ON THE MEMBERSHIP IN BERGMAN SPACES OF THE DERIVATIVE
OF A BLASCHKE PRODUCT WITH ZEROS IN A STOLZ DOMAIN

DANIEL GIRELA AND JOSE ANGEL PELAEZ

ABSTRACT. It is known that the derivative of a Blaschke product whose zero sequence
lies in a Stolz angle belongs to all the Bergman spaces AP with 0 < p < 3/2. The question
of whether this result is best possible remained open. In this paper, for a large class of
Blaschke products B with zeros in a Stolz angle, we obtain a number of conditions which
are equivalent to the membership of B’ in the space AP (p > 1). As a consequence, we
prove that there exists a Blaschke product B with zeros on a radius such that B’ ¢ A3/2,

1. Introduction. We denote by D the unit disc {z € C: |z] < 1} and by H? (0 < p < o)
the classical Hardy spaces of analytic functions in D (see [3]). The Bergman space AP
(0 < p < o0) consists of all functions f analytic in D which belong to L?(D,dA), where
dA(z) = Ldx dy denotes the normalized Lebesgue area measure in . We mention [4] and
[6] as general references for the theory of Bergman spaces.

A sequence {a,} of points in D is said to be a Blaschke sequence if Y>> (1 — |a,|) < co.
The corresponding Blaschke product B is defined as B(z) =[]0, ‘Zzl oz,

If £ € 0D and o € (1,00), we set Q,(&) ={z€D: |1 —Ez <o(1—|z])}. The domains
Q,(8) (1 < 0 < 00) are called Stolz angles with vertex at £&. The domain Q,(1) will be
simply denoted by .

If a Blaschke product B has zeros a, = rne’*", we define

f(t) = Z 1 —Jan| te (—m,m).

Tl + (-6
Ahern and Clark ([2], Lemma 1, p. 121) proved that
(1) B'e H? & fpelP(—m,7), 0<p<oco.

Using this criterion we can deduce:
(i) If the zeros of a Blaschke product B all lie in some Stolz angle, then B’ € Ny<peq /2 HP.
(ii) If B is the Blaschke product with zeros a, =1—1/(n log? n), n > 2, then B’ ¢ H'/2.
2. The main results. Even though we do not have a Bergman space analogue of (1),
using Theorem 6.1 of [1] (see also Theorem 3 of [5]), it follows that if the zeros of a Blaschke
product B all lie in some Stolz angle, then B’ € AP for all p € (0,3/2). We shall prove that
the exponent 3/2 is sharp in this result even for Blaschke products with zeros on a radius.

THEOREM 1. The Blaschke product B with zeros a, = 1 — 1/(nlog2 n), n > 2, has the
property that B' & A3/2.

For a large class of Blaschke products B with zeros in a Stolz angle, we shall obtain
a number of conditions which are equivalent to the membership of B’ in the space AP
(1 < p < o0). Theorem 1 will follow from these results. We remark that if B is an arbitrary
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infinite Blaschke product, B’ ¢ AP for any p > 2 (see Theorem 1.1 of [7]). Hence, our coming
results are really significant only for 3/2 < p < 2.
Following Vinogradov (9], if B is the Blaschke product with zeros {a,}22;, we define

1 — [ay|

(2) pp(0) = anz#:o 0+ 1 —]an’ 0 € (0,00).

We shall prove the following result.

THEOREM 2. Let B be a Blaschke product whose sequence of zeros lies in a Stolz angle. If
there exist a positive constant C' and 6y € (0,7) such that

(3) Opp(8) > C forall 6 € (0,6p),
then, for any given p € (1,00), we have that B' € AP if and only if ¢ € LP~1(0,1).

Theorem 1 can be deduced from Corollary 2 below but here we give a direct proof using
Theorem 2.

Proof of Theorem 1. If B is the Blaschke product considered in Theorem 1 then

EOO: 1 — [an| = nlog®n
0) = M1 —1, N2 E ————. 0>0.
e S0+ 1 —an))? Z 4+ n log® n)2

For 0 < 6 < 1, let Ny be the unique number greater than 1 such that #Nglog® Ny = 1. By
a standard argument involving summation by parts, we have
Ny 1

1
0) > - nlog?n =< N2?log? N, =
pp(0)> 7 D nlog Jlog" No = =" = oo

2<n< Ny

Now, the definition of Ny easily implies that log Ny ~ log %, as § — 0. Then it follows that
there exist a positive constant C' and 6y € (0, 1) such that

pp(0) > C 0<0<0y.

62 log” 5 ’
This implies that ¢ ¢ L'/2(0,1). Then using Theorem 2 we deduce that B’ ¢ A%/2. O]

Theorem 2 follows immediately from Theorem 3.

