ON THE MEMBERSHIP IN BERGMAN SPACES OF THE DERIVATIVE OF A BLASCHKE PRODUCT WITH ZEROS IN A STOLZ DOMAIN

DANIEL GIRELA AND JOSÉ ÁNGEL PELÁEZ

ABSTRACT. It is known that the derivative of a Blaschke product whose zero sequence lies in a Stolz angle belongs to all the Bergman spaces A^p with 0 . The question of whether this result is best possible remained open. In this paper, for a large class of Blaschke products <math>B with zeros in a Stolz angle, we obtain a number of conditions which are equivalent to the membership of B' in the space A^p (p>1). As a consequence, we prove that there exists a Blaschke product B with zeros on a radius such that $B' \notin A^{3/2}$.

1. Introduction. We denote by \mathbb{D} the unit disc $\{z \in \mathbb{C} : |z| < 1\}$ and by H^p $(0 the classical Hardy spaces of analytic functions in <math>\mathbb{D}$ (see [3]). The Bergman space A^p (0 consists of all functions <math>f analytic in \mathbb{D} which belong to $L^p(\mathbb{D}, dA)$, where $dA(z) = \frac{1}{\pi} dx \, dy$ denotes the normalized Lebesgue area measure in \mathbb{D} . We mention [4] and [6] as general references for the theory of Bergman spaces.

A sequence $\{a_n\}$ of points in \mathbb{D} is said to be a Blaschke sequence if $\sum_{n=1}^{\infty} (1-|a_n|) < \infty$. The corresponding Blaschke product B is defined as $B(z) = \prod_{n=1}^{\infty} \frac{|a_n|}{a_n} \frac{a_n - z}{1 - \overline{a_n} z}$. If $\xi \in \partial \mathbb{D}$ and $\sigma \in (1, \infty)$, we set $\Omega_{\sigma}(\xi) = \{z \in \mathbb{D} : |1 - \overline{\xi}z| \leq \sigma(1 - |z|)\}$. The domains

If $\xi \in \partial \mathbb{D}$ and $\sigma \in (1, \infty)$, we set $\Omega_{\sigma}(\xi) = \{z \in \mathbb{D} : |1 - \xi z| \leq \sigma(1 - |z|)\}$. The domains $\Omega_{\sigma}(\xi)$ $(1 < \sigma < \infty)$ are called Stolz angles with vertex at ξ . The domain $\Omega_{\sigma}(1)$ will be simply denoted by Ω_{σ} .

If a Blaschke product B has zeros $a_n = r_n e^{it_n}$, we define

$$f_B(t) = \sum_{a_n \neq 0} \frac{1 - |a_n|}{(1 - |a_n|)^2 + (t - t_n)^2}, \quad t \in (-\pi, \pi).$$

Ahern and Clark ([2], Lemma 1, p. 121) proved that

(1)
$$B' \in H^p \Leftrightarrow f_B \in L^p(-\pi, \pi), \quad 0$$

Using this criterion we can deduce:

- (i) If the zeros of a Blaschke product B all lie in some Stolz angle, then $B' \in \bigcap_{0 .$
- (ii) If B is the Blaschke product with zeros $a_n = 1 1/(n\log^2 n)$, $n \ge 2$, then $B' \notin H^{1/2}$.
- **2.** The main results. Even though we do not have a Bergman space analogue of (1), using Theorem 6.1 of [1] (see also Theorem 3 of [5]), it follows that if the zeros of a Blaschke product B all lie in some Stolz angle, then $B' \in A^p$ for all $p \in (0, 3/2)$. We shall prove that the exponent 3/2 is sharp in this result even for Blaschke products with zeros on a radius.

THEOREM 1. The Blaschke product B with zeros $a_n = 1 - 1/(n\log^2 n)$, $n \ge 2$, has the property that $B' \notin A^{3/2}$.

For a large class of Blaschke products B with zeros in a Stolz angle, we shall obtain a number of conditions which are equivalent to the membership of B' in the space A^p (1 . Theorem 1 will follow from these results. We remark that if <math>B is an arbitrary

²⁰⁰⁰ Mathematics Subject Classification. 30D50, 30D55, 32A36.

Key words and phrases. Blaschke products, Hardy spaces, Bergman spaces.

The authors are partially supported by a grant from "El Ministerio de Educación y Ciencia, Spain" (MTN2004-00078) and by a grant from "La Junta de Andalucía" (FQM-210).

infinite Blaschke product, $B' \notin A^p$ for any $p \ge 2$ (see Theorem 1.1 of [7]). Hence, our coming results are really significant only for $3/2 \le p < 2$.

