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ABSTRACT. Recently [8], an operational calculus for the operator
B, = ¢ HMpeltH

approach [4], [13], [15]. This paper gives the integral transform

D with -1 < 4 < » was developed via the algebraic

version. In particular, a differentiation theorem and a convolution

theorem are proved.

1. INTRODUCTION.

Ditkin [4], and later with Prudnikov [6], developed an oper-

ational calculus for the operator é% t é% similar to the algebraic
approach of Mikusinski [15]. Meller [13], [14] generalized Ditkin's
-e t1+aD with -1 < o < 1. Kratzel [9],

calculus to operators Ba = t D
{10], [11], [12] gave an integral transform version to Meller's

calculus and also generalized the calculus to operators containing
th

n order derivatives. He developed a theory of integral transforms

of the form
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0 Yf(t)de,

where n =1, 2, ..., Re(v) >i—-—1, and

n-1

2 z. nv
(2m) ° Yo (D) © -1
w(\r;)(Z) = vri1/m fl (yn—l)v Dexp(-zy)dy.
v+l- n

Here,‘xfi)is the Laplace transform and ;C(z) is the Meljer trans-

form of the form

,f,(z){f}(s) = zf (st)’ xv(zm)f(t)dt, (1)

where Kv(z) is the MacDonald function of order v. Dimovski [1],
[2], [3] developed an operational calculus for the operator

Ch-1 n

) 1 4 d
I‘E ot T

- 4
B =t at t

using an integral transform that for n = 2 reduces to the Meijer

transform of the form

~ - ©
K, (£)() = 257" (s0) vi2g 2/ADE(t)dt, (2)
In [8], Koh reconsidered Meller's operator Bu = _u;Ltl+ué%

but with pe(-1,). Following Mikusinski, Ditkin, et. al., he
constructed an operational calculus through the field extension
of a commutative convolution ring without zero divisors. His
calculus reduces to Ditkin's when u = 0 and Meller's when

ue(-1,1).
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In this paper, we give an integral transform analogue of [8]

via the Meijer transform of the form

2 had /2
k {f} = —=P__ t)¥ 2vVpt) f(t)dt 3
MENORE sl P L M MEITDEICY (3)
for Re(p) > -1. 1In particular, we prove a differentiation

theorem and a convolution theorem. The presence of a factor

_2p
r'(u+l)

in our convolution theorem.

in (3), as opposed to those in (1) and (2), 1s essential

2. THE MAIN THEOREMS.

We will define the convolution, *, of two functions, f, g
by

1

l-p p+let u u ol
PPt D [ 8 (e-8) fof(x&)g[(l—x)(t—&)]dxda. (4)

fxg =
see Koh [8], where DX is the Riemann-Liouville derivative of
order A, see Ross [17]. This convolution exists if, for example,
f and g are in Cw[O,M), the space of infinitely differentiable

complex functions on [0,x).

The following properties of KU will be used:

-1

Ku(Z/p_t) %(t/p)u/2 IO x " Yexp(-px- i) dx (5.1)

1

= -21-(t/p)_u/2 fo x" " “exp(-px- -;—) dx, (5.2)

Re(u) > -1, Re(p) > 0, Re(t) > 0.
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¢ 3

~1ln t+0(l), w = 0

200)¥K (2/58) v ¢ TG0y s , L t>0
-LGZW) (peytro(1), -1 < w <0
(6.1)
- 1
n Ft e_2/5€{1+0(|t| 2y}, o . (6.2)
d +u/2 t“'%
el GOk (/D)) = —pet) K 3, (2/p0). (7

In order that the Meijer transform (3) converges, it is
sufficient for £(t) to be locally Lebesgue integrable on (0,x)
and |f(t)| < CezY/? (t » ») for w > 0 and for f(t) to remain
bounded in the neighbourhood of the origin for -1 < u < 0. The
integral then converges absolutely within the parabolic region
RevYp > Y. This is clear from the asymptotic behaviors (6.1)
and (6.2). Indeed,

® -] w u
|fof(t)(pt)2xu(2/5?)d:| < fo|f(t)|(pt)2Ku(2/EE)dt

12 u
< suplf(t)|f€(pt)2K (2/pt)dt + lef(t)|(pc)2K (2/pt)dt
0<t<e 0 H € H
- B
+ f |f(c)|(pc)2Ku(z/EE)dt, for some 0 < € < T < =, (8)
T

The first integral on the right hand side of (8) exists because

of (6.1); the second exists because of the local integrability
u

of f(t) and the continuity of (pt)zKu(Z/;E); and the last
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integral exists because of (6.2) provided Re/; > Y. We state this

result in

THEOREM 1. If f(t)eLtoc(O,w), if there are constants C and

Y such that [f(t)] < CezY/E as t > », and 1f lim £(t) = £(07) < o,
t >0t

then (3) converges absolutely in Rev/p > vy for all pe(-1,=).
Furthermore, the integral (3) as a function of p is analytic in
the region of convergence.

