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Abstract

Abduction Is a basic form of logical inference,
which is said to engender the use of plans, percep-
tual models, intuitions, and analogical reasoning -
all aspects of Intelligent behavior that have so far
failed to find representation in existing formal de-
ductive systems. This paper explores the abductive
reasoning process and develops a model for its mech-
anization, .which consists of an embedding of deduc-
tive logic in an iterative hypothesis and test pro-
cedure. An application of the method to the problem
of medical diagnosis is discussed.

Key Words

Planning, perceptual-models, tbduction, de-
duction, induction, hypothesis-formation, linear-
resolution, synthesis.

Introduction

There has been growing criticism lately concer-
ning the methodology of artificial intelligence.
While differing in the specifics of their analyses
of the problem, most thoughtful observers seem to
feel that the current stock of deductive machinery
is simply not up to the task at hand. A deficiency
often cited with regard to the present deductive
procedures is their inability to represent and make
use of the sort of plans, perceptual models, intu-
itions, and analogical reasoning processes that
characterize at least some phases of virtually all
human problem solving activity.1,2,3 As remedy,
various authors have suggested replacement of the
existing formalisms by alternative representations
such as higher logics, analog models, or general
purpose programming languages.

In this paper, we offer yet another diagnosis
of the problem, and propose a somewhat different
solution. In our view, the principal deficiency of
existing systems is their reliance on a single form
of logical inference - deduction - which, though
essential, is inadequate for many types of problem
solving activity. Our proposed remedy is to extend
the existing formal systems to embrace additional
forms of inferential reasoning, especially that of
abduction.

Abductive inference is one of the three funda-
mental modes of logical reasoning - the others being
deduction and induction - characterized by Peirce4
as the basis of scientific inquiry. According to
Peirce, abduction underlies "all the operations by
which theories and conceptions are engendered;"
moreover, "abductive inference shades into percep-
tual Judgment without any sharp demarcation line
between them." By his account, it is "the only kind
of reasoning that supplies new ideas, the only kind
which is, in this sense, synthetic." Finally, ac-
cording to Peirce, abduction plays a key role in the
process of analogical reasoning.

Since these are the very aspects of intelligent
behavior that have been found wanting in the method-
ology of artificial intelligence, it has seemed to
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us important to explore the abductive reasoning
process and to develop a model for its mechanization.

The essence of abductive inference is the
generation of hypotheses, which, if true, would ex-
plain some collection of observed facts. This con-
cept is illustrated by the following example from
McCulloch5:

"...abduction starts from the rule and
guesses that the fact is a case under that
rule: All people with tuberculosis have
bumps; Mr. Jones has bumps; perhaps Mr.

Jones has tuberculosis. This, sometimes
mistakenly called ‘inverse probability," is
never certain but is, in medicine, called

a diagnosis or, when many rules are con-
sidered a differential diagnosis, but it is
usually fixed, not by a statistic, but by
finding some other observable sign to
clinch the answer."

It is important to observe that the hypothesis formu-
lated in an abduction is typically "quite different
from anything observed, something that is in the
majority of cases empirically unobservable." Thus
the abductive generation of hypotheses is clearly set
apart from that of induction, wherein we typically
"generalize from a number of cases of which something
is true, and infer that the same thing is probably
true of a whole class."6

The various modes of logical inference can be
characterized as alternative forms of argument based
on the following syllogistic schema:

I. Major Premise (rule)
I1. Minor Premise (came)
11i. Conclueion {fact)

pix) (P(x)=>Q{x))
E{a)
Q{a}
Specifically:

A) The process of deduction reasons from a
major premise (T) and a minor premise (II)
to a conclusion (IIl); thus, from the rule
"all things that are P are also Q" and the
specific case "a_is a P", we conclude via
deduction inference that "a is a Q."

B) Induction, on the other hand, comprises the
process of reasoning from a case (IlI) and a
fact relating to that case (Ill) to a hy-
pothesis of the rule (I) that describes
thia relation in general terms. Thus from
an observation "a is a P" and the fact "a_
is a Q," one form of inductive inference
would be to hypothesize that "perhaps all
things P are also Q."

