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From this follows the convergence of (13) for s < s0, the interior of the singularity circle,

and the convergence of (14) for s > s0 . The reader may wish to compare this with

reference [1], pp. 46-49.

References

1. Chaplygin, Gas jets, Moscow 1902, see also NACA TM 1063.

2. Goldstein, Lighthill and Craggs, On the hodrograph transformation for highspeed flow, Q. J. of Mech.

Appl. Math. 1, 344-357 (1948).
3. Garrick and Kaplan, On the flow of a compressible fluid by the hodograph method, NACA Report No. 790

(1944).
4. J. Horn, Veber eine lineare Differentialgleichung zweiter Ordnung mit einem willkuerlichen Parameter,

Math. Ann. 52, 271-292 (1899).

ON THE METHOD OF INVERSION IN THE TWO-DIMENSIONAL

THEORY OF ELASTICITY*

By E. STERNBERG and R. A. EUBANKS (Illinois Institute of Technology)

1. Introduction. The method of inversion, originally introduced by J. H. Michell [1],

has led to a variety of technically significant solutions to "plane" problems in the

theory of elasticity [2], [3], [4], [5]. The usefulness of Michell's stress-field transformation

stems from its invariant properties which assure the preservation of an important class

of boundary conditions. In the present note we show that any conformal stress-field

transformation which preserves the principal-stress trajectories for every choice of the

antecedent Airy function, is essentially a Michell transformation.

2. The Michell transformation. The inversion theorem of Michell may be stated as

follows. Let U(z, z) be real and biharmonic in a region R of the z-plane, and let II* be

the image of R with respect to the mapping1

.. az + b
f = w(z) = —

a b

c d
= I- (1)

cz + d'

Then the function

f) = hU[g(t), <Kf)L (2)

where h2 = \ w' |2 and g is the inverse of w, is biharmonic in R*. The stress fields gene-

rated by U and U*, considered as Airy functions in R and It* respectively, are related

according to 2

+ ir* = \{<r + it) + p,

X = p = 2(\nU - \tU, - \.U,).
(3)

*Received Mar. 15, 1950.

'Michell actually used f = 1/z.

Subscripts attached to functions which originally bear no subscripts denote partial differentiation.
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Here [a, r] and [<r*, t*] are the normal and shearing stresses on any arc r and on its

image r* with respect to the mapping f = w(z).

Moreover, the stress-field transformation characterized by the mapping (1) and the

law of Airy function association (2) has the invariant properties:

(A) The images of the principal stress trajectories of R are the principal stress

trajectories of R*.

(B) If any arc r of R is acted on by constant normal tractions only, so is its image

T* of R*.
(C) A concentrated load acting at a point z0 of a boundary arc r of R, and including

a certain angle with T, is carried into a concentrated load of the same magnitude

acting at w(z0) and including the same angle with the image arc r* of R*.

Properties (A) and (B) were also established by Y. P. Jensen and D. L. Holl [6]

by aid of derivatives of non-analytic (polygenic) functions [7], [8].

3. A converse of the inversion theorem. We now prove the following theorem. Let

R be a region of the z-plane and let R* be the image of R with respect to the conformal

mapping

f = w(z), w'(z) = ~ = heiS 5* 0. (4)

Moreover, for every Airy function U(z, z), bi-harmonic in R, let there exist an Airy

function f), bi-harmonic in R*, such that the corresponding stress-field trans-

formation preserves principal stress trajectories, and the image field of stress is purely

hydrostatic only if the antecedent field has the same property.3 Then w(z) is given by

(1) and U* is given by (2), i.e., the transformation is a Michell transformation.