Following Vinogradov [9], if B is the Blaschke product with zeros $\{a_n\}_{n=1}^{\infty}$, we define

(2)
$$\varphi_B(\theta) = \sum_{a_n \neq 0} \frac{1 - |a_n|}{[\theta + (1 - |a_n|)]^2}, \quad \theta \in (0, \infty).$$

We shall prove the following result.

THEOREM 2. Let B be a Blaschke product whose sequence of zeros lies in a Stolz angle. If there exist a positive constant C and $\theta_0 \in (0, \pi)$ such that

(3)
$$\theta \varphi_B(\theta) \geq C \quad \text{for all} \quad \theta \in (0, \theta_0),$$

then, for any given $p \in (1, \infty)$, we have that $B' \in A^p$ if and only if $\varphi_B \in L^{p-1}(0, 1)$.

Theorem 1 can be deduced from Corollary 2 below but here we give a direct proof using Theorem 2.

Proof of Theorem 1. If B is the Blaschke product considered in Theorem 1 then

$$\varphi_B(\theta) = \sum_{n=2}^{\infty} \frac{1 - |a_n|}{[\theta + (1 - |a_n|)]^2} = \sum_{n=2}^{\infty} \frac{n \log^2 n}{[1 + \theta n \log^2 n]^2}. \quad \theta > 0.$$

For $0 < \theta < 1$, let N_{θ} be the unique number greater than 1 such that $\theta N_{\theta} \log^2 N_{\theta} = 1$. By a standard argument involving summation by parts, we have

$$\varphi_B(\theta) \ge \frac{1}{4} \sum_{2 \le n \le N_{\theta}} n \log^2 n \approx N_{\theta}^2 \log^2 N_{\theta} = \frac{N_{\theta}}{\theta} = \frac{1}{\theta^2 \log^2 N_{\theta}}.$$

Now, the definition of N_{θ} easily implies that $\log N_{\theta} \sim \log \frac{1}{\theta}$, as $\theta \to 0$. Then it follows that there exist a positive constant C and $\theta_0 \in (0,1)$ such that

$$\varphi_B(\theta) \ge C \frac{1}{\theta^2 \log^2 \frac{1}{\theta}}, \quad 0 < \theta < \theta_0.$$

This implies that $\varphi_B \notin L^{1/2}(0,1)$. Then using Theorem 2 we deduce that $B' \notin A^{3/2}$. \square Theorem 2 follows immediately from Theorem 3.

THEOREM 3. Suppose that $1 \le p < \infty$ and $\sigma > 1$, and let B be a Blaschke product whose zeros lie in a Stolz angle. Then there exist $C_1 > 0$, $C_2 > 0$, M > 0 and $\theta_0 \in (0, \pi)$ such that

(4)
$$C_1 \int_0^{2\pi} \varphi_B^{p-1}(\theta) d\theta \ge \int_{\mathbb{D}} |B'(z)|^p dA(z) \ge C_2 \int_0^{\theta_0} \varphi_B^{p-1}(\theta) \left(1 - e^{(-M\theta\varphi_B(\theta))}\right) d\theta.$$

A number of results which will be needed to prove Theorem 3. The pseudo-hyperbolic metric in the unit disc will be denoted by ϱ : $\varrho(z,w) = \left|\frac{z-w}{1-\overline{w}z}\right|$, $z,w \in \mathbb{D}$. The following result, which is due to Marshall and Sarason, is proved in Proposition 4 of [8].

PROPOSITION A. Let K be a closed convex subset of $\overline{\mathbb{D}}$ with $0 \in K$. Let B be a Blaschke product whose zeros $\{a_n\}$ are all contained in K. If $z \in \mathbb{D} \setminus K$ and $\varepsilon = \varrho(z, K)$, then

$$|B'(z)| \ge \frac{2\varepsilon}{1+\varepsilon^2} \frac{|B(z)|}{1-|z|^2} \sum_{n=1}^{\infty} \left(1-\varrho^2(z, a_n)\right)$$

The following lemma can be proved using simple geometric arguments.

LEMMA 1. Given $\sigma > 1$ and $0 < \delta < 1$ there exists $\overline{\sigma} > \sigma$ such that $\rho(z, \Omega_{\sigma}) \ge \delta$ for every $z \in \mathbb{D} \setminus \Omega_{\overline{\sigma}}$.