The process of abduction is characterized by
the form of reasoning that takes a given fact
(I11) in conjunction with a rule (l) to
hypothesize a case (l1) that could account
for or "explain" the observed fact. Thus,
from an observation "a is a Q" and the rule
"all things P are also Q", one might hy-
pothesize, via abductive inference, that
"perhaps a is a P."



These forms of reasoning all entail the same
underlying representation of information. Whatever
language is used to express the axioms and conjec-
tures of a deductive system can also be used to ex-
press the observations and hypotheses required for
induction or abduction. However, although they em-
ploy a common information structure, each of these
inference schemes requires the development of a
separate computational procedure for its mechaniza-
tion.

Some work has been reported in the literature
dealing with such procedures; these have, for the
most part dealt with approaches to the mechanization
of induction, « although there has also been report
of at least one abductive system that takes a
'British Museum' approach to the generation of all
possible hypotheses.9

The real problem in this area, of course, is the
selective generation of hypotheses that have some
reasonable prospect of being valid. Our approach to
this problem has been guided by our interpretation of
the traditional maxim of Occam's Razor, which requires
adoption of that hypothesis which is the simplest -
in the sense that it contains the smallest number of
independent types of elements, adding least to what
has been observed. We have taken this to mean that
the preferred hypothesis is the one that reflects to
the greatest extent possible a synthesis of ideas
evoked from the observations. This heuristic criteri-
on of acceptability will be discussed further in a
later section, where procedures for testing and vali-
dation of hypotheses will also be described.

Before pursuing these matters in more detail,
it will be necessary to develop first the framework
within which hypothesis formation takes place in our
system. It will be shown in the following section
that the process of abductive inference can be ac-
complished by means of a procedure that makes use of
much of the machinery already developed for deductive
logic. Although our abduction procedure has been
implemented using GOL® as the basic deductive pro-
cessor, for purposes of explication we describe the
procedure in the context of the better known deduction
scheme of S-linear resolution."

In the following, we review first the linear de-
duction method, recasting the exposition somewhat so
that the intrinsic problem-reduction structure of the
method is exposed. In this context, we present the
notion of partial trees as a way of characterizing
the AND/OR search procedure underlying this form of
deduction. We then show that abductive hypothesis
formation can be effected by a synthesis process that
merges partial trees into complete abduction graphs.

1. Linear Resolution Viewed as a Problem Reduction
Procedure

In this section, we provide a somewhat unorthodox
description of the axioms, conjectures, and inter-
mediate structures that arise in the course of a
typical linear deduction. Our purpose is to show that
linear resolution can usefully be viewed as a problem-
reduction procedure (cf. Nilsson ), which uses back-
ward search to develop direct derivations of conjunc-
tive sets of subgoals. It is a relatively small step
then to show how the same sort of search, operating
on the same form of data, can be used abductively to
develop direct 'explanations' of conjunctive sets of
observations.

1.1 The Information Structure

A deduction problem is typically stated in terms
of a collection of axioms A and a conjecture C
which is to be deduced from the axioms. It is con-
ventional in resolution based systems to conjoin the
negation of C to the set A, convert the resulting set
of expressions to quantifier free form, then to search
for evidence of a contradiction that would render the
expression AAC unsatisfiable. An alternative formu-
lation of the problem would be to search for direct
proof of the disjunction AVC. In this section, we
discuss the procedure from yet a third point of view -
namely, the demonstration of At-C; i.e., taking the
expressions of A as axioms, to derive C by means of
a direct proof procedure. These are all essentially
equivalent views of the problem; they merely require
somewhat different handling of the conversion to
quantifier free form and subsequent interpretation of
the information structure.

