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On the Membrane Approximation for Thin
Elastic Shells in the Hyperbolic Case

E. SANCHEZ-PALENCIA

ABSTRACT. We consider the variational formulation of the problem of elastic
shells in the membrane approximation, when the medium surface is hyperbolic. It
appears that the corresponding bilinear form behaves as some kind of two dimen-
sional elasticity without shear rigidity. This amounts to saying that the membrane
behaves rather as a net made of elastic strings disposed along the asymptotic
curves of the surface than as an elastic two-dimensional medium. The mathematical
and physical reasons of this behavior are explained and consequences are thrown
concerning the admissible applied forces and the behavier of the solutions. The
normal component of the displacement is somewhat non smooth. Qur approach
gives a description of the problem in somewhat general situations concerning the
boundary conditions, whereas the classical approach in terms of a hyperbolic sys-
tem of total order 4 with 2 double characteristics (the asymptotic lines) only works
in the case when the boundary conditions lead to either Cauchy or Goursat
problems.

1. INTRODUCTION

We consider here elastic thin shells in the membrane approximation,
when the rigidity with respect to bendings is neglected. Classical refer-
ences are Goldenveizer [5] and Niordson [§]. This paper is in some sense
a continuation of Sdnchez-Palencia [12], as well as [9], [10] and [11]
where the asympotitics of the shell problem when the thickness tend to zero
is considered. It appears that two very different asymptotic processes describe
the limit behavior, according to the fact that the middle surface s (along
with the corresponding kinematic boundary conditions) admits or no pure
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bendings, i.e. displacements keeping invariant the intrinsic metrics of s
(also so-called inextensicnal displacements). As the rigidity of a thin shell
is very much larger to extension (membrane sollicitations) than to
bendings, the limit behavior is described by pure bendings provided they
are allowed by the surface. Oppositely, if such pure bendings are not allowed,
the limit behavior is described by the membrane approximation (along with
boundary layers in certain cases). The surfaces which admit pure bendings
are called «non inhibited» (or «non rigid» in geometric terminology, but
we prefer «non inhibited», as rigidity is a different concept in mechanics).
We shall deal here with «inhibited» (or «rigid») surfaces, which lead as
we said above, to the membrane approximation.

Let s be a (portion of) surface with boundary I” in the space B’ with
coordinates x=(x,, x,, x;). We shall consider it described by two par-
ameters y=(y',y’) running in the domain ( of the y plane, so that

(1.1) x=¢); ¢ yEQ-»xER’

and of course the boundary d{) is mapped onto I'. Here and in the sequel
the function ¢ will be considered sufficiently smooth and uniformly hyper-
bolic, i.e. the principal curvatures are of opposite sign and bounded away
from zero. At each point of 5 we consider a local frame formed by the
tangent vectors e, and the unit normal e, to s, where

(1.2) e.=¢, a=1,2

and , denotes differentiation with respect to y“. As usually, we shall use
greek and latin indices which run in (1, 2) and (1, 2, 3) respectively.

Let w=(u,, u,, u;) be the displacement (small, in the linear frame-
work, which will be the only considered here) vector of the points of s
when the field of forces f acts upon it. It appears that the simplest formu-
lation is obtained when u and f are described in covariant and contra-
variant components respectively

(1.3) U=(U, Uy, Us)

(1.4) f=¢" 1%

but other descriptions are possible, and tensor notation will be used. Let
b,z and I7; be the second fundamental form and the Christoffel symbols of
the surface and let |, denote covariant differentiation. Then, the strain ten-
sor produced by u, i.e. the variation {in the linearized sense) of the first
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fundamental form of s when it is deformed and ¢ becomes ¢+u is given
by

1
(1.5) }’aﬂ(“)z"z—(uu|p+uﬁ|a)‘bap“3

It will prove useful to define

1
(1.6) Cap(B) = — (i + )
as well as

1
(1.7) Cap(W) == (o + tg.0)

(which is not a tensor!), so that:

(1.8) 'ya‘ﬂ=éaﬁ—baﬂu;;

