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On the Meta Distribution of Coverage Probability in
Uplink Cellular Networks

Hesham ElSawy, Senior Member, IEEE and Mohamed-Slim Alouini, Fellow, IEEE

Abstract—This letter studies the meta distribution of coverage
probability (CP), within a stochastic geometry framework, for
cellular uplink transmission with fractional path-loss inversion
power control. Using the widely accepted Poisson point process
(PPP) for modeling the spatial locations of base stations (BSs),
we obtain the percentiles of users that achieve a target uplink
CP over an arbitrary, but fixed, realization of the PPP. To this
end, the effect of the users activity factor (p) and the path-loss
compensation factor (ε) on the uplink performance are analyzed.
The results show that decreasing p and/or increasing ε reduce the
CP variation around the spatially averaged value.

Index Terms—Stochastic geometry, meta distribution, uplink
cellular networks, fractional channel inversion power control.

I. INTRODUCTION

Mathematical models based on Stochastic geometry have
been widely utilized to analyze, understand, and obtain de-
sign insights for cellular networks [1]. However, most of the
stochastic geometry models are confined to spatial averages of
performance metrics (e.g., coverage probability [CP]) [1]. Such
spatial averages fuse the fast fading and slow spatial topol-
ogy variations despite their different time scales. Furthermore,
spatial averages do not reveal information about percentiles of
users that achieve certain performance measures, which is a
fundamental design objective for cellular operators to identity
the network quality of service (QoS).

The distribution of the signal-to-interference-ratio (SIR), or
equivalently the CP, for a fixed, yet arbitrary, realization of
the network provides a fairly general and insightful charac-
terization for cellular networks. Such distribution is known
in the literature as the meta distribution [2], which is used
to reveal interesting insights about the network performance
such as i) the discrepancies among the users performance;
and ii) the percentage of users experiencing a certain QoS.1

Since an exact expression for the meta distribution is generally
hard to obtain, statistical inequalities (e.g., Markov, Chebyshev,
and Chernoff) are usually sought [2], [5]. Such inequalities
require the moments of the CP, which are easier to obtain.
The moments of the CP can also be used to express the meta
distribution in an integral form or for approximating the meta
distribution via moment matching [2].
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1The meta distribution is different form the rate coverage that is a function
of the spatially averaged CP [3], [4].

This letter derives the meta distribution of the CP in uplink
cellular networks. According to the 3GPP standard [6], we
consider fractional path-loss inversion power control (PC).
Assuming a Poisson cellular network, integral expressions
for all moments, that reduce to closed forms for full path-
loss inversion, of the CP are obtained. The meta distribution
for the CP is then approximated via the beta distribution
using moment matching. The results reveal the significant
discrepancies in users percentiles performance for different
path-loss compensation factors that show equivalent spatially
averaged CP. Interestingly, decreasing the activity factor p not
only improves the spatially averaged CP, but also reduces the
discrepancies of the CP among simultaneously active users.

II. SYSTEM MODEL

This letter focuses on the uplink transmission in a single
tier cellular network where the BSs are distributed according
to a PPP, denoted by Ψ ∈ R2, with intensity λb BS/km2. The
users (UEs) point process, denoted by ui ∈ Φ, is generated by
uniformly and independently dropping one UE in the Voronoi
cell of each BSs bi ∈ Ψ. In each time slot, each UE becomes
active independently with probability p. When a UE is active,
it transmits with a fractional path-loss inversion PC with
compensation factor ε. For simplicity, we utilize the commonly
used power-law path-loss model with exponent η > 2. Hence,
the transmit power of a UE located r meters away from its
serving BS is given by ρrηε, where ρ is a PC parameter to
adjust the received power at the serving BS. A Rayleigh fading
environment, with unit mean channel power gains, is assumed.
All channel gains are assumed to be independent and identically
distributed. We assume that the BSs are dense enough such
that all UEs can invert their path-loss toward their serving BSs
almost surely.

III. ANALYSIS

For an arbitrary, but fixed, realization of Ψ and Φ, let u◦ ∈ Φ
and b◦ = argminb∈Ψ ‖u◦ − b‖, where ‖·‖ denotes the Euclidean
norm, be a randomly selected UE and its serving BS. Ignoring
the thermal noise, the CP for the selected test link is

Ps(θ) = P!