The first step in our procedure is to convert the
axiom set A to conjunctive-normal quantifier-free form,
using the techniques first outlined by Davis,--* Or-
dinarily, the conjecture C. would then be negated and
added to this axiom set. In our case, however, as in
the direct proof procedures of Cooper® and Maslov'®
the conjecture is transformed into disjunctive normal
form on the basis of the following revised rules:

1. elimination of implication; (as described by Davis)

2. reduction of the scope of negation; (as in Davis)

3. replacement of each universally quantified variable
by a skolem function having as arguments the vari-

ables of any existential quantifiers occurring
before the universal quantifier.

4. elimination of existential quantifiers.

5. transformation of the resulting expression to
disjunctive normal form.

The result of this process will be a disjunctive ex-
pression consisting of one or more conjunctive sets
of literals.

Consider For example the Following set of axioms:

1. ¥x(P{x) A 0Qx) = R(x))

2. Yw{P(wr > R(W)

3. ¥y Py}
and the conjecture:

3z (R(z) A Q21 V ¥s Q(s)

Converting the axiloms, we obtain the clauses:

1. {P{x), 9x), R(x)}

2. {P(w), R{w}}

3. [P(v}

and the conjecture is trawaformed into the following
disjunctive form:

(R{z) A Q(z}VY Qla)



where 'a' 18 a constant skolem funcrion.

Each digjunct in a conjecture cen be considered
to be an alternative formulation of the derivation
problem, az {)luetrated by the fallowing:

Assume that the converted coniecture comprises
n disjuncts {Dy, Dz....Dn). For each Dy, we& can
formulate the expressiom: (B; ¥ D,J, where By repre~
sents the disjunction of all Dy for j ¢ 1. Thia ex—
pression can then be converted to implicetive form
(B; = Dy); B, can be added to the axiom set A; and
the pratleu is then reduced to derivation of the conm—
junctive expression Dy. One such alternative state—
ment of the problem can be formulated on the baais
of each Dy in the conjecture, In the exanple above,
the conjectyre would give ripe to the two alterna-
tives:

I. Assuming: 1. {P{x}, Q(x), R(x)}
2. {P{w), R{w)}
3. AR(py)
4, {R{z), Q(z)}

Prove: {CT(-;—)}

11, assuming: 1. {ETG-S, 6{;}, Ri{x})
z, {e@w), B(u0)}
3, {ptn}
4. {ea)!

Prove: {RB{=), Q{z}}

These formulations of the problem are surrogates
in the sense that the solution of either one of them
is equivalent to solution of the original problem.
Collectively, therefore, they constitute an "OR"
branch in the search tree, each successor of which is
an "AND" node (consisting of the conjunction of liter-
als in the conjecture associated with that sub-prob-
lem).

Any unit clause in the axiom set is considered to
be unconditional assertion of fact; all others are
conditional. For example, the clause {L1 L2,...Ln}
can be thought of as asserting the implication
(M 3 Lj), where M is the conjunction of all Tj for
jJ=1i. This can be interpreted aa expressing a con-
dition (namely M) under which Li can be deduced (by
means of Modus Ponens perhaps with substitution).
Similar implicative expressions can be developed to
assert the conditions under which each of the other
literals of the clause can be derived.

These implicative expressions can be thought of
as productions, or 'rewrite rules, that are the
transformations by which a problem may be 'reduced' -
i.e., replaced by an equivalent set of sub-problems.
In the running example, if we reformulate the axioms
to emphasize the conditional nature of axioms 1 and 2,
the resulting set of productions would be:

la. (PG +~ a®) A RG)}
16, {(x) « P(X) A R(O}
le.  {R{x) + P(x) A Q{x)]
28, {P(w) + KW}

2, {R(w) + P(W))}

3. {r{y))
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here the symbol ‘+' (actually '&")
of as a replacement operator.

is to be thought

1.2 Interpretation of the deduction procedure

The sub-problems described in the preceding
section correspond in an obvious manner to the various
ways in which an initial clause may be selected from
the Bet of support (where this consists of clauses
arising from the conjecture) in a resolution deduc-
tion.