(19) e_q:;:eaﬁ—riﬁul

We note that e¢,; are the classical expressions of the strain in plane
Cartesian coordinates; ¢ involves the Christoffel symbols, accounting for
the curvilinear coordinates, and ¥ contains also the normal component u,
of the displacement, but not its derivatives. The physical implications of
this fact will be discussed later (sect. 5). The study of this paper relies
mainly on the elimination of the component u, in order to deal with an
operator involving derivatives of the same order for the (remaining) un-
knowns. The displacement vector will be decomposed into the «reduced

displacement» @ and u;:
(1.10) u=(u,, u,, u3)=0@, u;); a={(u,, u,)

We note that ¥ depend on u, but ¢ and & depend only on .

Let a®™ be the elasticity coefficients of the membrane, written in con-
travariant components associated with the frame e,. They are given func-

tions on () under very general hypotheses, including anisotropic elasticity.
They satisfy the symmetry and positivity conditions all over .

(1.11) q®i = gbein = ghuad

(1.12) ae, e 5= ce e, ¥ symmetric e
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where ¢ denote some positive constant.
Let 7% denote the contravariant components of the stress tensor:
(1.13) T¥ =gy, (0).

Then the equations for the membrane approximation are:

— ofl =
(1.14) {_ ;;'ﬂ T"ﬂ=ﬁ

the two first equations (1.14) for §=1,2 are analogous to the equations of
two-dimensional elasticity, but they involve also u,. The third one is the
normal component of the equilibrium equation.

In a functional space V which will be specified later, the variational

formulation of (1.13), (1.14) is:

(1.15) {Fmd u € V such that

a(u, vy=<f, v> veVv
where a is the bilinear and symmetric form
(1.16) a(n, v)= [a“ﬁ““y@(u)yaﬂ(v)ds

(1.17) <f,v>=Jf"v,.ds

In order to define the space V, we shall recall some features of [12].
The membrane problem is the asymptotic form of another problem with ri-
gidity with respect to bendings, which involve fourth order derivatives of
u,. This complete problem is worked out in a space V of kinematically ad-
missible functions

(1.18) V={u=(u,, u,, u;)EH"(s) x H'(s) X Hs), bound. cond.}

where «bound. cond.» means that u must satisfy the kinematic boundary
conditions of the «complete problem» (see Bemadou and Ciarlet [1] and
Ciarlet and Miara [3] for these questions. The shell (or surface) is sald to
be inhibited if u€V and y,,(u)=0 implies w=0. In this case, a(v,v) "2 g

a norm in V, and V is the completion of V for this norm. This is the
natural space for the study of the membrane approximation, which is con-
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sidered in (1.15). As for the right side of (1.15), it is given by (1.17) or
more generally it denotes the duality between the dual of V (denoted by
V') and V,

It is clear that some of the boundary conditions of (1.18) are lost by

passing to V. This is the classical situation in singular perturbation theory
{(as the fourth order derivatives of u, in the complete problem disappear in
the membrane approximation). These lost boundary conditions are of
course associated with boundary layers in the asymptotic process. The spe-

cific boundary conditions for V depend on the physical problem. We shall
give in section 3 some examples with specific description of the boundary
conditions. The sake of this paper is to investigate the structure of the
problem (1.15) in the case of a hyperbolic surface. A formal reduction to
a problem for @1 ={(u,, u,) will be done in the next section. The study of the
structure of the solutions and of the admissible forces f for the membrane
problem is then done in sections 4 and 6. It exhibites a clear weakness of
the membrane in the direction of the asymptotic lines of the surface.