LEMMA 2. Let B be the Blaschke product whose sequence of zeros is $\{a_n\}_{n=1}^{\infty}$ and let $\delta \in (0,1)$. If $z \in \mathbb{D}$ satisfies that $\varrho(z,a_n) \geq \delta$, for all n, then

(5)
$$|B(z)| \ge \exp\left(-\frac{1}{2\delta^2} \sum_{n=1}^{\infty} \left(1 - \varrho^2(z, a_n)\right)\right).$$

Proof. Take $z \in \mathbb{D}$ such that $\varrho(z, a_n) \geq \delta$ for all $n = 1, 2, \ldots$, then using the elementary inequality $\log x \leq x - 1$, for $x \geq 1$, we deduce that

$$\log \frac{1}{|B(z)|} = \frac{1}{2} \sum_{n=1}^{\infty} \log \frac{1}{\varrho^2(z, a_n)} \le \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{\varrho^2(z, a_n)} - 1 \right) \le \frac{1}{2\delta^2} \sum_{n=1}^{\infty} \left(1 - \varrho^2(z, a_n) \right),$$

which implies (5). \square

We shall use also the two following elementary lemmas.

LEMMA 3. Given $R \in (0,1)$, there exists $C_R \in (0,1)$ such that

(6)
$$C_R[(1-r)+(1-\rho)+|t|] \le |1-\rho re^{it}| \le (1-r)+(1-\rho)+|t|, r, \rho \in [R,1), t \in [-\pi,\pi].$$

Lemma 4. If
$$\sigma > 1$$
 then $\frac{1}{2+\sigma} \leq \frac{|1-\overline{\lambda}z|}{|1-|\lambda|z|} \leq 2+\sigma$, whenever $z \in \mathbb{D}$ and $\lambda \in \Omega_{\sigma}$.

Proof of Theorem 3. Take $p \ge 1$ and assume, without loss of generality, that B is a Blaschke product with $B(0) \ne 0$ whose sequence of zeros $\{a_n\}_{n=1}^{\infty}$ lies in the Stolz angle Ω_{σ} ($\sigma > 1$). Write φ for φ_B .

There exists $R \in (0,1)$ such that $|a_n| \geq R$, for all n. Let C_R be the constant associated to R by Lemma 3. Fix a number $\delta \in (0,1)$. Using Lemma 1, we can take $\overline{\sigma} > \sigma$ such that $\varrho(z,\Omega_{\sigma}) \geq \delta$, for all $z \in \mathbb{D} \setminus \Omega_{\overline{\sigma}}$. Using Proposition A with $K = \overline{\Omega_{\sigma}}$ and bearing in mind that the function $x \mapsto \frac{2x}{1+x^2}$ is increasing in (0,1), we obtain that, for every $z \in \mathbb{D} \setminus \Omega_{\overline{\sigma}}$,

$$|B'(z)| \ge \frac{2\varrho(z,\Omega_{\sigma})}{1+\varrho(z,\Omega_{\sigma})^2} \frac{|B(z)|}{1-|z|^2} \sum_{n=1}^{\infty} \left(1-\varrho^2(z,a_n)\right) \ge \frac{2\delta}{1+\delta^2} |B(z)| \sum_{n=1}^{\infty} \frac{1-|a_n|^2}{|1-\overline{a_n}z|^2}.$$

If $z \in \mathbb{D} \setminus \Omega_{\overline{\sigma}}$, then $\varrho(z, a_n) \geq \delta$ for all n. Lemma 2 and the above inequality yield

$$(7) \quad |B'(z)| \ge \frac{2\delta}{1+\delta^2} \sum_{n=1}^{\infty} \frac{1-|a_n|^2}{|1-\overline{a_n}z|^2} \exp\left(-\frac{1}{2\delta^2} \sum_{n=1}^{\infty} \frac{(1-|z|^2)(1-|a_n|^2)}{|1-\overline{a_n}z|^2}\right), \ z \in \mathbb{D} \setminus \Omega_{\overline{\sigma}}.$$

