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Abstract 

This paper investigates the elastic post-buckling behavior of simply supported thin-walled lipped channel beams 

undergoing local-distortional (L-D) interaction. The beams are uniformly bent about the major-axis and experience 

flange-triggered local buckling (most common situation in practice). Three beams are analyzed, each exhibiting a 

different type of L-D interaction, namely (i) “true L-D interaction” (close local and distortional critical buckling 

moments), (ii1) “secondary local-bifurcation interaction” and (ii2) “secondary distortional-bifurcation interaction” 

(critical distortional/local buckling moments and high enough yield stresses). The results presented and discussed 

are obtained through geometrically non-linear Generalized Beam Theory (GBT) analyses and provide the evolution, 

along given equilibrium paths, of the beam deformed configuration (expressed in GBT modal form) and relevant 

displacement profiles, making it possible to acquire in-depth knowledge on the beam L-D interaction mechanics. 

Particular attention is devoted to interpreting the quantitative and qualitative differences exhibited by the beam 

post-buckling behaviors associated with the three aforementioned L-D interaction types. 

 

 

1. Introduction 

The complex thin-walled open cross-section shapes commonly exhibited by cold-formed steel members (e.g., with 

several intermediate and end stiffeners) makes them highly prone to several individual (local, distortional, global  

L, D, G) and/or coupled (L-D, L-G, D-G, L-D-G) buckling phenomena. Concerning the latter, establishing efficient 

design rules against interactive failures constitutes a considerable challenge3, much more so than in hot-rolled 

steel members, which are “only” affected by L-G interaction (which are already adequately handled by steel design 

specifications around the world). Traditionally, the non-linear behaviour of prismatic thin-walled members could 

only be rigorously assessed by resorting to time-consuming and computation-intensive shell finite element 

simulations, which provide outputs not easy to apprehend/interpret. However, in the last few years Generalized 

Beam Theory (GBT) has emerged as a very promising alternative to obtain similarly accurate results in a more 

efficient and (mostly) clarifying manner (only a few structurally meaningful d.o.f. are required). By performing GBT-

based geometrically non-linear imperfect analyses (GNIA) of prismatic thin-walled members, it becomes possible 

to unveil and quantify the contributions of the various deformation modes to the member structural response 

under consideration. This feature makes it possible to acquire much deeper insight on that response, thus 

providing a much clearer picture of the mechanical aspects involved  i.e., GBT GNIA is an ideally suited numerical 

tool to investigate complex coupled instability problems, like the one addressed in this work. 

                                                      
1 CERIS, ICIST, DECivil, Instituto Superior Técnico, Universidade de Lisboa, Portugal, <andrerdmartins@ist.utl.pt>, <dcamotim@civil.ist.pt>, 

<dinis@civil.ist.pt >. 
2  CERIS, ICIST and Universidade Nova de Lisboa, Portugal, <rodrigo.goncalves@fct.unl.pt>. 
3 Note that, as far as cold-formed steel columns are concerned, the authors proposed recently DSM-based strength curves that are able to 

handle L-D (Martins et al. 2016a) and L-D-G (Dinis et al. 2016, Dinis & Camotim 2016) interactive failures. 
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As far as thin-walled members affected by L-D interaction are concerned, GBT post-buckling results only exist for 

thin-walled lipped channel columns (Silvestre & Camotim 2004, Martins et al. 2015a, 2016b)  to the authors’ best 

knowledge, no such results are available for thin-walled beams. Therefore, the aim of this work is to present and 

discuss GBT numerical results concerning the geometrically non-linear behaviour of simply supported lipped 

channel beams under uniform major-axis bending and experiencing flange-triggered L-D interaction  these 

results shed fresh light on the mechanics underlying this coupling phenomenon, already unveiled by means of 

shell finite element analyses (Dinis & Camotim 2010). It is worth noting that the beams analyzed are highly prone 

to L-D interaction due to the end supports (Martins et al. 2015b)  in fact, is very difficult to avoid this coupling 

phenomenon in the short-to-intermediate length range. Three beams are selected and analyzed, each of them 

exhibiting a different type of L-D interaction, namely (i) “true L-D interaction” (close local and distortional critical 
buckling moments), (ii) “secondary local-bifurcation interaction” and (iii) “secondary distortional-bifurcation 

interaction” (e.g., Martins et al. 2015b). The GBT elastic post-buckling results provide the evolution, along given 

equilibrium paths, of the beam deformed configuration (expressed in GBT modal form). Particular attention is paid 

to the characterization of the deformation patterns akin to the local and distortional critical buckling modes, and 

to relevant displacement longitudinal profiles, thus making it possible to acquire in-depth knowledge on the 

mechanics of beam L-D interaction. This knowledge will certainly impact the development of rational design rules 

for cold-formed steel beams failing in L-D interaction modes, which is currently under way (Martins et al. 2016c). 

 

2. GBT Geometrically Non-Linear Analysis 

The performance of a GBT structural analysis involves two (independent) main tasks, namely (i) a cross-section 

analysis, concerning the identification of the deformation modes and evaluation of the corresponding modal 

mechanical properties, and (ii) a member analysis (elastic buckling and post-buckling analyses, in the case of this 

paper), which consists of solving the appropriate differential equilibrium equation system. Next, a novel 

geometrically non-linear GBT formulation is presented and followed by a brief description of the most relevant 

deformations modes employed in the analysis of the lipped channel beams affected by L-D interaction. 
 