2, ELIMINATION OF u,. THE REDUCED PROBLEM

As the surface is uniformly hyperbolic, the asymptotic lines are well
defined at every point and we may choose the parameters y',y* in such a
way that the asymptotic lines are the «coordinate lines» y'=const.,
y*=const. In this case, the second fundamental form is such that

(2.1) b, =b,,=0, b,+0

where b,; 1s a smooth function bounded away from zero. Then only the
component y,,(u) (the «shear» component) contains u,:

]"u(“)=é||(ﬁ)=ul|l
(2.2) V(W) =&,(0)=u,,
Vlz(u)=é|z(ﬁ)"‘b|z“3=?(uuz"’f' Uy ) = bty
then, taking successively the test function in (1.15) v of the forms
(2.3) v=(0,0,v;)
(24) V=(v,,v2,0)=€'

we have
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2.5 J2a'2”“yk(u)(—buv3)ds=Jf3v3ds

(2.6) Jaﬂﬂ*f‘m(u)éaﬂ(v)dp J fov.ds

As we may take in (2.5) for instance v,€ £/ (s) we have
2.7 —2b,ay, (W=F
which by virtue of (2.2) becomes
(2.8) —2b,,a' e, (1) +4(b,)a u,=f

Now, as b, is different from zero, using the hypothesis of positivity
(1.12), we see that the coefficient of u, in (2.8) never vanishes, and (2.8)
allows us to write u, in terms of ii:

(2.9 u,= [4(b,))*a"*"*] ' [2b ,a' P e* (0) + £}

which we replace into (2.6), which become

(2.10) 4a(h, Vy=Pd@)
where
(2.1D) ach, v)= Jld"'a“”ém(ﬁ)éaﬂ(?)ds
GBI g1 2w
(2.12) 4ot = gt — Pt
aa,ﬂlz 3
(2 13) @(i’) = IS [f“va + Weaﬁ(\’) dS

Then, problem (1.15) reduces to problem (2.10) in an appropriate
space, u; being the calculated expression (2.9). Problem (2.10) will be
called the reduced problem. We shall formulate it more precisely in
Theorem 6.4. It recalls an elasticity two-dimensional problem; but in fact
it is very diferent from two dimensional elasticity. Indead, it is apparent
from (2.12) that 4'*'*=0 and consequently the reduced coefficients will
not satisfy an inequality analogous to (1.12). We shall see that it amounts
to some kind of two-dimensional elasticity without rigidity with respect to
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shear (i.e. to €, in the special coordinates where the asymptotic lines are
the coordinate curves).

The properties of the reduced coefficients (at a fixed point of 5) are
given by:

Theorem 2.1. The reduced coefficients G** satisfy the symmetries:
(2.14) GoPM = gt = juh

There exist ¢,>0 and ¢,>0 such that
(2.15) ¢ (& +é=s “ﬁ"‘“elﬂeaﬂ\cz(e“ + &) ¥ Symmetric €,5.

Clearly, the form invelved in (2.15) is a bilinear form on the space of
the second order symmetric tensors, which is isomorphic to R’ (compo-
nents é,,,€,;,€,,=8&,,).

Proof of theorem 2.1. The symmetries are evident from (1.11) and
(2.12). Let us study the bilinear form appearing in (2.15). Taking eu—em,
other &,=0, its value is 4 a'*'%(¢,,)*=0 by (2.12). We are now proving
that this is the only ¢ where the form vanishes. Let é,; be symmetric and
such that
(2.16) 4% é,,é,,=0.

Let us define the number

(2.17) uy=a'**¢g, (2a*"%b,)"’

with the considered €,,. As the only b, different from zero is b,,, we
have

(2.18) a' (&, — b u)=0.
We then consider the numbers

and (2.18) becomes
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(2.20) a®y,,=0.

Multiplying by —b,,u, and as the only b, different from zero is b,
we have

—2a"**y,, bu,=0
and
(2.21) —a®y, bau,=0.
On the other hand, (2.16) on account of (2.12) writes:

1296 =
2a7é,

(2.22) %

where again was used the fact that the only b,, different from zero is b,,.
But (2.22) amounts to

(2.23) a*y, ,é.,,=0.