 P◦h◦ ‖u◦ − b◦‖−η∑
ui∈Φ\u◦

aiPihi ‖ui − b◦‖−η
> θ
∣∣∣Ψ,Φ


=
∏
ri∈Φ◦

 p

1 + θPir
η(1−ε)
◦
ρrηi

+ 1− p

 , (1)
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where P!{·} is the reduced Palm probability, P◦ is the trans-
mission power of the test UE, h◦ ∼ exp(1) is the in-
tended channel power gain, r◦ = ‖u◦ − b◦‖ is the test link
distance, ai ∼ Bernoulli(p) denotes the ith interfering UE
activity, Pi is the transmission power of the ith interfering UE,
hi ∼ exp(1) is the ith interfering channel power gain, and
Φ◦ = {‖b◦ − {Φ \ u◦}‖} is the set containing the distances
between interfering UEs and the test BS. In the analysis, the
Palm probability in (1) is captured via the intensity function
of Φ◦ and the probability density function (pdf) of Pi, which
describe the panorama of interferers as seen from the test BS
perspective [3], [4], [7], [8]. The result in (1) is obtained by the
substitution P◦ = ρrηε◦ and averaging over the channel gains
and the UEs activity (i.e., ai) (cf. [2, Appendix A]). Note that
Pi is not averaged out in (1) because it does not take different
realizations over time as Ψ and Φ are fixed.

From the spatial domain perspective, the CP is a random
variable that changes from one link to another in the realization
of Ψ ∪ Φ. To capture such randomness, [2] defines the meta
distribution for the CP as

F̄ (θ, α) = P! {Ps(θ) > α|Ψ,Φ} , (2)

which is a two parameter complementary cumulative distribu-
tion function (ccdf) that defines the percentiles of users (α) that
achieves a certain Ps(θ) when conditioned on a realization for
Ψ∪Φ. Despite the fact that Ψ and Φ are fixed, the randomness
in (2) originates from the different BS and UE separations
within Ψ ∪Φ along with the different panorama of interfering
UEs seen by each BS b ∈ Ψ. The bth moment of the CP across
all links in an arbitrary fixed realization of Ψ ∪ Φ is given by

Mb = E!

 ∏
ri∈Φ◦

 p

1 + θPir
η(1−ε)
◦
ρrηi

+ 1− p

b
 . (3)

The averaging in (3) is over the intended link distances r◦,
the interfering link distances ri and the transmission powers Pi.
It is worth noting that the uplink scenario has two fundamental
differences from the downlink scenario analyzed in [2]. First,
the association does not impose a spatial interference protection
in the uplink [3], [4], [7]. Hence, an interfering UE can be
arbitrary close to a BS than its intended UE (i.e., ri can
be less than r◦). Second, the transmission powers of the
interfering UEs are random due to the employed fractional
channel inversion PC.

The distribution of the transmission powers of the UEs in
Φ◦ is given by the following lemma.

Lemma 1. The distribution of the transmission power Pi of
the ith UE that is located at the distance ri ∈ Φ◦ from the test
BS is given by

fPi (z|ri) =
2πλbz

2
ηε
−1
e
−πλb

(
z
ρ

) 2
ηε

ηερ
2
ηε
−1

(1− e−πλbr2i )
; 0 ≤ z ≤ ρrηεi . (4)

Proof: See [7, Lemma1].

Despite that Ψ is a PPP, the UEs point process Φ is not a
PPP [3], [4], [7], [8].2 Furthermore, the transmission powers of

2A comprehensive study for the user point process is available in [9].

nearby UEs are correlated due to the correlation of the sizes
of adjacent cells. For tractable analysis, the transmission power
correlations are ignored and the interference seen from {Φ\u◦}
at bo is approximated with the interference seen from a PPP
Φ̃ ∈ R2 with intensity function λ(x) =

(
1− e−πλb‖x‖2

)
λb.

Such approximations are shown to be accurate in [3], [4], [8]
for the spatially averaged Ps(θ) and are validated in this letter
for the meta distribution F̄ (θ, α). For the sake of mathematical
convenience, we first use the following lemma to average out
the transmission powers of the interfering UEs and to facilitate
the subsequent stochastic geometry analysis.

Lemma 2. Let Φ̃◦ = {wi = ‖xi‖η
Pi

,∀ ‖xi‖ ∈ Φ̃}, where Φ̃ ∈
R2 a PPP with intensity function λ(x) =

(
1− e−πλb‖x‖2

)
λb

that approximates the interference from {Φ \ u◦} at bo. Then
the moments in (3) can be approximated by

Mb ≈ M̃b = E!