The proof of the analyticity is standard and is omitted.
When a function f(t) satisfies the hypothesis of theorem 1, we

shall write, for brevity, feHypIl. Clearly, if a function f has

continuous derivative on [0,») and f'eHypI, then feHypI.
THEOREM 2, 1If feCz[O,w) and f'eHypI, then

k, (B £) = p(k £) - pecohy.

PROOF.
B+l ) u
k(B £) = B fo[“-“f_ct“”a%f(t)]tzKu(Z/E)dt
zléiii. 2 WL dE ™ 4l ae 4 7D
=r(u e {t "k (2/p0)¢ —glo-f (t Todett K (2/p)de).

The limit terms vanish because f'eHypI. We now use (7) and

another integration by parts to yield
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b3 pHl

7+3 :
= r(u+1) I (dt) t K, (2/k0de

3
b u+l

B %(u+1) { Jf;+[f(t)t 2 Ku+1(2/3?)]+p

kU(BUf)

o B
foftzxu(z/;E)dt}

[N

= pku(f)(p)-pf(0+). QED

This result immediately generalizes to the next theorem by

induction.

THEOREM 3. If £eC2%[0,») and £2¥ DemypI, then

K
k [£] - I ijk 30y,
j=1

k
k B f =

Note that this theorem is the integral transform version
of Lemma 1 of [8]. The operational calculus for the operator
B 1is now effected through this formula., To solve the imnitial

H
value problem

Q(B ) £(r) = g(t)

k-1
£(0) = Cy, B £(0) = C, .0y BUE(O) = Cp g (9)

Ol
where Q(z) is a polynomial, we transform (9) into

Q(p)kuf = P(p) + kus

where P(p) 18 a polynomial of degree less than or equal to that

of Q(p). Therefore

k f = B(p) +

uf T Q(p) (k,8) (p)

and f(t) is retrieved by means of an inversion formula and
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possibly a convolution theorem.
The following inversion theorem is obtained from Meijer's
Theorem [18] through a simple change of variables, viz. x > V/t

and y » 2/p.

THEOREM 4. Let u be a complex number whose real part is

not less than -%—. Assume that in Re/; > YO > 0, F(p) 1is an

analytic function and is bounded according to |F(p)| < M|p| 9

where q >%Reu+2. Then for real c > YO and for Re/;> c,

F(p) = ku(f) where

H
- ug
£(e) = Dthe [ Fp ? I, (2/pE)dp. (10)
Revp=c

The following lemma will be used in proving a convolution

theorem for ku.

LEMMA., Letting Di denote the Weyl derivative of order yu,

we have

=

Dl {(z/6) %k (2/20)} = (-z/0)¥K, (2/20).

PROOF. By definition, D\ {f(t)} = (@/an v M ie(n ),

where k-1 < u < k, and where

©0

WL} = [-1/T) [ £(s) (t-5) " 1ds.
Since
Ku(Z/;?) = %(t/z)“/2 f: exp{-(zy+t/y)}y_u_ldy (11)

we have
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wk'“{t'u/zxu(z/??)} -

= (27201 (k1) } I:(t-s)k'“'lds f:exp{-(zy+s/yﬂy°u-1dy

o©

- {-z-u/Z/ZP(k-u)} foexp(—zy)y-u_ldy | exp(-sly)
t

c(t-8) KM 1l4g,

On putting s-t = yA, ds = ydA and using the definiton of the gamma

function, this becomes

(~-1), MW/ 2y, f:exp{-(zy+t/y)}yk_zu-ldy.

Differentiating k times with respect to t, we get

Di{t““/zxu(z/??)} =

- -u/2 ® -2y-
= (-1)H 2T 2y Jexpl-Cayre/n) )y ay,
and using (11), with p replaced by 2u, completes the proof.

THEOREM 5. (Convolution theorem) If f and g belomng to
Cw[O,w) and f(n) and g(n) gsatisfy HypIl for every n, then

ku(f*g) converges absolutely in Re/p > Yf+Y8 and

ku(f*s) = (kuf)(kug) for pe(-1,x).

PROOF. We use the two-dimensional Laplace convolution
theorem (pp. 26-29, [5]): Let

0 oo
F . lp,q) = Leey) = fofoe px qyfi(x,y)dxdy, i =1,2
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and

£2(x,y) = [ [0 (€.m) €, [x-E,y-n]dnde.

If Fi converges absolutely, then so does F*(p,q)

F*(p,q) = F,(p,9)F,(p,q).

In (12), let fl(x.y) = xuf(xy) and fz(x,y) = xug(xy).