2.1 Formulation 

Consider the arbitrary open cross-section member depicted in Fig. 1, which also shows the reference system x-s-z 

 coordinates along the member length, cross-section mid-line and wall thickness, respectively. As for u(x, s), 

v(x, s) and w(x, s), they denote the corresponding displacement fields, also indicated in Fig. 1. According to GBT, 

the member mid-surface displacement field considers the variable separation 
 
 ,

( , ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )k k x k k k ku x s u s x          v x s v s x          w x s w s x      (1) 
 
where (i) (.),x≡d(.)/dx, (ii) Einstein’s summation convention applies to subscript k, (iii) k(x) are modal displacement 

amplitude functions defined along the member length (member analysis unknowns) and (iv) functions uk(s), vk(s), 

wk(s) are the displacements profiles associated with deformation mode k, obtained from the cross-section analysis 

(briefly discussed in Section 2.3). The initial geometrical imperfections incorporated in the analyses are also 

expressed in GBT modal form – in this work, they are obtained from a preliminary GBT buckling analysis 

and subsequently normalized (as discussed in Section 4)  i.e., one has 
 

 
,

( , ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( )k k x k k k ku x s u s x          v x s v s x          w x s w s x      (2) 
 
GBT geometrically non-linear formulations were previously developed by Miosga (1976) and, much more recently 

by Silvestre (2005), Basaglia (2010) and Silva (2013). These authors adopted a total Lagrangian kinematic 

description and an additive decomposition of the strain terms into Green-Lagrange membrane strains and 

small-strain bending. The main novelty of the formulation developed in this paper is the consideration of the 

whole set of non-linear membrane strain terms, which is equivalent (but not similar) to the formulation 

recently proposed by Gonçalves & Camotim (2012). The strain-displacement relationships adopted read 
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Figure 1: Arbitrary prismatic thin-walled member, local coordinate system and displacement components 
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The member strain energy is then expressed, in terms of the strain and stress components, as 
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where iU  and ( 1,2,3)iU  i  are the strain energy terms associated with the total deformation and initial 

geometric imperfections, respectively, given by 
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both associated with the member geometrically non-linear behavior – note that tensors C, B, D tensors stem 

from the longitudinal extensions, transverse extensions and shear strains, while tensor E is associated with 

the coupling between longitudinal and transverse extensions (Poisson effects). These components, which are 

obtained exclusively on the basis of the cross-section deformations modes, are given by the expressions4 
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4 Note that the determination of the fourth-order tensors can be (computationally) very costly if large numbers of deformation 

modes are included in the analysis  the order of magnitude of the computations is p  NM4, where NM is the deformation mode number 

and p is the number of the cross-section wall segments considered. In order to reduce drastically the time inherent to this procedure, 

measures were undertaken to simplify it, which account for (i) the deformation mode nature (e.g., if h and/or i and/or j and/or k is a 

shear mode, CI
hijk is null) and (ii) symmetry properties (e.g., CI

hijk is symmetric with respect to (h, i) and (j, k)). 
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 (E and v  Young’s modulus and Poisson’s ratio). 

 
2.2 Non-linear beam finite element and solution procedure 

The member analysis is performed by using (one-dimensional) beam finite elements similar to those developed 

by Silvestre & Camotim 2003. The modal amplitude functions are approximated by means of linear combinations 

of (i) Lagrange cubic polynomial primitives ( ), 1,...,4
L

i i   , for the deformations modes involving only warping 

displacements (axial extension and shear modes), and (i) Hermite cubic polynomials ( ), 1,...,4
H

i i   , for the 

remaining conventional deformation modes and transverse extension modes  the various deformation mode 

families are addressed in Section 2.3. Such polynomials are the form 
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where eL is the finite element length and / ex L  . Therefore, the amplitude functions ( )k x  associated 

with the conventional (except axial extension) and transverse extension modes are approximated through 
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with the deformation modes involving only warping are given by 
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The finite element internal force vector is obtained by differentiating the strain energy equations (5.1)-(5.6), 

after the introduction of equations (10.1)-(10.2), to obtain 
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where (i) subscripts , , ,h i j k  correspond to deformations modes associated with shape functions subscripts 

, , ,    , respectively, and (ii) ab
k , abc

k  and abcd
k  are defined by 

 

 
ba

ab

a b

Le

k dx
x x




 


   
b ca

abc

a b c

Le

k dx
x x x

 


   


    
b c da

abcd

a b c d

Le

k dx
x x x x

  


     


     (12) 

 
In order to perform/implement an incremental-iterative technique it is essential to evaluate the tangent stiffness 

matrix corresponding to for a given deformed configuration, obtained by differentiating the internal force vector 
e

hf  (equation (11.1)) with respect to a given d.o.f id    one has  
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The incremental-iterative procedure was implemented based on (i) Newton-Raphson’s method and (ii) a load or 

arc-length control strategy (both strategies were implemented). The numerical integration is performed using the 

Legendre-Gauss Quadrature with three-point integration along x (equation (12)) and y (equations (6.1)-(8.13))  

the integration along z (though thickness) is done analytically. 
 