Adding (2.21) and (2.23) we have

(2.24) a™ Y, Ve =0.

which, on account of the positivity (1.12) of the coefficients, give

O=y.=é5,
(2.259) O=vy,=é,
O=vy,.=¢é,—b,u

and consequently the only €,, different from zero is é,,.
Let us prove now that
(2.26) 4% ¢,,6,,20 v symmetric €,

We proceed as before from (2.16), which is not necessarily equal to zero.
Using (2.17) we get

2.27) 48, ,8,5=a"™ V1,V us

which is 20 by virtue of (1.12), and (2.26) is proven.
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Now, the form 4*%*é, ¢, is symmetric and then diagonable. Their
cigenvalues are 0. As it only vanishes on the subspace é,,=é,,=0,
€,¥0, zero is a simple eigenvalue. The two other eigenvalues are greater
than zero, and the corresponding eigenvectors are orthogonal to (0,0,é,,).
They form a basis of the subspace (é,,,¢€,,,0) where the form is positive
definite, and we have (2.15). O

3. MODEL PROBLEMS

The developments of the following sections depend strongly on the
geometric disposition of the characterisitcs (asymptotic curves of s) and the
corresponding boundary conditions. A first condition is that s is a «in-
hibited surface» which amounts to saying that the rigidity system

(3.1) Vs (@) =0
with the boundary conditions ensures uniqueness (u#=0). Taking as in sec-

tion 2 as coordinate lines the asymptotic curves, we have (2.1), and (3.1)
is equivalent to

(3.2) =0, u,=0

1
(3.3) ?(“l|2+“2|1)_b12u3:0

and in fact inhibition (or uniqueness) only concerns the hyperbolic system
of two equations (3.2); u,=u,=0 implies u,=0 because of (2.1). Then, in
order to have the uniqueness, it is sufficient to have either

3.4 u=u,=0

on a non-characteristic curve (Cauchy problem) or

(3.3 #,=0 on y*=const.

{ulzo on y'=const.

(Goursat problem) in such a way that {) is contained in the determinacy
domain of the curves bearing the boundary conditions. We now specify
some «model examples» which will be considered in the sequel.

In the following figures, the curvilinear coordinates are of course the
special ones, and y'=const., y*=const. are the two families of characteris-
tics.
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Example 3.1. The domain {} has a smooth boundary 0{} which is non-
characteristic unless at some isolated points (fig. 3.1). The surface is fixed
along the whole boundary, (i.e. (3.4) is prescribed there).

Figure 3.1

Example 3.2. Analogous to the previous one, but the part I, of the
boundary is free (there are no kinematic boundary condition on [ and
(3.4) is prescribed on [). Of course the characteristics issued from any
point of I'; cannot go out of  before cutting I, (fig. 3.2).

2
Y
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Example 3.3. Analogous to the previous one, but I, is formed by two
characteristics. (3.5) is prescribed on them (fig. 3.3).

Figure 3.3

Example 3.4. A portion of a hyperbolic hyperboloid as shown in
fig. 3.4.a. The corresponding () is shown in fig. 3.4.b where the lines AB
and A’'B’ are identified. The surface is fixed by I, and I, (boundary con-
ditions (3.4) on both).

2 A
Y
31
Ir\
f 1
/ 7
/ /
7 R !
8 /
/
To /
B
l‘o 0 yl

Figure 3.4.a. Figure 3.4.b.
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Example 3.5. The same as the previous one, but fixed on I, and free
on I', (i.e. (3.4) on [, and no boundary conditions on I'}).

4. THE REDUCED BILINEAR FORM AND THE ASSOCIATED
ENERGY SPACE

Let us consider the reduced bilinear form 4 defined by (2.11), (2.12)
in the case of the model examples of section 3. We are considering the
corresponding energy space V (the classical space associated with the re-
duced problem (2.10)). This space will be the completion with respect to
the norm defined by the form 4 "2 of the space

4.1 V={vEH'XH", boundary conditions}

where «boundary conditions» means that ¥ must satisfy the kinematic
boundary conditions specified in the examples of sect. 3. This definition of
V is clearly issued from (1.18), taking only the tangential components.

The completion process follows from the singular perturbation associated
with neglecting the rigidity with respect to bendings.

