mediated data source provides a subset of objects

in a particular domain and values of a subset of attributes for

each object. An object usually possesses multiple types of

data. For example, for health data, a patient’s record includes

age, height, weight, address, and measurements. Process-

mediated data are distributed on the Web, and for each

domain, there are many sources that needs to be integrated

and fused together, for providing a high- quality representa-

tion of the real-world underlying process.

Data quality of Web structured data is discussed in [10,

12,36,37,45]. In the following, we describe a data model for

process-mediated data sources and we suggest a set of source-

Table 5 Clusters of dimensions for process-mediated big data sources

Cluster References

Accuracy, Reliability [12,36,37]

Consistency [37]

Redundancy [37]

Spread, Value of the tail, Connectivity [10,37]

Copying [37]

Freshness, Coverage [45]

Dimensions in italic are representative of the cluster
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specific dimensions, including the metrics used in [10,12,36,

37,45]. See Table 5 for a summary.

Data Model Given a set of sources in a particular domain

(e.g., flights), we consider objects of the same type, each

corresponding to a real-world entity (e.g., an object in the

flight domain can be a particular flight on a particular day).

Entities can change dynamically over time, i.e., new entities

may appear and disappear, or the values of existing entities

may change. For each object, we consider a set of attributes

(e.g., scheduled departure time and actual departure time).

For each attribute, which we call data item, we assume that

a single true value exists that reflects the real world (e.g., the

actual departure time of a flight is the minute that the airplane

leaves the gate on the specific day).

In order to assess the quality of a specific set of sources,

we consider all the values provided for each data item. If

the provided values are exactly the true values, the quality

is high. Conversely, if the provided value is very different

from the true values, the quality is low. Causes of low quality

include:

– outdated values

– incomplete values

– conflicting values

– wrong values

– noise in the data extraction.

Notation Let S be a source. Let d be a data item and v the

value provided by a given source, V (d) be the set of different

values provided on d by all the sources, v∗ be the true value

of d, S(d) be the set of sources that provide values on d, and

S(d, v) be the set of sources that provide value v on d. Let

A(S) be the set of global attributes that S provides. Entities

in a source at a time point t are classified in three sets:

– up-to-date, U p(S, t), including the entities that also exist

in the real world and have their attribute values in agree-

ment with the world;

– out-of-date, Out (S, t), including the entities for which the

latest value changes are not captured by the source;

– nondeleted, including all the remaining entities, i.e., enti-

ties that have disappeared from the real world.

4.1.1 Redundancy

If there are many different provided values on the same data

item, the set of sources is redundant. Metrics of redundancy

include:

– redundancy on objects is the percentage of sources that

provide a particular object;

– redundancy on data items is the percentage of sources that

provide a particular data item.

4.1.2 Consistency

If many sources provide the same values for the same data

items, the set of sources is consistent. Metrics of consistency

include:
– number of values is the number of different values pro-

vided on d, which is the size of V (d).

– entropy is

E(d) = −
∑

v∈V (d)

|S(d, v)|

|S(d)|
log

|S(d, v)|

|S(d)|
(1)

(the higher the inconsistency, the higher the entropy).

– deviation is

D(d) =

√

√

√

√

1

|V (d)|

∑

v∈V (d)

(

v − v0

v0

)2

(2)

where v0 is the value provided by the largest number of

sources (it applies to data items with numerical values).

4.1.3 Accuracy

One commonly used approach to eliminate conflicts from

inconsistent sources is to conduct majority voting, so that

information with the highest number of occurrences is

regarded as the correct answer. Due to copying, the value pro-

vided by most sources may not be the correct value. Source

accuracy, which deals with the closeness of values to a golden

standard, provides a valuable tool for weighting votes and

improves the overall data quality. The accuracy cluster for

process-mediated sources includes the accuracy and relia-

bility dimensions.

Accuracy If the values provided for the same data item are

correct and consistent over time, the data sources are accu-

rate. Metrics of accuracy include:

– source accuracy is the fraction of values provided by the

given source that are correct;

– accuracy deviation: let us denote by T the set of time

points in a period, by A(t) the accuracy of a source at

a time t ∈ T , and by A′ the mean accuracy over T , the

accuracy deviation is

Dev(S) =

√

1

|T |

∑

t∈T

(A(t) − A′)2 (3)

– average accuracy is the average source accuracy.