 ∏
wi∈Φ̃◦

 p

1 + θr
η(1−ε)
◦
ρwi

+ 1− p

b
 , (5)

where Φ̃◦ ∈ R+ is a PPP with the intensity function

λ̃(w) =
2(πλ)1−ερ

2
η

ηw1− 2
η

γ
(

1 + ε, πλ(ρw)
2

η(1−ε)

)
, (6)

where γ(a, b) =
∫ b

0
ta−1e−tdt is the lower incomplete gamma

function.
Proof: First, we note that the approximation in (5) is

due to approximating the interference from {Φ \ u◦} with the
interference from Φ̃. Otherwise, the results in the lemma are
exact. The lemma is obtained by virtue of the Displacement and
Mapping Theorems for the PPPs [10, Theorems 2.33 & 2.34],
in which the transformation Φ̃◦ = {wi = ‖xi‖η

Pi
,∀xi ∈ Φ̃}

is applied to obtain the unit power interfering UEs and the
linear path-loss model shown in (5). The intensity in (6) is
obtained in two steps as follows. The first step is by applying
the Mapping theorem with the mapping function r = ‖x‖η , the

intensity function becomes λ(r) = 2πλbr
2
η

−1

η

(
1− e−πλbr

2
η

)
.

The second step is by applying the distance dependent random
displacement with the PDF in (4), which gives the following
displacement kernel

ζ(r, w) =
2πλbr

2
ηε e−πλb(

r
wρ )

2
ηε

ηεw
2
ηε+1(1− e−πλbr

2
η )

; 0 < r < (wρ)
1

1−ε (7)

Hence, the resultant intensity function after mapping and
displacement can be obtained as

λ̃(w) =

∫ ∞
0

ζ(r, w)λ(r)dr,

which gives (6) and proves the lemma.

Now we are in the position to give the main results of the
letter, which are shown in the following theorem and corollary.

Theorem 1. The Moments of the CP for an uplink cellular
network with nearest BS association, fractional path-loss in-
version PC with compensation factor ε and activity factor p
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M̃b =

∫ ∞
0

exp

{
−x− 2x1−ε

η

∫ ∞
1{ε=1}

(
1−

(
y + θ(1− p)

y + θ

)b)
y

2
η
−1
γ
(

1 + ε, xy
2

η(1−ε)
)

dy

}
dx. (8)

can be approximated by M̃b given in (8) shown at the top of
the next page, where 1{·} is the indicator function.

Proof: The average in (5), when conditioning on r◦, can
be evaluated via the probability generating functional [10, Def-
inition 4.3] of the PPP with the intensity function given in (6).
The results are then averaged over the distribution of r◦ which
is given by fr◦(r) = 2πλre−πλbr

2

, 0 ≤ r ≤ ∞. The expression
in (8) is then obtained by a change of variables y = ρw

rη(1−ε)

and x = πλr2, followed by some mathematical manipulations.
Note that for ε = 1, γ

(
1 + ε, πλbx

2y
2

η(1−ε)

)
= 1{y > 1},

which justifies the integration boundaries in (8).

The moments in (8) can be represented in closed form for
full path-loss inversion as shown in the following corollary.

Corollary 1. The moments of the CP for an uplink cellular
network with full path-loss inversion PC (i.e., ε = 1) and
activity factor p can be approximated by M̃b given as

M̃b = exp

{
−2

η

b∑
n=1

(
b

n

)
(−1)n+1pnθn

n− 2
η

2F1

(
n, n− 2

η
, n+ 1− 2

η
,−θ

)}
. (9)

Proof: The proof is obtained by substituting ε = 1 in (8),
applying binomial expansion, and evaluating the integral.

Interestingly, (8) and (9) show that all moments of the CP,
and hence the meta distribution, are independent from the
intensity of BSs. Such independence was also reported in [2] for
the downlink scenario. This behavior can be justified by the fact
that increasing the intensity of interfering UEs is compensated
by the statistically closer intended link distances. Statistically
closer intended link distances implies (i) higher received power
in the fixed transmission power scenario, (ii) lower transmission
powers from each interfering UE in the full channel inversion
PC scenario, or both (i) and (ii) in the fractional channel
inversion PC scenario. In all cases, the positive impact of closer
link distances cancels the negative impact of increasing the in-
terfering UEs for all values of ε. Another interesting observation
is that the spatially averaged CP for full channel inversion,
which is obtained via M1 in (9), is equivalent to the one
derived in [7]. This reveals an interesting analogy between the
interfering UEs intensity functions λ(r) =

(
1− e−πλb‖r‖2

)
λb

and λ(r) = 1{r < (Puρ )
1
η }λb that are used in [3] and [7],

respectively.
Following [2, Corollary 3], replacing b = jt in (8) and (9),

where j is the imaginary unit, an exact expression for the meta
distribution can be expressed as

F̄ (θ, α) =
1

2
+

1

π

∫ ∞
0

Im
(
e−t log xMjt

)
t

dt, (10)

where Im(·) denotes the imaginary part of a complex number
and Mjt is obtained by replacing b = jt in (8) and (9). The

expression in (10) is quite involved as it contains three nested
integrals. Hence, we exploit the beta distribution approximation
suggested in [2] to approximate the meta distribution of the CP
in uplink cellular networks as

F̄ (θ, α) ≈ Iα
(
M1(M1 −M2)

(M2 −M2
1 )

,
(1−M1)(M1 −M2)

(M2 −M2
1 )

)
, (11)

where Iα(a, b) =
∫ α

0
ta−1(1 − t)b−1dt is the regularized

incomplete beta function.