Using (7), Lemma 4 and Lemma 3, we see that if $z = re^{it} \in \{z \in \mathbb{D} : |z| \ge R\} \setminus \Omega_{\overline{\sigma}}$

$$|B'(z)| \geq \frac{2\delta}{1+\delta^2} \sum_{n=1}^{\infty} \frac{1-|a_n|^2}{|1-\overline{a_n}z|^2} \exp\left(-\frac{1}{2\delta^2} \sum_{n=1}^{\infty} \frac{(1-|z|^2)(1-|a_n|^2)}{|1-\overline{a_n}z|^2}\right)$$

$$\geq \frac{2\delta}{(1+\delta^2)(2+\sigma)^2} \sum_{n=1}^{\infty} \frac{1-|a_n|^2}{|1-|a_n|z|^2} \exp\left(-\frac{(2+\sigma)^2}{2\delta^2} \sum_{n=1}^{\infty} \frac{(1-|z|^2)(1-|a_n|^2)}{|1-|a_n|z|^2}\right)$$

$$\geq \frac{2\delta}{(1+\delta^2)(2+\sigma)^2} \sum_{n=1}^{\infty} \left(\frac{1-|a_n|^2}{[(1-r)+(1-|a_n|)+|t|]^2}\right) \cdot \exp\left(-\frac{(2+\sigma)^2}{2\delta^2} \sum_{n=1}^{\infty} \frac{(1-|z|^2)(1-|a_n|^2)}{C_R^2[(1-r)+(1-|a_n|)+|t|]^2}\right)$$

$$\geq \frac{2\delta}{(1+\delta^2)(2+\sigma)^2} \varphi\left((1-r)+|t|\right) \cdot \exp\left(-\frac{4(2+\sigma)^2}{2\delta^2}(1-r)\varphi\left((1-r)+|t|\right)\right)$$

$$= A\varphi\left((1-r)+|t|\right) \exp\left(-K(1-r)\varphi\left((1-r)+|t|\right)\right),$$

where A and K are two positive constants. Observe that there exists a positive constant β such that

(9)
$$|t| \ge \beta(1-r), \quad \text{for } z = re^{it} \in \{z \in \mathbb{D} : |z| \ge R\} \setminus \Omega_{\overline{\sigma}}.$$

Take $R_0 \ge R$ such that $(\beta + 1)(1 - R_0) \le \pi$. Using (8), making three consecutive changes of variable: $\theta = \theta(t) = 1 - r + t$, u = u(r) = 1 - r, $x = x(u) = u\varphi(\theta)$ and using Fubini's

theorem, we obtain

$$\int_{\mathbb{D}} |B'(z)|^{p} dA(z) \geq \int_{\{z \in \mathbb{D}: |z| \geq R_{0}\} \setminus \Omega_{\overline{\sigma}}} |B'(z)|^{p} dA(z)
\geq 2A^{p} \int_{R_{0}}^{1} \int_{\beta(1-r)}^{\pi} \varphi^{p} ((1-r)+t) \exp(-Kp(1-r)\varphi((1-r)+t)) dt dr
\geq 2A^{p} \int_{0}^{1-R_{0}} \int_{(\beta+1)u}^{(\beta+1)(1-R_{0})} \varphi^{p} (\theta) \exp(-Kpu\varphi(\theta)) d\theta du
= 2A^{p} \int_{0}^{(\beta+1)(1-R_{0})} \int_{0}^{\frac{\theta}{(\beta+1)}} \varphi^{p} (\theta) \exp(-Kpu\varphi(\theta)) du d\theta
= 2A^{p} \int_{0}^{(\beta+1)(1-R_{0})} \varphi^{p-1} (\theta) \int_{0}^{\frac{\theta\varphi(\theta)}{(\beta+1)}} \exp(-Kpx) dx d\theta
= \frac{2A^{p}}{kp} \int_{0}^{(\beta+1)(1-R_{0})} \varphi^{p-1} (\theta) \left[1 - \exp\left(\frac{-kp\theta\varphi(\theta)}{(\beta+1)}\right)\right] d\theta.$$

This proves the second inequality of (4) with $C_2 = \frac{2A^p}{kp}$, $\theta_0 = (\beta + 1)(1 - R_0)$ and $M = kp/(\beta + 1)$.