Reliability If the values provided by a data source are close to

the gold standard, the source is reliable. Metrics of reliability

include:
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– loss function is defined based on the data type.

– Categorical data: the most commonly used loss func-

tion is 0–1 loss in which an error is incurred if the

value is different from the gold standard:

L(d) =

{

1 if v = v∗

0 otherwise
(4)

– Continuous data: The loss function should character-

ize the distance from the value to the gold standard

with respect to the variance of values across sources.

One common loss function is the normalized squared

loss, which is defined as:

L(d) =
(v∗ − v)2

std(V (d))
(5)

4.1.4 Copying

Copying is not to be confused with consistency and can be

measured with respect to common elements among sources,

such as object and attribute sets. Metrics of copying include:

– schema commonality is the average Jaccard similarity

between the sets of provided attributes on each pair of

sources

C = avgS,S′

|A(S) ∩ A(S′)|

|A(S) ∪ A(S′)|
(6)

– object commonality is the average Jaccard similarity but

between the sets of provided objects;

– value commonality is the average percentage of common

values over all shared data items between each source

pair.

4.1.5 Spread

Process-mediated data are distributed on the Web, and col-

lecting and crawling different sources providing data on the

domain of interest is a necessary step toward a high-quality

representation of the real world. The spread of a set of sources

represents the complexity of such a step. The spread clus-

ter for process-mediated sources includes the spread of the

different sources, the value of tail sources, and connectivity

dimensions.

– spread: If one only needs to identify and wrap a few top

sites in order to build a comprehensive set of sources, the

spread is low. A comprehensive set should also include

some redundancy to overcome errors introduced by a sin-

gle source;

– value of tail: If one needs to construct a comprehensive

database, including the extraction of unpopular entities

(i.e., relevant to a smaller group of users), the tail has

high value;

– connectivity: If the data sources can be easily discovered

by a bootstrapping-based Web-scale extraction algo-

rithms (i.e., where one starts with seed entities, use them

to reach all sites covering these entities, and iterate), the

sources are connected.

4.1.6 Freshness

The freshness of a source represents its ability of reflecting

real- world changes. The freshness cluster for process-

mediated sources includes the freshness and coverage dimen-

sions:

– the freshness of a source at a time t is the probability that

a randomly selected entity is up-to-date, i.e.,

F(S) =
|U p(S, t)|

|St |
(7)

where St is the set of entities in the source at a time t ;

– the coverage of a source is the probability that a random

entity of the real world at a time t belongs to S, i.e.,

Cov(S) =
|U p(S, t) ∪ Out (S, t)|

|Wt |
(8)

where Wt is the set of entities in the real world at a time

t .

4.2 Machine-Generated Sources

A machine-generated data source measures and records the

events and situations in the physical world. As sensors pro-

liferate and data volumes grow, machine-generated data are

becoming an increasingly important component of the infor-

mation stored and processed by many businesses. Their

well-structured nature is suitable for computer processing,

but their size and speed are beyond traditional approaches.

Data quality of sensor data is discussed in [38,47]. In the

following, we describe a data model for machine-generated

data sources and suggest a set of source-specific dimensions,

including the metrics used in [38,47] (see Table 6 for a sum-

mary).

Data Model A source in a particular domain (e.g., weather)

provides discrete samples of real-world phenomena (e.g.,

wind). For each sample, we consider a set of attributes (e.g.,

speed and direction). For each attribute, which we call data

item, we assume that a single true value exists that reflects
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Table 6 Clusters of dimensions for machine-generated big data sources

Cluster References

Accuracy [38]

Completeness, Significance [38]

Consistency [38,47]

Trustworthiness [38]

Freshness [38]

Dimensions in italic are representative of the cluster

the real world (e.g., the actual speed is the speed of the wind

on the specific day and time).

In order to assess the quality of a specific source, we con-

sider the environment where the measures and records are

taken (e.g., source location, measurement time, and source

state) and the underlying measurement process. If the quality

of such an environment and process is high, then the qual-

ity of the source is presumably high. Conversely, failures or

malfunctions detected in the environment and process may

lead to bad data. Causes of low quality include:

– hardware noise

– inaccuracies and impressions in sampling methods and

derived data

– environmental effects

– adverse weather conditions

– faulty equipment.