To establish the theorem, we recall a result of Jensen and Holl [6] who showed that

a + it = y„(z, z, 6)

= 2U.t + 2Uiie-2i\ J
(5)

where

flu.*, = 2[7j (6)

and yH is the directional derivative of II along r, 6 being the inclination of I\ In view

of (5), property (A) is equivalent to the statement

y„.[w(z), w(z), 6 + 5] = 7„. (7)

whenever

7H(z, z, 6) = yH , (8)

provided

H*(t, f) = 2 Uf. (9)

Equations (7), (8) by aid of (5) become4

U„ = TJ Iteiie, 1

\ (10)
=' KfV4,<9+i!>. J . .s«a O:; K... '-.

3This restriction is essential in order to rule out the trivial transformation which carries all antecedent

stress distributions into hydrosta;ticjfields of stress. m -•< ;j

'The partial derivatives of IT* with respect'to f and f are to be evaluated at f = w(z)
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Thus

u..uUw'Y = UuUMwV, (id

which implies that the function

4>(z, z) = UizU*:(w')2 (12)

is real-valued. Furthermore, assuming that the original stress distribution is not hydro-

static, so that Uzz 0, it follows by hypothesis that U*{ ^ 0 and hence <f> does not

vanish identically. For convenience, let

<p(z,z) = U,,Uu/<t>. (13)

Equation (12) then appears as

U„ = <p(w')2Utr , (14)

where <p is again real-valued. Equation (14) constitutes a necessary and sufficient condi-

tion for the preservation of the principal-stress trajectories.

We next apply to (14) the condition that U{z, z) and U*(J, f) are both biharmonic,

i.e., = 0 and Z7*rff = 0. This leads to

T w" a. o 1 77 _i_ T w" (2^)21 tt - nyv ~7~ + tyzJ u+ <?,, — <p,  —j Un — u,

or, since (15) must hold for every bi-harmonic U,

(15)

<p^r + 2<p, = 0, (16)

w.t — w. —> 2 (<pz)2 = 0. (17)

The complete solution of (16), subject to the requirement <p — <p, is

<p(z, z) = k(w'w')~1/2 - n/h (18)

with k an arbitrary real constant. Noting that (16), (17) require — 0, we conclude

from (18) that

{%)' -1 &)' ~ °- (19)
i.e., the Schwarzian derivative of w(z) vanishes. The complete solution of (19) is given by

*) = (20)

and since the mapping is to be (1, 1) we may put ad — be = 1. In order to arrive at the

law of Airy-function association we now integrate (14) by use of (18). This integration

yields,

U* = ^ [U + Azz + az + Biz + B], (21)
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where A, B are arbitrary real constants, and a is an arbitrary complex number. It is

readily confirmed by direct computation that the constants A, B, and a give rise to

an arbitrary, uniform hydrostatic stress-field in the image domain R*. The constant k,

on the other hand, affects merely the scale of the image stress-distribution. We may

therefore put A = B = a = 0, «=1. This completes the proof.
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A MINIMUM PRINCIPLE FOR STRUCTURAL STABILITY*

By H. J. WEISS and G. H. HANDELMAN (Carnegie Institute of Technology)

1. Statement of the problem. In a recent paper,1 W. Prager has discussed the

problem of structural stability from the following point of view. Consider a given con-

figuration of a deformable body, referred to a fixed system of rectangular axes,

Xi{i = 1, 2, 3), under a set of stresses Xo-,,- which are in equilibrium with given surface

tractions. These stresses are prescribed only to within the arbitrary constant factor X.

The configuration is assumed to be stable if X is sufficiently small. A system of in-

finitesimal perturbation displacements u,- is then applied, and the question is asked for

what values of the factor X will the equilibrium become indifferent.

The solution to the problem leads to the following system of linear, homogeneous,

second order, partial differential equations

Ju.i = 0, (1)

subject to the homogeneous boundary conditions on the surface

JijTii = 0, (2)

where

Ja = [t.j + ~ <*iv*vi) ~ Xff.pWp,].

♦Received May 29, 1950.

'W. Prager, The general variational principle of the theory of structural stability, Q. Appl. Math., 4,

378-384 (1947).