It should also be readily apparent from a com-
parison of the two procedures that the problem-re-
duction search process described below, which results
from our interpretation of the axioms as productions,
is essentially the same as the S-linear resolution
method described by Loveland11.

A linear deduction is a procedure that 'solves'
the conjunctive problem posed by a conjecture by
systematically dealing with each of the conjuncts
(sub-problems) in turn, Proceeding typically from
right to left, each literal of the conjecture is
processed in the folloving manner:

First, the literal is 'matched' (using Robinson's
unification procedure 16) against each unit clause and
against the literal to the left of '-' in each pro-
duction of the axiom set. Every successful match
gives rise to an alternative successor of the starting
conjecture.

Any match that succeeds with respect to a unit
(unconditional) axiom provides a solution to the sub-
problem posed by the subject literal (which is true
'by assumption'). Thus this term may be deleted from
the list of literals of the successor conjecture (af-
ter appropriate instantiation of any bindings of
variables established in the matching process).

For those matches that succeed with respect to
the left hand side of a production (conditional axiom),
the successor conjecture is formed by replacing the
subject literal by the appropriately instantiated
collection of literals comprising the right hand side
of that axiom.

The set of successors constructed as above, taken
collectively, constitute an 'OR' branch in the search
tree - each element of which is a surrogate for the
original conjecture.

If a successor node is null (i.e., contains no
further sub-problems), the portion of the search
tree by which it was discovered constitutes a solution
to the original problem. A non-null node with no
successors cannot be solved.

It sometimes happens that while developing the
search tree for a particular literal (say S), a sub-
goal is generated that is the negation of that which
is to be proved (in this case: s). In such cases, it
can be shown that, provided that all other conjunctive
subgoals in the tree are satisfied, a proof of S has
been established by reductio ad absurdura, and that the
contradictory subgoal can be deleted from further con-
sideration, immediately upon its generation. This
refinement to the basic problem-reduction scheme can
be seen to be related to the subsumption condition
which is required for completeness of linear resolution
strategies.



To illustrate the linear deduction procedure, we
give below a derivation of version Il of the previous
example.

The starting form of the conjecture is:
{R(2),

To show that this is derivable we must now show that
each literal is either an instance of an axiom (in
which case it can be deleted from the set of sub-
problems) or else is implied by some conjunction of
literals, each of which is derivable.

Q(2)}

In order to prove 'Q(z)'" we can use Axiom 4 .
By substituting 'a' for the existentially quantified
variable V of the conjecture, we Bee that the
right-most sub-problem In the set (R(a), Q(a)} is
solved trivially, and we are left with the successor

problem (R(a)l.

Since the literal
ditional axioms,

'R(a)' matches two of the con-
there will be two successor nodes:
a: {P(a),

Q(a)}, and
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As candidate hypotheses, our procedure selectB
those literals that are abandoned by deduction, in
the sense that they fail to generate successor nodes.
A candidate hypothesis is entertained seriously if it
arises in the partial search trees that are developed
on the basis of two or more of the data making up
the conjunctive observation being explained; the
more data accounted for by a candidate hypothesis,
the more highly regarded it is by the abduction
processor. This is our Implementation of the maxim
of Occam's Razor,

Data contribute to a hypothesis by means of an
operation that we refer to as synthesis, which is
actually analogous to the operation of factoring
in resolution. This process of synthesis, or fac-
toring across partial trees, is at present the only
mechanism by which abductlve hypotheses are generated
in our system. Other useful heuristic criteria will
undoubtedly be forthcoming, but what form these may
take is still an open question.

The combined abduction/deduction procedure is
illustrated by the following example, based on our
application of the method to the problem of clinical
diagnosis.

Assume that we have available a pathophysiologic-
al data base, structured along the lines suggested in
the preceding Bection, that includes the following
sort of axioms: (note that the replacement operator
"-" should rightfully be interpreted as "could be
caused by" rather than as "implied by" in this
context.)