Using the general hypotheses of uniformity of the geometric properties
of 5 mentionned in section 1, we deduce of theorem 2.1:

Theorem 4.1. The form d4(0, V) is symmetric and satisfies the esti-
mates:

4.2) J(e“ &,) ds <4V, V)< J((e,,+e'§2) ds

where &, and é,, are the expression corresponding to (1.9}, (1.7) for the
considered ¥, and c,,c, are positive constants independent of V.

Now ket us consider the completion process from V to V for the norm
4 ”. Obviously if

4.3) Y in V

then we have from (4.2):
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alu’; _I-?lu{:=éill'_)éll=alul —TITu,
(4.4)
0,y — Il = &,— é,=0,u,— Iu,

with convergence in L. But (4.4) is a hyperbolic system for &’ (or @ in
the limit), which also satisfy either Cauchy or Goursat boundary conditions
in all examples of section 3. According to general features of hyperbolic
systems (cf. for instance Courant Hilbert [4]) this implies L’ convergence.
Moreover, as the system is weakly coupled, L’ convergence of i and of
the right hand sides implies also L’ convergence of d,u, and d,u,. Then,
we have proved

Lemma 4.2. In the case of the model examples of section 3, we
have:

(4.5) VC{veELXQ)? av.ELYD), dv,ELXN)}

The classical properties of traces in L* (see for instance Smirnov [13],
sect. 113) then hold for u, (resp. u,) on curves which are not tangent to
the characteristics y*=const. (resp. y'=const.). Of course, traces of u,
(resp. u,) tangent to the corresponding characteristics do not make sense,
as d,u, and d,u, do not belong to L? then in the completion process the
kinematic boundary conditions which make sense according to the previous
considerations, are stable and are satisfied by any element of V. The other
boundary conditions are clearly lost by completion; indeed, the space V is
essentially analogous, concerning u,, to

(4.6) L2(0,a; H:(0,5))

and traces on y?=const. desappear by completion {see for instance Bour-
baki (2], p. 133, Proposition 10). Finally we have:

Theorem 4.3. Under the general uniformity hypotheses of section I,
in the model examples of section 3, we have:

4.7 vc{vew?? ovEL’, &,v,EL? bound. cond.}

where y'.y* are the special curvilinear coordinates associated with the
asymptotic curves of s. Moreover, the boundary conditions in (4.7) are, in
each model example, those for u, and u, which are along curves which are
transversal to y*=const. and y'=const. respectively.
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Remark 4.4. In most of the model examples we specified boundary
conditions which are stable by completion. For instance, in example 3.3
we specified (3.5) which fulfils the transversality conditions. Of course we
may consider slight modification of the examples, for instance, prescribing

u,=u,=0 on I, of example 3.3, at the level of the non-complete space V
(4.1), but, in the completion process, passing to V we only keep (3.5). On
the other hand, the trace properties are not uniform in cases as example
3.1, as the trace of u, and u, does not make sense at points with horizon-
tal and vertical tangent, respectively. These are classical features of spaces
of functions with certain (not all) partial derivatives belonging to L? and
we will not insist on them. D

Remark 4.5. Obviously Lemma 4.2 implies that V is contained in
L?. This only concerns the tangential components u,,u,, not us, and this

do not implies that, in the framework of Sdnchez-Palencia [12], ‘l—/CH,
which is generally false in the case considered here. [

5. PHYSICAL CONSIDERATIONS

We saw in sections 2 and 4 that the reduced problem behaves as some

kind of two-dimensional elasticity without shear rigidity, as é,, lacks in
(2.15).
Of course we are speaking of shear in curvilinear coordinates, when the
coordinate lines coincide with the asymptotic curves of the surface. This
behavior is analogous to that of a net with filaments disposed along the
asymptotic curves. This peculiar behavior is due of course to the u, com-
ponent of the displacement, which allows the surface to go out of itself in
the deformation process. We are showing with a heuristic reasoning that a
shear deformation, accompanied by a convenient u,#0 may be performed
with elastic stresses T*=0.
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Figure 5.1.a. Figure 5.1.b.