2.3 Cross-section analysis 

The GBT cross-section analysis involves a lengthy set of fairly complex operations which has been reported in 

the literature, with emphasis on the recent works of Gonçalves et al. (2014) and Bebiano et al. (2015)  the 

interested reader can find detailed acounts in these references, which provide the fundamentals of the procedure 

implemented in version 2.0 of code GBTUL (Bebiano et al. 2016). The deformation modes obtained can be divided 

into three main sets/families, namely the (i) conventional (or Vlasov modes), (ii) shear modes and (iii) transverse 

extensions modes. These deformation mode sets are also adopted in this work, together with an additional 

family of quadratic transverse extension modes, which play an essential role in capturing the Poisson effects that 

develop in the deformed configurations occurring in the advanced post-buckling stages, which involve heavy cross-

section in-plane deformation and, therefore, in precluding the determination of overly stiff solutions (Gonçalves & 

Camotim 2012)  the aforementioned Poisson effects will be addressed in Section 4. 

Figure 2 shows the GBT nodal discretization adopted in this work, which involves 21 nodes (6 natural and 15 

intermediate  3 in the top/compressed flange, 1 in the bottom/tensioned flange and 11 in the web5), and leads 

                                                      
5 Note that the post-buckling behavior determined with less web intermediate nodes was found to be excessively stiff (see Section 4.3) – it 

may be possible to obtain accurate results with less web intermediate nodes if unequal-width wall segments are adopted, making it possible 

to consider more intermediate nodes in the web compressed region than in tensioned one. However, such a strategy is yet to be attempted. 
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to (i) 23 conventional modes (4 global, 2 distortional and 17 local)  modes 1-23 (the most relevant ones are 

shown in Fig. 2), (ii) 20 shear modes (5 global and 15 local)  modes 24-43 (see Fig. 2), (iii) 20 linear transverse 

extension modes (1 global isotropic, 4 global deviatoric and 15 local)  modes 44-63 (see Fig. 2) and (iv) 20 

“quadratic” transverse extension modes (modes 64-83  see Fig. 2), totaling 83 (sequentially numbered) 

deformation modes6. It should be mentioned that the number of deformation modes considered in this work 

is almost twice that required to analyze lipped channel columns experiencing L-D interaction7  this is because 

of the lack of symmetry of the beam cross-section deformation patterns, which did not occur in the columns. 

 

3. GBT Buckling Behavior – Beam Geometry Selection 

In order to study the mechanics of the geometrically non-linear behavior of lipped channel beams experiencing L-D 

interaction, it is indispensable to begin by selecting beams geometries (cross-section dimensions and lengths) 

prone to this coupling phenomenon. Based on previous works, this procedure can be obtained on the sole basis of 

the closeness between the local (McrL) and distortional (McrD) critical buckling moments (a necessary condition8). 

Therefore, in order to shed new light on this interactive post-buckling behavior, three simply supported beams 

are identified, namely (i) one experiencing “true L-D interaction”, with RDL=McrD /McrL≈1.00, and (ii) two affected by 

“secondary bifurcation L-D interaction”, which can be either “local” (RDL≈0.60) or “distortional” (RDL≈1.60)  in all 

of them local buckling is triggered by the compressed (top) flange. Table 1 gives the cross-section dimensions 

(bw, bf, bl, t  web-flange-lip widths and wall thickness) of the three steel (E=210GPa, v=0.3) beams selected. On the 

other hand, Figs. 3(a)-(c) show curves providing the variation of Mcr (critical buckling moment) with the beam 

length L (logarithmic scale) for the lipped channel simply supported beams  marked on each of these curves is the 

selected length adopted to ensure the desired interaction “level”. The critical local and distortional buckling 
moments, as well as the corresponding buckling mode half-wave numbers (nL and nD) are also given in Table 1 

(between brackets)  moreover, the local and distortional buckling mode shapes are depicted in Figs. 3(a)-(c)). 

In order to preclude the interaction with global (flexural-torsional) buckling, it was ensured that the critical global 

buckling moment is much higher than its local and distortional counterparts (see Table 1). 
 
Table 1: Simply supported lipped channel beam geometries selected, corresponding local and distortional buckling 

moments, and buckling mode critical half-wave numbers (dimensions in mm and moments in kNcm) 

Beam bw bf bl t L McrD McrL McrG RDL 

B1 110 75 12.5 1.050 500 220.9(1) 217.0(7) 9796(1) 1.02 

B2 130 70 16.0 0.935 500 331.2(1) 207.4(7) 10103(1) 1.60 

B3 150 95 10.0 1.350 600 285.6(1) 473.6(6) 21223(1) 0.60 

 

4. GBT Post-Buckling Behavior of Beams Experiencing L-D Interaction 

The selected simply supported beams are now used to investigate the influence of L-D interaction on their post-

buckling behavior, by means of GBT GNIA analyses, with the objective of shedding fresh light on the mechanics 

of the three aforementioned L-D interaction types. The results of beam B1, experiencing “true L-D interaction” (TI) 

are addressed first, in Section 4.1, followed by those concerning beams B2 and B3, undergoing “secondary 

distortional-bifurcation L-D interaction” (SDI  Section 4.2) and “secondary local-bifurcation L-D interaction” (SLI  

Section 4.3)  this sequence corresponds to a decreasing relevance of the L-D interaction effects (Martins et al. 