Now we turn to prove the other inequality. Write $b_n(z) = \frac{|a_n|}{a_n} \frac{a_n - z}{1 - \overline{a}_n z}$ and $B_n(z) = \frac{B(z)}{b_n(z)}$, $n = 1, 2, \ldots$ We have,

(11)
$$|B'(z)| = \left| \sum_{n=1}^{\infty} b'_n(z) \cdot B_n(z) \right| \le \sum_{n=1}^{\infty} \frac{1 - |a_n|^2}{|1 - \overline{a}_n z|^2} |B_n(z)|.$$

The elementary inequality $\log(1-x) \le -x$, 0 < x < 1, yields

(12)
$$\log|b_n(z)| = \frac{1}{2}\log\left(1 - (1 - |b_n(z)|^2)\right) \le -\frac{1}{2}(1 - |b_n(z)|^2), \ z \in \mathbb{D}.$$

Summing up over all $j \neq n$ and using the well known identity $1 - |b_j(z)|^2 = \frac{(1 - |z|^2)(1 - |a_j|^2)}{|1 - \overline{a_j}z|^2}$, we get from (12) that $\log |B_n(z)| \leq -\frac{1}{2} \sum_{j \neq n} \frac{(1 - |z|^2)(1 - |a_j|^2)}{|1 - \overline{a_j}z|^2}$ which, together with (11), Lemma 4 and Lemma 3, implies that, whenever $r \in [R, 1)$ and $t \in [-\pi, \pi]$,

$$|B'(re^{it})| \leq \sum_{n=1}^{\infty} \frac{1-|a_n|^2}{|1-\overline{a}_n re^{it}|^2} \exp\left(-\frac{1}{2} \sum_{j \neq n} \frac{(1-r^2)(1-|a_j|^2)}{|1-\overline{a}_j re^{it}|^2}\right)$$

$$\leq e^{\frac{1}{2}} \sum_{n=1}^{\infty} \frac{1-|a_n|^2}{|1-\overline{a}_n re^{it}|^2} \cdot \exp\left(-\frac{1}{2} \sum_{n=1}^{\infty} \frac{(1-r^2)(1-|a_n|^2)}{|1-\overline{a}_n re^{it}|^2}\right)$$

$$\leq e^{\frac{1}{2}} (2+\sigma)^2 \sum_{n=1}^{\infty} \frac{1-|a_n|^2}{|1-|a_n|re^{it}|^2} \cdot \exp\left(-\frac{1}{2(2+\sigma)^2} \sum_{n=1}^{\infty} \frac{(1-r^2)(1-|a_n|^2)}{|1-|a_n|re^{it}|^2}\right)$$

$$\leq A \sum_{n=1}^{\infty} \frac{1-|a_n|^2}{\left[(1-|a_n|)+(1-r)+|t|\right]^2} \cdot \exp\left(-K \sum_{n=1}^{\infty} \frac{(1-r^2)(1-|a_n|^2)}{\left[(1-|a_n|)+(1-r)+|t|\right]^2}\right)$$

$$\leq A\varphi((1-r)+|t|) \exp\left(-K(1-r)\varphi((1-r)+|t|)\right),$$

where, A and K depend only on σ and R. After three changes of variable: $\theta = \theta(t) = 1 - r + t$, u = u(r) = 1 - r and $x = x(u) = u\varphi(\theta)$, some obvious estimates, and using Fubini's theorem, we obtain

$$\begin{split} &\int_{R \leq |z| < 1} |B'(z)|^p dA(z) \leq 2A \int_R^1 \int_0^\pi \varphi^p \big((1-r) + t \big) \exp[-Kp(1-r)\varphi((1-r) + t)] dt \, dr \\ &\leq 2A \int_R^1 \int_0^{2\pi} \varphi^p(\theta) \exp[-Kp(1-r)\varphi(\theta)] \, d\theta \, dr \leq 2A \int_0^{2\pi} \int_0^1 \varphi^p(\theta) \exp[-Kpu\varphi(\theta)] \, du \, d\theta \\ &\leq 2A \Big(\int_0^{2\pi} \varphi^{p-1}(\theta) \, d\theta \Big) \Big(\int_0^{\varphi(\theta)} \exp(-Kp \, x) \, dx \Big) \leq \frac{2A}{Kp} \int_0^{2\pi} \varphi^{p-1}(\theta) \, d\theta. \end{split}$$

Since $\int_0^{2\pi} |B'(re^{it})|^p dt$ increases with r, this implies the first inequality of (4). \square

COROLLARY 1. Suppose that 1 and B is a Blaschke product whose zeros lie in a Stolz angle and with the property that there exist <math>C > 0 and $\theta_0 \in (0, \pi)$ such that (3) holds. Then the following conditions are equivalent:

(a)
$$B' \in A^p$$
. (b) $\varphi_B \in L^{p-1}(0,\pi)$. (c) $B' \in H^{p-1}$. (d) $f_B \in L^{p-1}(-\pi,\pi)$.