Let us consider, to fix ideas, a point where the asymptotic curves are
orthogonal. It is known that a shear in the directions of the axes y',y” is
equivalent to an allongement and a compression in the axes z',z* in the di-
rection of the bissectings, which are here the lines of curvature
(fig. 5.1.a). A sketch of the surface in a neighbourhood of 0 with the
corresponding normals is given in fig. 5.1.b. It is then aparent that, giving
a positive u; and vanishing u,,u,, we will have an allongation and a
shortening in the directions of z* and z' respectively. Then giving appro-
priate €,, and é,, (positive and negative) we will have a vanishing defor-
mation of the element of surface, and consequently vanishing stresses T%
of the membrane.

We may also point out that the proof of theorem 2.1 involves some of
these facts, and in (2.25) is exhibited a state of vanishing strain y (and
them vanishing stress 7%) with non-vanishing €,; because of the term u;.

6. THE ADMISSIBLE FORCES AND THE NON-SMOOTHNESS
OF THE SOLUTION
In section 4 we considered the structure of the form 4 in (2.10). We
are now considering the linear form @ on the right hand side (2.10) and
the corresponding forces f in order to define a continuous form on V.
Using (2.2), the functional (2.13) becomes
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(6.1) D) =D, + D,
with
aydlZfB
(6.2) QELL“—W%IWS
a1
(6.3) &b,= L%na%(aﬂvﬁ%- dgv,)ds

Let us examine successively these two terms, which must define con-
tinuous functionals on V.

Let us consider @,. The brackets in (6.2) must merely define an el-
ement of the dual V' of V. Of course, we may take the functions in the
brackets of class L? but we also may take them in larger spaces. Roughly
speaking according to (4.6), we may take the bracket' in a space of func-
tions of class L? of the variable y* with values in the dual of H' of the
variable y', (on account of course of the kinetic boundary conditions pre-
scribed on the last). To be a little more precise, as the sections
by y*=const. are in general intervals of the variable y' which depend
on y* (see the examples), the space of the v, may be described in terms of
measurable sums of spaces, as in Lions [7], p. 62

€ Jlf’ﬂl',fl(yz)a’y2

and the bracket' may be taken in its dual:

(64) JH;I(yZ)fdyZ
(on account of the kinematic boundary conditions, of course).

Taking f*=0, f' in the space (6.4) (and f* in the corresponding anal-
0gous space), and applying the Lax-Milgram theorem to (2.10) we see that
the corresponding operators defined are isomorphisms between V and its
dual; consequently the corresponding solutions fill the space V.

Let us consider now @,. Let us define
aaﬁu

4b12a1212 N

(6.5) fi=
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As this function is multiplied by the derivatives of ¥, which does not
belong to L* in general, it must be a rather smooth function in order to de-
fine a continuous functional. For the time being, we shall take it of class

C” on .(_!, and we shall consider later other less smooth functions passing

to the limit, In the same way, ¥ in (6.3} will be considered smooth, before
passing to the limit in V. Integrating by parts (on {), not on s), we have

s . ds
D,= sf V), ds= ﬂfd_yvl.zdy=

ds ds
- 3 4 — 322
mJanf dy vivydl L (f dy )Jv,dy

and on analogous expression for v, ,. Here v, are the components of the
unit outer normal to 2 in its plane. Let us now pass to the limit for any
vVE V, with a smooth f°. The integrals on  give a bounded functional on
V. The same is true for the line integrals on the portions of 42 where the
traces of v, make sense. Oppositely the integrals on the portions of the
boundary where the trace of v, does not make sense (boundaries with
y*=const.) define an unbounded functional on V. As v, does not vanish
there, we must have f'3 equal to zero on such boundaries. Under this con-

dition, we may pass to the limit in f°, and we have

(6.6)

Lemma 6.1. The function fP€H'({)) with vanishing traces on the

boundaries along the asymptotic curves define a continuous functional &,
in (6.3).