2016c). All the beams analyzed contain critical-mode initial geometrical imperfections with small amplitudes 

                                                      
6 It should be noted that none of the previously developed GBT geometrically non-linear formulations employed the set of deformation 

modes considered in this work. This is because the cross-section analysis procedure employed here was not yet available  alternative 

(less sophisticated) cross-section analysis procedures were adopted. 
7 Although these results are not yet published, they were very recently presented at the “European Congress on Computational Methods in 

Applied Sciences and Engineering” (ECCOMAS’2016), which took place in Crete on June 5-10, 2016. 
8 However, as will be shown later, this condition is not sufficient in the columns affected by “secondary bifurcation L-D interaction”. 
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Figure 2: GBT lipped channel (i) nodal discretization, (ii) in-plane deformed configurations of the most relevant conventional and all 

transverse extension deformation modes, and (iii) warping displacement profiles of all shear deformation modes 
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Figure 3: (a) RDL=1.00, (b) RDL=1.60 and (c) RDL=0.60 beam Mcr vs. L curves, selected lengths and critical mode shapes 
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(10% of the wall thickness t), obtained from preliminary buckling analyses. All the GBT results are compared with 

values provided by shell finite element analyses (SFEA) carried out in ABAQUS (Simulia 2008), employing models 

previously adopted in a study on beam L-D interaction (Martins et al. 2016c). It is worth noting that, in order to 

achieve accurate post-buckling results, (i) fairly fine cross-section and longitudinal discretizations must be adopted, 

and (ii) a quite high number of deformation modes must be included in the GNIA  these three inputs are much 

more demanding than those required to perform accurate buckling analyses. 
 
4.1 True L-D Interaction 

Fig. 4 shows the equilibrium path M/Mcr vs. (v+v0)/t (v is the mid-span top flange-lip corner vertical displacement 

caused by the applied moment M, i.e., excluding the initial imperfection value v0=0.1t), obtained with an arc-

lenght crontrol strategy for the simply supported lipped channel beam B1 under uniform major-axis bending  

the initial geometrical imperfection shape adoped is also shown and consists of 7 local half-waves (akin to the 

critical local buckling mode). Naturally, the modal participations factors provided by the GBT buckling analysis 

indicate major contributions from the local modes: 7-26.5%, 8-31.3%, 9-23.9%, 10-3.3%, 11-3.1%, 12-4.8%, 13-2.0% 

 the remaining (minute) contributions concern other local modes and the two distortional modes9. In order to 

assess the relevance of the different deformation modes families to the beam post-buckling behavior, several 

“approximate analyses” were performed, namely those including the most relevant (i) conventional and linear 

transverse extension modes (1-21+40-57), (ii) conventional, shear and linear transverse extension modes (1-57) 

 both considering 8 finite elements  and (iii) conventional, shear and transverse extension (linear and quadratic) 

modes, considering 8 and 24 finite elements. On the other hand, Figs. 5(a)-(c) and 6(a)-(f) display the evolution, 

along the most accurate equilibrium path in Fig. 4, of the mid-top flange transverse displacement (w(x)) profiles 

due to various mode sets. While Figs. 5(a)-(c) concern the initial post-buckling stages and show the contributions 

from modes 5+6, 7-21 and 1-57 (w5+6(x), w7-21(x) and w1-57(x)w(x), respectively), Figs. 6(a)-(f) concern mainly the 

most advanced post-buckling stages and show contributions from modes 2, 4, 5+6, 7-21, 40-57 and 1-57 (w2(x), 

w4(x), w5+6(x), w7-21(x), w40-57(x) and w1-57(x)w(x), respectively), i.e., six combinations of all the modes contributing 

to the mid-top flange transverse displacement  note that the contributions of modes 3 and 58-75 are null, 

since the former is an horizontal (normal to the web) translation and the latter have null values at each node. 

Finally, Fig. 7 shows beam deformed configurations at several post-buckling stages, namely M/Mcr=0.50, 0.75, 1.00 

and 1.18 (peak moment)  the amplifications adopted for these configurations are indicated between 

brackets. The observation of these results prompts the following remarks: 
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Figure 4: GBT post-buckling equilibrium paths of the RDL=1.02 lipped channel beam undergoing “true L-D interaction” obtained 

with local initial geometrical imperfections and different deformation mode sets and/or finite element numbers 
 

                                                      
9 Note that, for the simply supported beams analyzed in this work, all modal amplitude functions are sinusoidal (with 7 half-waves in this case). 
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Figure 5: Evolution of the RDL=1.02 beam top flange transverse bending displacement profiles due to deformation modes 

(a) 5+6 (w5+6(x)), (b) 7-21 (w7-21(x)) and (c) 1-75 (w1-75(x)w(x))  early loading stages 
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Figure 6: Evolution of the RDL=1.02 beam mid-top flange transverse bending displacement profiles due to deformation 

modes (a) 2 (w2(x)), (b) 4 (w4(x)), (c) 5+6 (w5+6(x)), (d) 7-21 (w7-21(x)), (e) 40-57 (w40-57(x)) and (f) 1-75 (w1-75(x)w(x)) 
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Figure 7: ABAQUS RDL=1.02 beam deformed configurations at M/Mcr=0.50; 0.75; 1.00; 1.18 (peak moment) 
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(ii) Fig. 4 shows the relevance of the quadratic transverse extension modes in capturing accurately the beam 

post-buckling behavior, thus confirming the findings of Gonçalves & Camotim (2012). In fact, when these 

modes are excluded from the analysis (solution 1-57 in Fig. 4), accurate results are obtained only up to fairly 

early post-buckling stages (M/Mcr=0.75)  after that, membrane locking effects lead to an overly stiff solution. 