Axioms

Al {chills *m presence (P.S) A Inflammatory (P))
A2  {pain (R) *m presence (P,S) A Located-in (S.R)}
A3  {inflammatory (abscess)}

A4 {located-in (liver, right-upper-quadrant)}
A5  {jaundice s presence (P, liver)}

Here, we have indicated only those conditional axioms
that are considered relevant for the application at
hand. Other variations of the conditional axioms

Al and A2 which are not useful for purposes of diag-
nosis are not explicitly displayed. (In our work,
this form of information structure is implemented by
means of the GOL DELTA function (cf, laner?-7.)

Assume that the following conjunctive set of

symptoms has been observed:
{chills, pain (right-upper-quadrant)}
The diagnostic task 1B to formulate some hypothesis
of the form:
{presence (P,S)}

where P is some abnormal process, and S is some struc-
ture such that the presence of P at S could account
for the observations given.

Using the synthesis criterion suggested above to
control the adduction of hypotheses (which are dis-
played to the left of the vertical bar in lines 4-6
below) a diagnostic model of the pathology can be
derived as follows:



1. {fchills, paln {right-upper- observation
gquadrant}
2. {]presence {X,Y), located-
in (¥, right-upper quadrant),
chillal . 1, AZ
3. {|presence (U,V}, inflammatory
(UY, presence {X,Y), locatad—
in (Y, right-upper-quadrant)} 2, Al
&, {presence (U,V}linflamatﬁry
(U), located-in (V, right-up- 3,
per quadrant}} synthesis
5. {presence (U, liver)|inflam-
matory (U}} 4, Ad
6. {presence (abscess, liver)|) 5, A1

Except for the introduction of a tentative
hypothesis in line 4 above, and the fact that literals
are processed on a first-in-first-out basis, this
derivation follows the usual form of a linear deduc-
tion as previously described. The abduction task is
completed when no remaining subgoals occur to the
right of the vertical bar; any terms occurring to
the left of the bar at that juncture constitute the
basis for a diagnostic model.

It may be of some interest to follow the course
of development of the diagnosis in the case illus-
trated above. In line 4, where the synthesis step
occurs, what is hypothesized is that some as yet
unknown process affecting an unspecified structure is
responsible for both of the observed symptoms. The
instantiations that then take place in the final two
steps of this derivation entail contributions from
the search trees developed from each of the root
nodes; thus the proposed diagnosis represents a true
synthetic inference.

A hypothesis developed on the basis of such a
procedure is, in general, not a unique explanation
of the data, and the problem then becomes one of
discrimination, among contending diagnoses. This
phase of the problem entails the use of deductive,
as well as abductive logic. Once a diagnostic model
has been proposed, it can be used to generate pre-
dictions of additional unreported manifestations of
the assumed pathology. Thus, for example, in the
case illustrated above, the presumption of a liver
abscess can be used to deduce the prediction of
jaundice (on the basis of axiom 5). Such predictions
can then be subjected to empirical verification.

Any new observational data can then be fed back via
the abduction procedure through another iteration of
the cycle - giving rise, perhaps, to revised hy-
potheses that may in turn generate new predictions,
leading to new observations, and so forth.

3. Discussion

The iterative hypothesis and test procedure out-
lined in the preceding section is, of course, one of
the basic paradigms of human cognitive, and problem
solving activity. The performance of any task that is
basically synthetic in nature entails the use of this
procedure. We would include tn the list of such tasks
those episodes of comprehension and planning that
arise in the course of any real problem-solving act.

A number of studies are presently being con-
ducted at Pittsburgh to evaluate and further develop
this concept. These include the biomedical theory
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formation project which has been reported previously,
and a study of planning in organic synthesis, re-
cently completed by Smith, "“which uses abduction to
develop strategies for deductive planning of a syn-
thesis. Another interesting project, now nearing
completion, uses abductive logic to develop per-
ceptual models for use in natural language compre-
hension; another exploits the planning and model-
building capabilities of the system in the automatic
programming task environment.