Proof. Theorem 2 shows that $(a) \Leftrightarrow (b)$. The equivalence $(c) \Leftrightarrow (d)$ follows from Lemma 1 and, the implication $(c) \Rightarrow (a)$ follows from Theorem 6.1 of [1].

To prove that $(a) \Rightarrow (c)$, suppose that B is a Blaschke product with $B(0) \neq 0$, $B' \in A^p$ and such that its zeros $\{a_n\}$ lie in Ω_{σ} for a certain $\sigma > 1$. Write $a_n = |a_n|e^{i\theta_n}$ with $|\theta_n| \leq \pi$. Since $\{a_n\} \subset \Omega_{\sigma}$, there exists a positive constant λ such that $|\theta_n| \leq \lambda(1 - |a_n|)$, $n = 1, 2, \ldots$ We have $[(1 - |a_n|) + |\theta|]^2 \leq 2[(1 - |a_n|)^2 + \theta^2]$, and $\theta^2 \leq 2((\theta - \theta_n)^2 + \theta_n^2) \leq 2((\theta - \theta_n)^2 + \lambda^2(1 - |a_n|)^2)$ whenever $n \geq 1$ and $\theta \in [-\pi, \pi]$. Then it follows that there exists a constant C > 0 such that

(13)
$$[(1-|a_n|)+|\theta|]^2 \le C\left((1-|a_n|)^2+(\theta-\theta_n)^2\right), \quad n \ge 1, \quad \theta \in [-\pi,\pi].$$

Since (a) \Leftrightarrow (b), $\varphi_B \in L^{p-1}(0,1)$. Then (13) gives $f_B \in L^{p-1}(-\pi,\pi)$ and $B' \in H^{p-1}$. \square

Condition (3) is not a simple one. Next we find a simple condition which implies it.

COROLLARY 2. If the zeros $\{a_n\}$ of Blaschke product B lie in a Stolz angle and there exist $\lambda > 0$ and $n_0 \ge 1$ such that $1 - |a_{n+1}| \ge \lambda(1 - |a_n|)$, if $n \ge n_0$, then there exist C > 0 and $\theta_0 \in (0, \pi)$ such that (3) holds. Hence, $B' \in A^p \Leftrightarrow \varphi_B \in L^{p-1}(0, \pi)$ (p > 1).

Proof. Given $\theta \in (0, 1 - |a_{n_0}|)$ take $n \ge n_0$ such that $1 - |a_{n+1}| < \theta \le 1 - |a_n|$. Then

$$\theta\varphi_B(\theta) \ge \frac{\theta(1-|a_n|)}{(\theta + ((1-|a_n|))^2} \ge \frac{(1-|a_{n+1}|)(1-|a_n|)}{4(1-|a_n|)^2} = \frac{(1-|a_{n+1}|)}{4(1-|a_n|)} \ge \frac{\lambda}{4}.$$

Hence, we have proved (3) with $C = \lambda/4$ and $\theta_0 = 1 - |a_{n_0}|$. \square

References

- [1] P. Ahern, The mean modulus of the derivative of an inner function, *Indiana Univ. Math. J.* **28** (1979), no. 2, 311–347.
- [2] P. Ahern and D. Clark, On inner functions with H^p derivative, Michigan Math. J. 21 (1974), 115–127.
- P.L. Duren, Theory of H^p Spaces, Academic Press 1970. Reprint: Dover 2000.
- [4] P.L. Duren and A.P. Schuster, *Bergman Spaces*, Math. Surveys and Monog., Vol. 100, Amer. Math. Soc. 2004
- [5] D. Girela, J. A. Peláez and D. Vukotić, Integrability of the derivative of a Blaschke product, preprint.
- [6] H. Hedenmalm, B. Korenblum, and K. Zhu, Theory of Bergman Spaces, Grad. Texts in Math. 199, Springer 2000.
- [7] H.O. Kim, Derivatives of Blaschke products, Pacific J. Math. 114 (1984), 175–190.
- [8] K.I. Li, Interpolating Blaschke products and the left spectrum of multiplication operators on the Bergman space, *Hokkaido* **21**, (1992), 295–304.
- [9] S.A. Vinogradov, Multiplication and division in the space of analytic functions with area integrable derivative, and in some related spaces (Russian), Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 222 (1995), Issled. po Linein. Oper. i Teor. Funktsii 23, 45-77, 308; translation in J. Math. Sci. (New York) 87, no. 5 (1997), 3806-3827.

Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain

 $E\text{-}mail\ address: \verb|girelaQuma.es|| pelaez@anamat.cie.uma.es||$