THEOREM 3. Suppose that 1 < p < oo and o > 1, and let B be a Blaschke product whose
zeros lie in a Stolz angle. Then there exist C1 > 0, Co > 0, M > 0 and 0y € (0,7) such that

27 0o
@4 G / i (0)do > / |B'(2)|PdA(z) > C / @ (0) (1 - eM02e D) g,
0 D 0

A number of results which will be needed to prove Theorem 3. The pseudo-hyperbolic
, z,w € D. The following

Z—w
1-wz

result, which is due to Marshall and Sarason, is proved in Proposition 4 of [8].

metric in the unit disc will be denoted by o: o(z,w) =

PROPOSITION A. Let K be a closed convex subset of D with 0 € K. Let B be a Blaschke
product whose zeros {a,} are all contained in K. If z € D\ K and € = p(z, K), then

B2 oy WZ 1 P (zan)

The following lemma can be proved using simple geometric arguments.

LEMMA 1. Given 0 > 1 and 0 < § < 1 there exists & > o such that p(z,Q,) > § for every
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LEMMA 2. Let B be the Blaschke product whose sequence of zeros is {an}52, and let § €
(0,1). If z € D satisfies that o(z,ay,) > 6, for all n, then

1 o0

5) B(2)] = exp (—252 (1- g2<z7an>)> .

n=1

Proof. Take z € D such that o(z,a,) > § for all n = 1,2,..., then using the elementary
inequality logx < x — 1, for x > 1, we deduce that

1 1 &
Zlg 22( 1)s25221<1—@2<z,%>>,

which implies (5). O

We shall use also the two following elementary lemmas.
LEMMA 3. Given R € (0,1), there exists Cr € (0,1) such that
(6) Crl(1—r)+(1—0)+|t] <[1—ore®| < (1 —r)+(1—-0)+[t| ,r,0 € [R,1) t € [-m,m].

[1-Xz]

LEMMA 4. If o > 1 then 2%7 < T

<2+ 0, whenever z €D and XA € Q.

Proof of Theorem 8. Take p > 1 and assume, without loss of generality, that B is a Blaschke
product with B(0) # 0 whose sequence of zeros {a, }22; lies in the Stolz angle Q, (o > 1).
Write ¢ for ¢p.

There exists R € (0, 1) such that |a,| > R, for all n. Let Cr be the constant associated
to R by Lemma 3. Fix a number ¢ € (0,1). Using Lemma 1, we can take & > o such that
0(2,9,) > 6§, for all z € D\ Q5. Using Proposition A with K = Q, and bearing in mind

that the function x +— 2Z; is increasing in (0, 1), we obtain that, for every z € D\ Qs,

142

20(2,9,) |B(z lan|?
> (1- . B(z
|—1+g(z,s2)21—|z|2Z ¢ ”))—1+52| IZ|1—az|2
If z € D\ QF, then o(z,a,) > ¢ for all n. Lemma 2 and the above inequality yield

L= Janf? 1 o~ (= 2P0~ Jan )

7 § . D\ Q.
() 1B ()= 1+52 |1 @ TP\ T2 T TP » 2 €DA
Using (7), Lemma 4 and Lemma 3, we see that if z = rett € {z € D: |2| > R} \ Q5

1—|an 1 1—|an
56)| > e S LJP exp (—5hs Ty Sl D)

|B'(2)

> (1+62 2+o 7D net m eXp ( (2;:502)2 Yozt %W)
(8) > T (7o) Lnet ( (e= v>+1(1‘f|72|j|>+\t\12>'
'eXP< 2;5? Dot cz (1 L)|+)((11 \LT]QM\P)
> (e (1= 1) + 1) - exp (— 25525 (1= 1) (1= 7) + 1))

= Ap (I =r)+ [t exp (K1 =)o ((1—r) +[t]),
where A and K are two positive constants. Observe that there exists a positive constant
such that

(9) lt| > (1 —r), forz=re €c{zeD:|z|>R}\ Q.

Take Ry > R such that (8+ 1)(1 — Ry) < w. Using (8), making three consecutive changes
of variable: 8 = 0(t) =1 —r+t,u=u(r) =1—r, x = z(u) = up(d) and using Fubini’s
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theorem, we obtain

f]]) |B'(2)|P dA(z) = f{ze]})\ |>Ro N\ Q= |B'(2)|P dA(2)
> 2AP fR fﬁ(l N (1—7r)+t)exp (—Kp(1 —1r)p (1 —7r) +1t)) dtdr

R R
> 2AP fo ° f(gfll (1—Fo) P (0) exp (—Kpup (0)) didu

6
= 247 [P0 [T o0 (0) exp (~ Kpuip () dudt
= 2AP fo(ﬁﬂ)(l_%) "1 (0) [PV exp (—Kpz) dzdf

d
_ 247 (B+1)(1-Ro) —kpOo(6)
= Qk—p 0 o7 oP=1 () {1 —exp( (g_ﬁ) )} de.