(iii) The (most accurate) equilibrium path shown in Fig. 4 exhibits a fairly rapid stiffness erosion/degradation until 

an elastic limit point is reached for M/Mcr=1.18  in fact, the detrimental effect of true L-D interaction 

precludes reaching higher strengths (the peak moment is close to the Mcr   about 1.18Mcr in this particular 

case). Higher post-critical strengths are reached in the beams affected by the other two L-D interaction types 

 see Figs. 8 and 12, concerning beams B2 (SDI) and B3 (SLI). 

(iv) Since the local initial geometrical imperfection exhibits 7 half-waves, it is logical to expect the mid-top flange 

transverse displacement profile w7-21(x) (iv1) to retain this shape as loading progresses (see Fig. 5(b)) and 

(iv2) to coincide with w(x) at the early loading stages (Fig. 5(c))  indeed, w7-21(x) is a mere amplification of 

the initial imperfection. Conversely, w5-6(x) (Fig. 5(a)) shows very clearly the gradual deformed configuration 

change from 7 half-waves (akin to the initial imperfection  e.g., for M/Mcr=0.094) to a single distortional half-

wave (akin to the distortional critical buckling mode)  e.g., at M/Mcr=0.402 this displacement profile is 

already fairly close to a sinusoid. Moreover, at this stage w(x) reflects the combination of these two 

deformation sources, providing clear evidence of L-D interaction  the gradual emergence, at early loading 

stages, of deformation patterns akin to the critical local and distortional buckling modes (see all the deformed 

configurations displayed in Fig. 7) characterizes the so-called “true L-D interaction” (TI). 

(v) As shown in Fig. 6, for higher loading levels the dominant contribution to w(x) comes from the distortional 

modes 5+6 (see Figs. 6(c) and (f)), a feature typical of L-D interaction (regardless of the type). Concerning the 

contribution of the local modes (see Fig. 6(d)), it is interesting to notice that, for M/Mcr >0.697, w7-21(x) 

progressively moves away from the initial 7 equal-shaped half-waves  these half-waves become unequal 

and more pronounced (downwards) in the beam central region. On the other hand, it is also worth noting the 

relevance of the contributions from modes 2 and 410  such contributions are of the same order of magnitude 

as those exhibited by modes 7-21 (see Figs. 6(a)-(b) and (d), for M/Mcr=1.180). It is still worth mentioning that 

the emergence of mode 3 (linked to mode 4), which is neither directly caused by the loading (major-axis 

bending) nor akin to the competing (local and distortional) buckling modes, stems from the considerable 

stress redistribution occurring in the cross-section compressed/top half at the advanced post-buckling stages 

and is, most likely, responsible for the beam rapid stiffness erosion/degradation11. As far as the contribution 

of the (linear) transverse extensions modes to w(x) (see Fig. 6(e)), the main sources are the global isotropic 

mode 40 and global deviatoric modes 43 and 44 (mostly the latter). Although this contribution is 

quantitatively very small, with respect to the remaining ones shown in Fig. 6, recall that the inclusion of the 

transverse extension modes in the beam GNIA is absolutely essential to obtain accurate results (see Fig. 4)12. 
 

4.2 Secondary Distortional-Bifurcation L-D Interaction 

Since the results addressed in this section, which concern beam B2, are similar to those reported in Section 4.1 (for 

beam B1), their presentation and discussion are abbreviated as much as possible. Fig. 8 shows M/McrL vs. (v+v0)/t 

equilibrium paths, obtained again with an arc-length control strategy and concerning a beam with a 7 half-wave 

local initial geometrical imperfection, akin to the critical buckling mode  a GBT buckling analysis showed that the 

most relevant contributions are from local deformation modes: 7-27.1%, 8-26.5%, 9-24.0%, 10-5.6%, 11-1.9%, 

                                                      
10 It is worth noting  that modes 3 and 4 are linked and, therefore, their emergence is simultaneous and their longitudinal amplitude functions 

share the same shape. In this case, the contribution of modes 3 points towards the web and that of mode 4 is counterclockwise. 

Since mode 3 does not contribute to w(x), it is not shown in Fig. 6. 
11 This same behavioral feature occurs also in beams B2 and B3, addressed in Sections 4.2 and 4.3, although to a smaller extent (less rigid-body 

motion)  probably, this fact explains the slower stiffness erosion/degradation, making it possible to achieve higher post-critical strengths. 
12 This assertion concerns both the linear and quadratic transverse extension modes, even if the latter do not contribute to w(x). 
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12-6.4%, 13-4.9% (participations similar to those of beam B1). Once more, the various equilbrium paths are 

determined with various deformation mode sets: (i) conventional+linear transverse extension modes (1-23+44-63) 

and (ii) conventional+shear+linear transverse extension modes (1-63), considering 8 finite elements in both cases, 

and (iii) conventional+shear+transverse extension (linear and quadratic) modes, considering 8 and 30 finite 

elements. As before, Figs. 10(a)-(f) and 11 show, respectively, (i) the evolution, along the most accurate 

equilibrium path, of the mid-top flange transverse displacement profiles associated with modes 2, 4, 5+6, 7-23, 