IV. NUMERICAL RESULTS

We first validate the theoretical results via independent
Monte Carlo simulations. In the simulation scenario, one PPP
realization for the BSs is implemented in a 10 × 10 km2

area. One UE is dropped in the Voronoi area of each BS.
The BSs and UEs realizations are kept fixed for the entire
simulation. However, the fading realization changes at each
time slot and each user becomes active with probability p. The
SIR is collected for active users only in which a wrap-around
network model is implemented to avoid boundary effects. The
simulation runs until 10,000 samples of SIR are collected
for each UE, which are used to evaluate per UE CP. The
meta distribution of the CP is then evaluated across all UEs.
Unless otherwise stated, we adjust the intensity of BSs such
that λbp = 20 BSs/km2 and select the network parameters as
ρ = −80 dBm, η = 4, and θ = 1.

Fig. 1 plots F̄ (θ, α) vs α for different values of ε and p. The
close match between the simulation and analysis validates the
developed model, shows the accuracy of the approximations in
Lemma 2, and confirms the accuracy of the beta distribution
approximation for the meta distribution for CP in the uplink.
The figure also shows that decreasing the activity factor p, ∀ε,
increases the percentiles of users that achieve higher CP.

Comparing the three subfigures in Fig. 1 shows that increas-
ing the value of ε increases the percentiles of users that achieves
high CP (i.e., high reliability) at the expense of increasing the
percentiles of users in the low coverage regime. For instance,
setting ε = 0 at p = 0.5, 20 percentile of the UEs suffer from
CP less than 50% and 20 percentile of the UEs enjoy a CP
above 90%. Adjusting ε = 1 for the same p = 0.5, increases
the UEs percentile that operates with CP above 90% to 50 at
the expense of increasing the percentile of UEs operating with
CP below 50% to 30.

Fig. 2 provides more insights about the effect of ε and p on
F̄ (θ, α). Figs. 2a and 2b show that the spatially averaged CP
(i.e., mean) is monotonically increasing, and the variance of
CP is monotonically decreasing, when decreasing the activity
factor p. Decreasing p makes the point processes formed by the
active UEs at each time slot less dependent. Hence, each active
BS sees a relatively different realization of interfering UEs at
each time slot. Hence, the performance of all BSs converges to
the spatially average CP of the typical BS, which justifies the
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Fig. 1: The meta distribution for CP at different path-loss inversion factors ε and activity factors p.
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Fig. 2: Mean (solid lines), variance (shades), and index of dispersion (dotted lines) of the CP.

decrease of variance when decreasing p. The figures also show
that, while two values of ε may have the same average CP,
they may have significantly different variances. For instance,
for p = 0.5, Fig. 2a shows that ε = 0 and ε = 1 have the
same mean CP. However, Fig.1 shows that going from ε = 0
to ε = 1 increases the percentile of users achieving 90% CP
by 30%. Fig. 2b manifests the significance of the PC on the
variance of the CP despite the comparable values of mean CP.

Since the mean CP varies with p, it is more insightful to
consider the relative index of dispersion (IoD), defined as
IoD =

M2−M2
1

M1
, rather than the absolute variance. Fig. 2c shows

the IoD for the CP in uplink and downlink3 scenarios, which
reveals the dispersion of the CP around the spatially averaged
value is monotonically decreasing in p. Hence, decreasing the
activity factor p not only improves the spatially averaged CP,
but also reduces the discrepancies of the CP among simulta-
neously active users. The figure also shows comparable IoDs
between the downlink and uplink without PC. Compensating
for the path-loss with higher ε reduces the dispersion of CP
among the active uplink UEs.

V. CONCLUSIONS

This letter studies the meta distribution of coverage proba-
bility (CP) in uplink cellular networks with fractional path-loss
inversion power control (PC). Integral forms for all moments of
the CP are obtained for general path-loss compensation factor
ε, which reduce to closed form expressions for full-path-loss
inversion. The moments are used to write an exact integral
expressions for the meta distribution and for moment matching
approximation for the meta distribution via the beta distribution.
To this end, the effects of PC and users activity (p) on the CP

3The CP moments for the downlink are obtained from [2, Theorem 3].

percentiles for uplink users are discussed. The results show
that two values of ε that show the same spatially averaged CP
may hide significant discrepancies in the CP variances, which
manifests the importance of the meta distribution. The results
also show that the discrepancies among the CPs monotonically
decreases in p and/or ε.
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