There would appear to be a number of ways to
go from here. As practical systems of higher logic
become available, we may want to raise the sights of
the abduction processor accordingly; our GOL imple-
mentation already has limited ‘'higher level' capa-
bilities that have been found extremely useful in
some applications. Certainly, the procedure should
be extended to include a mechanization of induction
as well as the other two forms of inference:
reasoning by analogy, according to Peirce, consists
of an induction and an abduction followed by a
deduction. Additional applications that may shed
further light on the processes involved, such as
procedures for strategic planning in theorem proving,
should be investigated.

While we have in no way begun to exhaust the
questions and issues that this new methodology raises,
results from our initial forays into the field have
encouraged us to continue with the task at hand.

Bibliography

1. Sloman, A., Interactions between philosophy and
artificial intelligence: the role of intuition
and non-logical reasoning in intelligence. Ar-
tificial Intelligence (2), (1971), pp. 209-225.

2. Anderson, B. and Hayes, P., An Arraignment of
Theorem Proving or The Logicians' Folly, Dept.
of Computational Logic, University of Edinburgh.
DCL Memo #50, 1972.

3. Dr-eyfus, H.L., What Computers Can't Do.
&. Row, 1972.

Harper

4. Peirce, C.S., Collected Papers of Charles Sanders
Peirce. C. Hartshorne, P. Weiss, and A. Burks
(eds.) 8 vols., Cambridge, Mass., 1931-1958, es-
pecially Vol. 11, p. 272-607.

5. McCulloch, W.S., "What's in the brain that ink
may character?" Presented at the International
Congress for Logic, Methodology, and Philosophy
of Science, 1964. Reprinted in: W.S. McCulloch,
Embodiments of Mind, The MIT Press, 1962.

6. Goudge, T.A., The Thought of C.S. Peirce, Dover,
1969.

7. Plotkin, G.D., A further note on inductive gen-
eralization. In: Mach. Int. 6, Meltzer, D. and
Michie, B. (eds.), Amer. Elsevier, 1971,

8. Popplestone. R.J., An experiment in automatic in-
duction. In; Mach. Int. 5, Meltzer, B. and
Michie, D. (eds.), Amer. Elsevier, 1970.

9. Morgan, C.G., Hypothesis Generation by Machine.
Artificial Intelligence 2 (1971) pp. 179-187.



10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

Pople, H.E., Jr., A goal oriented language for
the computer, in Representation and meaning -
Experiments with information processing systems.
B. Simon and L. Siklossy (eds.), Prentice-Hall,
1972.

Loveland, D.W., A unifying view of some linear
Herbrand Procedures. JACM, Vol. 19, 2, April,
1972.

Nilsson, N.J,, Problem Solving Methods in ar-
tificial Intelligence. McGraw-Hill, New York,
New York 1971.

Davis, M., Eliminating the irrelevant from
mechanical proofs, Proc. Symposia in Applied
Maths, Vol. XV, AMS. (Ed. Metropolis, et. al.)
1963, pp. 15-30.

Cooper, D.C., Theorem Proving in Computers, in
Advances in Programming and Non-Numerical
Computation. L. Fox (ed.), Pergamon Press,
1966. pp. 155-182.

Maslov, S.Ju., Proof-search strategies for meth-
ods of the resolution type. In: Mach, Int. 6,
Meltzer, B. and Michie, D. (eds.) Amer. Elsevier,
1971.

Robinson, J.A., A machine-oriented logic based
on the resolution principle. J. Ass. Comput.
Mach., 12, pp. 23-41.

Isner, D.W., An inferential processor for inter-
acting with biomedical data using restricted
natural language. Proc. SJCC, 1972.

Pople, H. and Werner, G., An information
processing approach to theory formation in bio-
medical research. Proc. SJCC, 1972.

Smith, G., Jr. Mechanized procedures for strate-
gic planning in synthetic organic chemistry.
Doctoral Dissertation, Dept. of Chemistry,
Univ. of Pittsburgh, 1973.