44-63 and 1-83 (w2(x), w4(x), w5+6(x), w7-23(x), w44-63(x) and w1-83(x)≡w(x)), and (ii) the beam deformed configurations 

at M/McrL=0.75, 1.00, 1.25 and 1.38 (peak moment))  Figs. 9(a)-(c) plot the evolution w2(x), w4(x) and w5+6(x), in the 

early loading stages. The observation of the results presented in these figures leads to the following conclusions: 

(i) The general comments made in items (i) and (ii) of Section 4.1 remain valid. However, it should be noted that, 

due to a more refined cross-section (nodal) and longitudinal discretization13, the GBT results now coincide 

with the SFEA ones. Moreover, the gradual stiffness erosion is slightly less pronounced in beam B2, thus 

leading to the occurrence of the elastic limit point at a higher applied loading level (M/McrL=1.38). 

(ii) As expected, in the early loading stages w(x) (Fig. 9(c)) has dominant contributions from (ii1) the local modes 

7-23 (Fig. 9(b)) and (ii2) major-axis flexure (mode 2  Fig. 10(a)). Like in beam B1, Fig. 9(a) shows clearly the 

w5-6(x) shape switch from 7 half-waves (akin to the initial imperfection  e.g., for M/McrL=0.094) to a single 

half-wave (akin to the distortional critical buckling mode  e.g., at M/McrL=0.622 w5-6(x) is already quite 

close to a perfect sinusoid). This early switch is rather surprising, in view of how far apart the local and 

distortional critical buckling moments are. Indeed, the w5-6(x) profiles of beams B2 (RDL=1.60) and B1 

(RDL=1.02) are fairly similar  the half-wave number switch takes place only a bit sooner in the latter14. Thus, it 

is concluded that the beam SDI effects are quite close to the TI ones (i.e., more severe than anticipated). 

(iii) As pointed out earlier, once deformations akin to the distortional critical buckling mode emerge, they rapidly 

become the major source of cross-section in plane deformation (see Fig. 10(c)-(f))  indeed, for M/McrL>1.263 

w5-6(x) provides the highest contribution to w(x). Concerning the contributions of the remaining modes,  
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Figure 8: GBT post-buckling equilibrium paths of the RDL=1.60 lipped channel beam under “secondary distortional-bifurcation 

L-D interaction” obtained with local initial imperfections and various deformation mode sets and/or finite element numbers 

                                                      
13 It involves (i) 21 nodes (6 natural and 15 intermediate  3 in the top/compressed flange, 1 in the bottom/tensioned flange and 11 in 

the web) and (ii) 30 finite elements. 
14 This similarity, which was not observed in columns experiencing TI and SDI, is most likely due the amount of local deformation 

developing in the compressed flange (the wall triggering local buckling), which causes a drop in “distortional stiffness” that leads to a lower 

distortional critical buckling moment and, therefore, justifies the early emergence of deformations akin to the corresponding buckling 

mode. In the columns analyzed, local buckling is triggered by the web, therefore, the development of local deformations has little 

impact on the flange “distortional stiffness”  this picture would probably change if the column local buckling was triggered by the 

flanges (such a situation was never studied by the authors). 
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Figure 9: Evolution of the RDL=1.60 beam top flange transverse bending displacement profiles due to deformation modes 

(a) 5+6 (w5+6(x)), (b) 7-21 (w7-21(x)) and (c) 1-83 (w1-83(x)w(x))  early loading stages 
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Figure 10: Evolution of the RDL=1.60 beam top flange transverse bending displacement profiles due to deformation modes (a) 

2 (w2(x)), (b) 4 (w4(x)), (c) 5+6 (w5+6(x)), (d) 7-23 (w7-23(x)), (e) 40-57 (w40-57(x)) and (f) 1-83 (w1-83(x)w(x)) 
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Figure 11: ABAQUS RDL=1.60 beam deformed configurations at M/McrL=0.75; 1.00; 1.25; 1.38 (peak moment) 
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4.3 Secondary Local-Bifurcation L-D Interaction 

Fig. 12 shows the beam B3 equilibrium paths M/McrD vs. (v+v0)/t, now obtained with load/moment control 

(increments equal to 5 or 7.5% of McrD, depending on the deformation mode set included in the analysis, up to 

1.50McrD) and a critical-mode initial geometrical imperfection (single distortional half-wave with inward top flange-

lip motions). The GBT buckling analysis showed that the critical buckling mode combines major contributions from 

modes 5-52.3% and 6-43.0%  the remaining (minute) contributions are from local modes (7-1.4%, 8-1.7% and 

9-1.0%) and also exhibit a single half-wave. Unlike for beams B1 and B2, all the equilibrium paths depicted in 

Fig. 12 were determined by considering different cross-section and/or longitudinal discretizations and including in 

the GNIA all the deformation modes available. The discretizations adopted differ only in the intermediate node and 

finite element (FE) number: (i) 3 flange + 3 web nodes and 8 FEs (“A”), (ii) 3 flange + 5 web nodes and 8 FEs (“B”), 
(iii) 3 flange + 7 web nodes and 8 FEs (“C”), (iv) 3 top flange + 1 bottom flange + 9 web nodes and 8 FEs (“D”) and (v) 

3 top flange + 1 bottom flange + 9 web nodes and 18 FEs (“E”). Moreover, Figs. 13(a)-(f) depict again the mid-top 

flange transverse displacement profiles due to the contributions of modes 2, 4, 5+6, 7-21, 40-75 and 1-75 (w2(x), 

w4(x), w5+6(x), w7-21(x), w40-57(x), w1-75(x)≡w(x)). Finally, Fig. 14 shows the beam deformed configurations at four post-

buckling stages (M/McrD=0.75, 1.00, 1.25, 1.45). These results make it possible to draw the following conclusions: 

(i) Fig. 12 provides clear confirmation of the pivotal role played by the number of web intermediate nodes in the 

accuracy of the results obtained, particularly after the emergence and development of L-D interaction. 