Notation Let S be a source. Let d be a data item and v the

value provided by a given source. Li f etime(d) is the period

of time after which a data item becomes obsolete and it is

necessary to take a new value again. For example, the location

of a fast moving vehicle may have a lifetime value smaller

than the location of a walking person.

4.2.1 Accuracy

Source accuracy deals with the closeness of values to a golden

standard and is directly affected by the measurement unit and

the data type used. The location of an entity measured with

the precision of ten meters is less accurate as compared to

a measurement up to the precision of one meter. Metrics of

accuracy include precision, i.e., the resolution of measure-

ment unit of the sensor.

4.2.2 Completeness

This quality measure indicates the quantity of information

that is provided by a source. The completeness cluster for

machine-generated sources includes the completeness and

significance dimensions.

Completeness If the set of attributes provided for a sample is

exhaustive, then the completeness is high. Metrics of com-

pleteness include:

– attribute ratio is the ratio of the number of attributes avail-

able to the total number of attributes of the sample;

– weighted attributes ratio is the same as the attribute ratio,

where the contribution of each attribute is proportional to

its importance for the application of interest.

Significance The significance indicates the worthiness or the

preciousness of a data item in a specific situation. Metrics

of significance include the critical value ratio, defined as

the fraction of an importance score of the data item for the

application of interest, and the maximum importance score

computed across all the data items.

4.2.3 Consistency

Sha and Shi [47] defines several subtypes of consistency,

shown in Table 7, together with their definitions and an iden-

tification of whether the dimension refers to individual data

or data streams. At a macrolevel, three types of consistency

are considered, namely numerical, temporal, and frequency

consistency. Notably numerical consistency is equivalent

to accuracy; temporal consistency is meant as a degree of

up-to-dateness; frequency consistency focuses on abnormal

changes in data provisioning.

4.2.4 Trustworthiness

Trustworthiness of a source is highly affected by the distance

between the sensor and the entity. The more a sensor is far

away from the real-world entity, the more the correctness of

information provided can be in doubt. Trustworthiness of a

data item is defined as

T (d) =

{

(1 − dist
dmax

∗ δ) if d(s, e) < dmax

0 otherwise
(9)

where dist is the distance between the sensor and the entity,

and dmax is the maximum distance for which we can trust on

the observation of this sensor.

4.2.5 Freshness

The more a data item is fresh, the higher its validity of being

used for a specific application at a given time. Metrics of

freshness include:

– age of a data item, calculated by taking the difference

between the current time, tcurr, and the measurement time

of that data item t (d);
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– up-to-dateness: the up-to-dateness decreases as age

increases, specifically

U (d) =

{

1 −
Age(d)

Li f etime(d)
if Age(d) < Lifetime(d)

0 otherwise

(10)

4.3 Human-Sourced Information Sources

Among the many human-sourced data sets, we specifically

consider here the interesting case of short texts (e.g., Tweets,

user queries in a search engine). We anticipate that the state

of the art about quality of short texts is not very advanced as

there are still very few approaches addressing it. Therefore,

this section attempts to follow the structure of the previous

ones, but without strictly adhering to it. Most of the consid-

erations reported here are based on [27].

The major challenges in short text understanding are that

short texts usually do not have the correct syntax that tradi-

tional POS-taggers or parsing methods can utilize and that

they lack sufficient content to support statistical approaches

to detect hidden topics. Furthermore, the vast amount of

entity ambiguity also increases the difficulty of inferring the

exact concepts. Humans can understand sparse, noisy, and

ambiguous input such as short texts because they have knowl-

edge of the language and the world. Many knowledge bases

have emerged in recent years, including DBpedia, freebase,

and Yago. Most of them are encyclopedic knowledge bases,

containing facts such as Barack Obama’s birthday and birth-

place. They are essential for answering questions, but not for

understanding them. To understand a question, knowledge of

the language, e.g., the knowledge that birthplace and birthday

are properties of a person, are needed; and lexical knowledge

bases are constructed for this purpose. Hua et al. [27] uses a

probabilistic lexical knowledge base known as Probase.