Remark 6.2. We shall not consider the largest class of functions f°
such that @, be a bounded functional on V. Nevertheless, it is easily seen
that a function f* which is piecewise smooth and that have a discontinuity
along a smooth curve (either characteristic or transversal to the characteris-
tics} give an unbounded functional. O

Finally we have;

Theorem 6.3. If f' is chosen in the space (6.4), f* in the analogous
space with permutation of the variables, and f* according to Lemma 6.1,
then @ in (6.1) is a bounded functional on the space V. This is the case
in particular, if f*€L*(Q) (a=1,2) and fE€H'(Q)) and its trace vanish
on the parts of the boundary which coincide with asymptotic curves.
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We have now at our disposal elements for the solution of problem
(2.10) in the classical framework of the Lax-Milgram theorem.

Theorem 6.4. Let f be chosen according to theorem 6.3. Then the
problem A
Find 9 &V such that

a(d, ¥) = d(v) viEV

has a unigue solution. Moreover, the set of solutions @ fills the space V
when [ fill the space of theorem 6.3; this is even true with f,=0.

It is clear that solution is understood in theorem 6.4 in the sense of the
reduced vector @t =(u',u*)EV. The normal component u, is then defined
by (2.9). We are now showing that i, is in general a non-smooth function,
and even a distribution.

As an example, let us consider f such that u, is a piecewise smooth
function discontinuous along y*=0, the jump being @(»'), smooth function
of y'. Moreover, let u,=0. This is of course possible, for instance with
appropriate f',f* and f=0. Then, (2.9) gives

atZoﬂ ; o q?(yl)
1212 eﬂﬁ(u)_ 4b,,

6.7 =
©.7) s 2b,a

o(y%) + terms in L))

7.. COMPARISON WITH THE HYPERBOLIC SYSTEM AND
CONCLUDING REMARKS

We are comparing our method with the classical treatment of system
(1.13) (1.14), which may be reduced to a hyperbolic system of 4 equations
of first order with double characteristics (the asymptotic curves of s).

Let us take again the parameters y',»* associated with the asymptotic
curves. Then, the last equation (1.14) gives

(7.1) Tu=_(2b|z)_lfg

and T'? is known. The other two equations (1.14) then become:

{7.2)

T =L,(T",T?y)
T2=L,(T",T",y)
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where L,,L, are functions of their arguments linear in 7'',7%2. This is
clearly a hyperbolic system of first order for 7'',7%, with characteristics
the asymptotic curves. Moreover, inverting the matrix a*"°, which is poss-
ible because of (1.12), (1.13) becomes

(7.3) Vg = bogs, T

and in particular y,, and y,, give, with (2.2):
u =L (u u Tll Tzzy)

7.4 1,1 3Ny g, > s

( ) {u2,2=L4(u1,uz,T“,Tu,y)

where L, and L, are known functions (note that 7% is known) linear in
w,u,, T, T, At last, u, may be determined by (2.9). Finally, the com-
plete problem is reduced to the system (7.2), (7.4) with the four unknowns
uy, 4y, T, 7%, As a whole it is a hyperbolic system with (double) charac-
teristics the asymptotic curves. The system is diagonable and in fact it is
writen in diagonal form. If the boundary conditions for T*', 7%, allow us
to solve the partial system (7.2), then (7.4) become a hyperbolic system
for u,,u,. Then, according to the boundary conditions, (7.2}, (7.4) will be
considered either as a system or as two systems to be solved successively.

Let us examine in this contex the model examples of section 3.

Example 3.1. All the boundary conditions concern u. It is not poss-
ible to solve (7.2) (7.4) in the context of classical theory of hyperbolic
systems.

Example 3.2, T, is free, and the boundary conditions are
(1.5) Tn,=0.

As T'? is known and the boundary is not tangent to the characteristics,
n, and n, do not vanish on I', and T'',T?* are known there by (7.5). Thus,
the partial system (7.2) may be solved, as we have a Cauchy problem for
it. Then (7.4) is a hyperbolic system for u,,u,, which vanish on I". This
gives again a Cauchy problem, and 1t may be solved uniquely.