Indeed, the accuracy of the GBT equilibrium path continuously improves as the number of web intermediate 

grows (between solutions “A” and “D”)15. For the most refined web discretization, the inclusion all the 

deformation modes available (conventional, shear and transverse extension  linear and quadratic) and the 

consideration of 18 finite elements provides a rather accurate solution up to M/McrD=1.50  solution “E”. 

(ii) Fig. 12 clearly shows that the stiffness of the beam B3 equilibrium path drops significantly at M/McrD1.20, 

which is the applied loading level corresponding to the emergence of local deformations (see Fig. 13(d)). 

(iii) For M/McrD<1.20, the beam post-buckling behavior is typically distortional, i.e., w(x) exhibits a single half-

wave (see Fig. 13(f)) combining (iii1) a dominant contribution from the distortional modes 5+6 (Fig. 13(c)) with 

(iii2) contributions from mode 2 (major-axis flexure  Fig. 13(a)) and, to a smaller extent, from the local (7-21 

 Fig. 13(d)) and transverse extension (40-57  Fig. 13(e)) modes  there are also minute contributions from 

the linked modes 3 (minor-axis flexure pointing towards de web) and 4 (torsion  Fig. 13(b)), which are 
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Figure 12: GBT post-buckling equilibrium paths of the RDL=0.60 lipped channel beam under “secondary local-bifurcation L-D 

interaction” obtained with distortional initial imperfections and different discretizations and/or finite element numbers 

                                                      
15 In columns undergoing L-D interaction, it was found that accurate equilibrium paths can be obtained with only 3 web intermediate 

nodes  the fact that web deformation is now much more complex (double curvature and lack of symmetry) explains the need for a 

(much) more refined web discretization. 
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Figure 13: Evolution of the RDL=0.60 beam top flange transverse bending displacement profiles due to deformation 

modes (a) 2 (w2(x)), (b) 4 (w4(x)), (c) 5+6 (w5+6(x)), (d) 7-21 (w7-21(x)), (e) 40-57 (w40-57(x)) and (f) 1-75 (w1-75(x)w(x)) 
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Figure 14: ABAQUS RDL=0.60 beam deformed configurations at M/McrD=0.75; 1.00; 1.25; 1.45 

 

 “flattened” in the beam central region. The above post-buckling behavior is clearly illustrated by the first two 

deformed configurations shown in Fig. 14, concerning the loading levels M/McrD=0.75 and M/McrD=1.00. 

(iv) However, when the applied loading level increases beyond M/McrD>1.20 the w(x) shape gradually switches 

from a single half-wave to seven half-waves, due to the emergence and development of local deformations 

with seven half-waves (i.e., akin to the second local buckling mode  see the evolution of w7-21(x) in Fig. 13(d)). 

The (apparently) surprising emergence of local deformations not akin to the critical local buckling mode, 

which contains six half-waves (see Table 1), is due to the fact that (iv1) the first two local buckling modes are 

associated with virtually coincident buckling moments (473.58 vs. 473.89kNcm)16 and (iv2) the latter is 

symmetric, like the (single half-wave) critical distortional buckling mode  this shared symmetry favors the 

interaction between the two buckling modes. This is confirmed by observing the growing visibility of a 

seven half-wave local contribution to w(x) shape, as the applied loading increases beyond M/McrD=1.20  see 

also the deformed configurations corresponding to M/McrD=1.25 and M/McrD=1.45 depicted in Fig. 14. 

                                                      
16 Most likely due to this extreme buckling moment closeness, numerical difficulties were encountered to determine correct equilibrium 

states (in the sense of being similar to those provided by the SFEA) in the vicinity of M/McrD=1.20. It was necessary to adopt very small load 

increments to obtain the correct displacement longitudinal profiles. 

(x2) (x2) (x2) (x5) 
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The emergence of a deformation pattern akin to the critical local buckling mode, at fairly advanced loading 

stages, characterizes the so-called “secondary local-bifurcation L-D interaction” (SLI). Like in columns, 

the beam SLI effects are less pronounced than the TI and SDI ones. 

(v) Concerning the other contributions to the evolution of w(x), namely those from modes 2 and 4 (linked to 3), 

their configurations remain practically unchanged  only the amplitudes increase17. 

 

5. Conclusion 

A GBT-based numerical investigation concerning the geometrically non-linear (elastic) post-buckling behavior of 

simply supported lipped channel beams under uniform bending and affected by three types of L-D interaction, 

namely (i) “true L-D interaction”, (ii) “secondary distortional-bifurcation L-D interaction” and (iii) “secondary local-
bifurcation L-D interaction”, was reported. Particular attention was paid to the structural interpretation of the 

behavioral features stemming from the L-D interaction effects, aimed at shedding fresh light on the mechanics of 

this coupling phenomenon. The results presented and discussed consisted of equilibrium paths and plots providing 

the evolution, along those equilibrium paths, of the beam (i) relevant displacements profiles and (ii) deformed 

configurations. They were validated through the comparison with values yielded by ABAQUS SFEA. 