Then f*(x,y) = —%E Z(xy) where
y

1
z(t) = f;fowu(t—w)uf(wv)g [(t-w)(1l-v)] dvdw, and
LL£*] = f:f:e'px'qyc(xy)y‘zudxdy
[+ -] o0 -1

Similarly,

LixME(xy)] = IRIOLE foexp<-py-qty’1)y“'1dy

u
- 2fof<c)p'“<pqt)zxu<2/53?)dt.

on using the integral representation (5.2). Set p =1 in

(14) and (15) and invoke (13); we have

2
by #ley - DU ) (k00

r(t)de Cexp(~qy-ty
fo fo p(-qy-ty s

It remains to show that the left hand side of (16) is equal

2
to I—i%ill ku(f*g). Indeed, letting RA denote the Riemann-
q

Liouville integral of order 2,

L(f*) and

153

(12)

(13)

(14)

(15)

(16)
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- 1 -U,H
ku(f*g) = k [—I'_(_wl'-—l—)_But D z(t)] (17)
-9 __ ST
T(p+l) ku [t "D g(t)] (18)
2
= 2 *® /2 -u,d .k
J——Fz(um [4€ae)" 7k (2/ae) e 7 (G TRyt () dt (19)
BRINE Vi Tl U T OO TIE SO - SR SN
r(k-w)réu+1) ~0 94t M 0
c(t-s)E B 14, (20)
- ————2———LI c(r)n“{(q/t)“’zx (2/q%) }dt (21)
r?(u+1)
2
- —”‘—f £(t) (a/e)MR, (2/qE)de (22)
I‘ (p+1)
= ———L—J' z(t)de ,f exp(-qy-t/y)y * Lay (23)
P (up+l) 0

which proves our assertion concerning the left hand side of
(16). Equation (17) follows from the definition of convolution.
Equation (18) follows from theorem 2 since Dt_uDuC(t)eHypI

for f(n) and g(n)EHypI. Furthermore, from a theorem of Ritt

2u+l

[16], we have f,g = 0(l) = z(t) = 0O(t y =t PpHr(t) = o(r)

as t - 0. Thus tig+ t- Duc(t)

0. Equation (20) follows from
(19) by the definition of the Riemann-Liouville integral, Rk-u’
and integrating by parts k-times. The integrated terms vanish
at t = 0 and t = » by (6.1), (6.2), and the fact that in the
definition of Z(t), the functions f and g satisfy the hypotheses

of theorem 5. Equation (22) is due to the preceding lemma. That
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ku(f*g) converges absolutely follows from the absolute convergence

of (13). This completes the proof.

3.

SOME OPERATIONAL FORMULAS.

Let F(y) = fof(x)Ku(xy)llzdx = ? (24)
If we set y = 2/; and x =/E, we get
2/3_3/4+u/2
-1/4-u/2, _ 2 P
k [E(/O)e 1 = an F(2/p) . (25)

From Erdélyi [7] p. 137 (16),
(kBT 25 @01” = 2B B 2 (ga) (Rea?) TR (26

Ref > |Reu|-1, Rey > |Imp].
By (25),

B/2 u+l
B/2 /moy1 - & P . I(B+u+1)

Re/; > |Im/;|.

Letting B = v-u, this becomes, for Rev > Reyu,

(v-u)/2_u+l
K eV Eny) = 2 ) (28)
H VoM (p+a) " T(p+1)

Since Ku(-) = K_u(-), we have from (26), for Re/p > |Ima],

B-u_B_-u+l/2
B-u+l/2 ~ o2 a’y r(g-p+1)
[x JB(ax)] = (y2+a2)-u+8+1 . (29)
From (25),
a®/2r(g-u+1)p (30)

g/2-u
k [t J,(2Vat)] =
M 8 T (p+l) (p+a)Bute
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Setting B = v+yu,

(v+u) /2
ku[t(v—u)/sz+ (2/at)] = Dvil)a 2 . (31)
H T(u+l) (p+a)
If v = 0 1in (31),
ku[r(u+1)(ac)‘“/zJucz/Z?)] - B (32)
Letting a + -a, and using Iu(z) = e-u"i/zJu(iz),
ku[r(u+1)(ac)'“/21u(2/Z?)] - B (33)
Equation (31) can be written as
[%%%{%%tv(at)—(v+U)/ZJv+u(2/;F)] - — - (34)
(p+a)

Again letting a -+ -a, and Iu(z) e_uﬂi/ZJu(iz), this gives

v+1l*® (35)

—iﬂii—c (at) - (VW /2; L (2/2D)] =
Ve (p-a)

F(v+1)
These expressions are useful in inverting rational functions.
As an application, consider the problem of solving
2
(B"+3B _+2)¢(t) = £(t),
'R T!
$(0) = ¢,

(B,4)(0) = ¢,.
One gets

(p743p+2)k [ (8) = 0o +(39(+0, ) p+k £,

whence
(bg+00p  (20+0 )P

- - = 4 P
ku(¢) p+2 + p+1 (34 2(p+2) 1:¢+1)k £.

Therefore
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¢ = —(¢o+¢1)r(u+1)(2:)'“/2Ju(2/2_t‘)
#(20,+6 )Tt e TH/ 25 (2/E)+3£ (1)
0 "1 M 2
1 -u/2 -u/2
+{3T (u+l) (2t) Ju(Zm)-I‘(u+l)t Ju(z/E)}*f(t),
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