Data Model and Notation A short text is a text written in

natural language with at most a dozen words. This includes

Table 7 Various types of consistency as defined in [47]

Types of consistency Numerical/temporal/frequency Individual data/data

streams/both

Definition

Numerical Numerical Individual data Collected data should be accurate

Temporal Temporal Individual data Data should be delivered to the sink

before or by it is expected

Frequency Frequency Both Controls the frequency of dramatic data

changes and abnormal readings of data

streams

Absolute numerical Numerical Both Sensor reading is out of the normal range,

which can be preset by the application

Relative numerical Numerical Both Error between the real field reading and

the corresponding data at the sink

Hop Numerical Individual data Data should keep consistency at each hop

Single path Numerical and temporal Individual data Consistency holds when data are

transmitted from the source to the sink

using a single path

Multiple path Numerical and temporal Individual data Consistency holds when data are

transmitted from the source to the sink

using multiple paths

Strict Numerical and temporal Data streams Differs from hope consistency because it

is defined on a set of data and requires

no data loss

Alpha-loss Numerical and temporal Data streams Similar to strict consistency except that

alpha-data loss is accepted at the sink

Partial Numerical and temporal Data streams Similar to alpha consistency except that

temporal consistency is released

Trend Numerical and temporal Data streams Similar to partial consistency except that

numerical consistency is released

Range frequency Frequency Data streams The number of abnormal readings

exceed a certain number preset by the

application

Change frequency Frequency Data streams Changes of sensor readings exceed

preset threshold
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queries and microblogs. A term is a meaningful component of

short text s which exists in a knowledge base, e.g., Probase. A

role is a possible type of term; [27] considers two categories

of roles, namely lexical roles (verb, adjective) and seman-

tic roles (entity, concept, attribute). A typed term refers to

a term t with role r . A concept vector expresses the seman-

tics of an entity, where each element of the vector has the

form <c, w>, where c is a concept in the knowledge base

and w is the weight of the corresponding concept which

can be obtained directly from the statistical information con-

tained in the knowledge base. Finally, a concept cluster vector

expresses the compressed semantics of an entity, where each

element is a pair <C, W>, in which C represents a cluster of

similar concepts and W is the weight sum of the contained

concepts.

On the basis of the above model, an interesting dimension

that can be defined for short texts is ambiguity.

4.3.1 Ambiguity

Hua et al. [27] distinguishes among three levels of ambigui-

ties:

– Level 0 refers to entities that most people regard as unam-

biguous. These entities contain only one meaning, such as

dog (animal), California (state), and potato (vegetable).

– Level 1 refers to entities that both make sense when

treated as ambiguous or unambiguous. These entities usu-

ally have more meanings, but all of these meanings are

related to some extent. For example, Google (company

& search engine), French (language & country), truck

(vehicle & public transportation) all belong to Level 1.

– Level 2 refers to entities that most people think as

ambiguous. These entities have two of more meanings

which are extremely different from each other, such as

apple (fruit & company), jaguar (animal & company),

python (animal & programming language).

Ambiguity of an entity can be computed through a sta-

tistical approach based on the previously cited vectors and

knowledge bases (the reader can refer to [27] for details), and

therefore, we can measure the ambiguity of a short text as the

average ambiguity of the entities contained in it. Ambiguity

of both entities and texts is in the range [0..1].

4.3.2 Other Dimensions

Clearly, many other dimensions, described in the previous

sections, both specific for big data and for more traditional

ones, can be applied to short texts. In particular, all the

notions, metrics, and techniques described in Sects. 2.1.5,

2.1.7, and 2.1.8 (if we consider that Tweets can contain

images) can be extended to this case.

5 Conclusion

In this paper, we have informally discussed the concept of

data quality applied to big data, by highlighting how much

complex is to define it in a general way. Data quality is

already a multidimensional concept, difficult to characterize

in precise definitions even in the case of well-structured data.

Big data add two further dimensions to such complexity: (i)

being “very” source specific, and for this we have adopted

the UNECE classification, and (ii) being highly unstructured

and schema-less, often without golden standards to refer to

or very difficult to access.

In order to provide the reader the intuition of such com-

plexities, after providing a tutorial section on data quality

in traditional contexts (cf. Sect. 2), we have analyzed big

data by providing insights into the UNECE classification (cf.

Sect. 3), and then (cf. Sect. 4), for each type of data source,

we have chosen a specific instance of such a type (notably

deep Web data, sensors-generated data, and Twitters) and dis-

cussed how quality dimensions can be defined in such cases.

The discussion shows how different data quality dimensions

are for the three different cases.

Further work in the area is needed, especially for the case

of human-generated data, in order to gain more insights into

the concept of big data quality and its dimensions.
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