This proves the second inequality of (4) with Cy = Tp’ 6o = (B+1)(1 — Rp) and M =
kp/ (8 +1).

Now we turn to prove the other inequality. Write b, (z) = %% and B, (z) = B’(ZZ)
n=1,2,.... We have,

|an|®
() Zuw 1B
The elementary inequality log(l — z) < —z, 0 < x < 1, yields
1 1
(12) log |b,(2)] = 3 log (1—(1— |bn(z)\2)) < 75(1 — |bo(2)]?), z €D.
Summing up over all j # n and using the well known identity 1 — |b;(2)|? %
we get from (12) that log|B,(z)] < —72:]#”% which, together with (11),

Lemma 4 and Lemma 3, implies that, whenever r € [R,1) and ¢ € [, 7],
\ (1=r?)(1=]a,|*)
|B'(re )|<Zn1|1%wt|2€XP< 22:]75"1‘1T5”|72>
1 . 1 oo  (1-r3)(1—|an|?
<e 3 Zn 11— aLrelLt\z €xp ( - Eanl ( \1T75(nrelﬁ|2| )>

1 2 00 1—|a,|? 1 oo (1—r*)(1—|an|?)
Sez (2 + U) En 1]1— |an|re”|2 " exXp <_ 2(2+0)2 Zn:l [1—|an|re*t|?

<AL [ 1-len” 5 - exp (— K> [ (1=r?)(1=an|?)

(1=fan)+(1=r)+t]] (1=Jan)+(1—r)+t]
< Ap((1—=r) + |t]) exp ( —K(l-r)p(1-r)+ |t)>,

where, A and K depend only on o and R. After three changes of variable: § = 0(t) = 1—r+t,
u=u(r) =1—rand z = z(u) = up(h), some obvious estimates, and using Fubini’s theorem,
we obtain
fRSIZ\<1 |B'(2)|PdA(z) < 24 f; fow <pp((1 —7r)+ t) exp[—Kp(1 —r)o((1 —r) + t)]dtdr
<24 fé OZW ©P(0) exp[—Kp(1 —7)p(0)] dodr < 2A f% fol P (0) exp|— Kpup(0)] du db
< 2A(J77 P 1(0) d0) ([ exp(~Kpa) du) < 24 [ op=1(9) db.

Since fo% | B’ (rei)|Pdt increases with r, this implies the first inequality of (4). O

COROLLARY 1. Suppose that 1 < p < co and B is a Blaschke product whose zeros lie in a
Stolz angle and with the property that there exist C > 0 and 6y € (0,7) such that (3) holds.
Then the following conditions are equivalent:

(a) B'€ A, (b) ¢p € LP71(0,7). (c¢) B' € HP~Y. (d) fg € LP™Y(—m,m).
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Proof. Theorem 2 shows that (a) < (b). The equivalence (¢) < (d) follows from Lemma 1
and, the implication (¢) = (a) follows from Theorem 6.1 of [1].

To prove that (a) = (c), suppose that B is a Blaschke product with B(0) # 0, B’ € AP
and such that its zeros {a,} lie in Q, for a certain ¢ > 1. Write a,, = |a,|e?®" with
|0,| < 7. Since {a,} C Q,, there exists a positive constant A such that |6, < A(1 — |an]),
n=1,2,.... We have [(1—|a,|) +0[]*> < 2[(1 — |an|)* + 6?], and 62 < 2((0 — 0,,)* +62) <
2((6—6,)% + N*(1 — |an|)?) whenever n > 1 and 6 € [—m,7]. Then it follows that there
exists a constant C' > 0 such that

(13) (1= Jan]) +10]]* < C (A = lan])® + (0 = 00)*) , n>1, 6O€[-ma]
Since (a) < (b), ¢ € LP~1(0,1). Then (13) gives fp € LP~}(—m,7) and B’ € HP~1. O
Condition (3) is not a simple one. Next we find a simple condition which implies it.
COROLLARY 2. If the zeros {a,} of Blaschke product B lie in a Stolz angle and there exist
A >0 and ng > 1 such that 1 — |apy1| > M1 = |ay]), if n > ng, then there exist C > 0 and
0o € (0,7) such that (3) holds. Hence, B' € AP & ¢p € LP71(0,7) (p > 1).
Proof. Given 6 € (0,1 — |ap,|) take n > ng such that 1 — |a,41| < 6 <1 — |ay|. Then
(@) > 0l (= fana)(—Joal) _ 0 ansl) X
(0 + ((1 = an])) A1 — |an]) 41— lan]) ~ 4
Hence, we have proved (3) with C = \/4 and 6y =1 — |ap,|. O
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