After presenting, in detail, the main steps involved in the development of a novel GBT formulation to analyze 

the elastic non-linear behavior of thin-walled members, GBT buckling analyses were employed to obtain the 

geometry of three simply supported lipped channel beams experiencing the three types of L-D interaction under 

consideration in this work  local buckling was triggered by the compressed flange in all of them, which 

corresponds to case most encountered in practice. Then, the results obtained by means of the GBT geometrically 

non-linear imperfect analysis (GNIA) of the three beams were presented and discussed, taking advantage of the 

GBT modal features  the compressed flange transverse bending behavior was the main vehicle used to acquire 

in-depth knowledge on the mechanics of L-D interaction. 

Among the various conclusions drawn from this investigation, the following deserve to be specially mentioned: 

(i) In spite of the different mechanics exhibited by the three beams analyzed in this work, experiencing different 

types of L-D interaction (TI, SDI and SLI), all of them share a common trait: occurrence of deformation patterns 

akin to both the local and distortional critical buckling modes, whose coupling leads to a post-buckling strength 

erosion that can be more or less relevant depending on the distortional-to-local critical buckling moment 

ratio (L-D interaction nature) and the level of applied loading. Therefore, the ultimate strength of elastic-plastic 

beams with these geometries will be eroded by the occurrence of L-D interaction  naturally, the amount 

of erosion depends on the yield stress value, which must be large enough for the interaction to develop. 

(ii) In beam B1, undergoing TI, the deformation patterns akin to the local and distortional critical buckling modes 

emerge simultaneously at early loading stages. The L-D interaction effects increase along the equilibrium path, 

causing significant erosion of the beam strength. Indeed, this beam reached a limit point at an applied loading 

level less than 20% above Mcr≈McrL≈McrD  this means the strength benefits of increasing the yield stress are 

capped by the elastic limit point (i.e., using high-strength steels is probably pointless). 

(iii) In beam B2, undergoing SDI, the deformation pattern akin to the local critical buckling mode, expected to 

remain unchanged until the advanced loading stages (note that RDL=1.60), was altered by L-D interaction effects 

at an applied loading level much lower than McrD. Indeed, the surprising emergence of deformations akin to 

the distortional critical buckling mode at M/McrL>0.622 had the net result of rendering the post-buckling 

behaviors of the beams B1 and B2 qualitatively fairly similar in terms strength erosion. Quantitatively 

speaking, beam B2 exhibits higher strengths, as attested by the fact that the (elastic) limit point occurs about 

40% above Mcr=McrL (and considerably below McrD). 

                                                      
17 However, note the progressive growth of the “flattened” w2(x) central region. 
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(iv) The surprising beam B2 post-buckling behavior, addressed in the previous item, is probably due to the fact 

that development of local deformations in the beam compressed flange (recall the beam local buckling is 

flange-triggered) causes a significant drop in the cross-section “distortional stiffness”, thus causing a drastic 

distortional critical moment reduction. 

(v) In beam B3, undergoing SLI, the deformation pattern akin to the distortional critical buckling mode, remains 

practically unchanged until well above Mcr=McrD (M/McrD=1.20), which means that the beam exhibits a typical 

distortional post-buckling behavior until that applied load level  this is in contrast with what happened with 

beam B2, for which the L-D interaction effects came into play at M/McrL>0.622. Beyond M/McrD=1.20, local 

deformation emerged and the corresponding L-D interaction effects caused a sudden stiffness drop, clearly 

reflected in the equilibrium path slope. However, the local deformation pattern that emerged at M/McrD=1.20 

was a bit surprising, since it was not akin to the beam critical local buckling mode, which exhibits six half-waves. 

Instead, it exhibited seven half-waves. The explanation for this unexpected behavioral feature lies in the fact 

that (v1) the first two local buckling modes have virtually coincident buckling moments and (v2) the latter is 

symmetric (like the single half-wave critical distortional buckling mode), which favors its emergence. Because 

the amount of L-D interaction developing in beam B3 is much less than in beams B1 and B2, the strength 

erosion is smaller and, therefore, the equilibrium does not exhibit a limit point prior to M/McrD=1.50 (the 

highest applied loading level considered), where the equilibrium path positive slope is still substantial. 

(vi) The three beams analyzed in this work exhibited flange-triggered local buckling (the most common situation 

in practice). Conversely, all the columns analyzed previously exhibited web-triggered local buckling (also the 

most common situation in practice). This distinct local buckling source is, most likely, responsible for the 

qualitative behavioral differences observed between the beams and columns under L-D interaction, 

particularly in the SDI case. In order to clarify all the “grey issues” concerning the mechanics of L-D interaction 

in lipped channel columns and beams, the authors plan to investigate, in the near future, the behavior of 

columns and beams exhibiting flange-triggered and web-triggered local buckling, respectively. 

Finally, one last word to mention that the authors are currently extending the investigation reported in this work 

to cover beams subjected to non-uniform bending, a loading case much more common than uniform bending 

and, therefore, of greater practical interest. 
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