Example 3.3. Analogous to the previous one, but in the second prob-
lem the data are given on characteristic curves (Goursat instead of Cauchy
problem}.
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Example 3.4. As Example 3.1; impossible to solve in the hyperbolic
framework.

Example 3.5. Analogous to Example 3.3.

We then see that the variational method may be applied in some cases
where the classical does not work. Nevertheless, we must emphasize that
the structure of the space V is far from that of a classical elliptic boundary
value problem. The structure of the solutions and in particular the behavior
of u, shown at the end of section 6 should be compared with the structure
of the «pseudo-bendings» in statics of hyperbolic shells (cf. [6] p. 248).
Indeed it is known [10,6] that for hyperbolic shells, zero belongs to the
essential spectrum of the operator of the membrane approximation; the
pseudobending are in fact Weyl's sequences showing that the inverse op-
erator is not bounded.

Generally speaking the lack of rigidity of the hyperbolic shell in the
membrane approximation with respect to shear implies that all the corre-
sponding rigidity must be furnished by flexion terms. This fact has
probably consequences with respect to stability and buckling.

References

[11 M. BERNADOU and M. CIARLET: Sur I'ellipticité du modéle linéaire de co-
ques de W. T'. Koiter in Computing Methods in Sciences and Engineering,
R. Glowinski and J. L. Lions eds., p. 99-136, Lecture Notes in Econom.
and Math. Systems (1976), 134, Springer.

[2]1 N. BourBakl: Eléments de Mathématique, Intégration X/iI, Hermann, Paris
(1965).

[3]1 P. G. CIARLET ¢t B. Miara: Une démonstration simple de I ellipticité des
modéles de coques de W. T. Koiter et P. M. Nagdhi, Compt. Rend. Acad.
Sc. Paris, série I (1991}, p. 411-415,

[4} R. CouranT and D. HILBERT: Methods of mathematical physics, vol. 2, In-
terscience, New York (1962).

[51 A. L. GoLDENVEIZER: Theory of elastic thin shells, Pergamon, New York
(1961).

[6] A. L. GOLDENVEIZER, V. B. Linsknl and P. E. TovsTIK: Free vibrations of
thin elastic shells, (in russian), Nauka, Moscow (1979).

[71 1. L. Lions: Eqguations différentielles opérationnelles et problémes aux li-
mites, Springer, Berlin, (1961).



(8]
{9]

{10]

[11]

[12]

[13]

On the Membrane Approximation for Thin Elastic Shells in the Hyperbolic Case 331

F. I. NIORDSON: Shell theory, North-Holland, Amsterdam (1985).

E. SANCHEZ-PALENCIA: Statique et dynamique des coques minces, I: Cas de
flexion pure non inhibée. Compt. Rend. Acad. Sc. Paris, série 1, 309
(1989}, p. 411-417.

E. SANCHEZ-PALENCIA: Statique et dynamique des coques minces, II: Cas
de flexion pure inhibée. Approximation membranaire, Compt. Rend. Acad.
Sc. Paris, série I, 309 (1989), p. 531-537.

E. SANCHEZ-PALENCIA: Passage d la limite de I élasticité tridimensionnelle
a la théorie asympiotique des coques minces, Compt. Rend. Acad. Sc. Pa-
ris, série II, 311 (1990), p. 909-916.

E. SANCHEZ-PALENCIA: Asymptotic and spectral properties of a class of sin-
gular-stiff problems, Jour. Math. Pures Appl., 71 (1992), p. 379-406.

V. I. SMIRNOV: Course of higher mathematics, vol. 5, Pergamon, Oxford
(1964).

This work is part of the project «Junctions in Elastic Multi-structures» of the
program SCIENCE of the Commission of the European Communities (contract
n.° SC1*0473-C(EDB)).

Laboratoire de Modélisation en Mécanique

Université Pierre et Marie Curie

4 Place Jussieu

75252, Paris. Cedex 05 Recibido: 17 de noviembre de 1992

France

Revisado: 23 de marzo de 1993



