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Abstract

The generalized singular value decomposition is used to analyze the
problem of minimizing Ile -b ”2 subject to the constraint Bx = d . A by-
product of the analysis is a new iterative procedure that can be used to im-
prove an approximate solution obtained via the method of weights. All that is
required to implement‘the procedure is a single QR factorization. These de-
velopments turn out to be of interest when A and B are sparse and for the

case when systolic architectures are used to carry out the computations.

The research for this paper was supported under the auspices of ONR contract
NOO0014-83-K-0640 .



1. Introduction

The problem we consider is how to find a vector x ¢ R”  that solves the

"LSE" problem

(1.1) min [|Ax - b |},
Bx = d

where A € Rmxn (mzn), be Rm , B¢ Rpxn (p sn) and d ¢ Rp . We will

assume that

(1.2) rank(B) = p

and that the null spaces of A and B intersect only trivially:

(1.2) NAYD NGB = {0} & rank| (g) 1= n

This condition ensures that (1.1) has a unique solution which we designate by

*LSE °

Important settings where the LSE problem arises include constrained
surface fitting, constrained optimization, geodetic least-squares adjustment,

and beam-forming.

Several methods for solving the LSE problem are discussed in Lawson and
Hanson [17, Ch.20-22]. In one approach QR factorizations are used to compute

the projections of X cp onto N(B) and its orthogonal complement N(B)‘L
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Algorithm 1.1

(a) Compute an orthogonal Q such that

Q75T [RB P
0 n-p

[

is upper triangular.

T"
B 1

(b) Solve the pxp system R d and set x, = Qly1 where

[

Q=[Q13Q2]
P n-=p

(c) Compute an orthogonal U such that

UT(AQZ) - RA n-p
0 m-n+p

is upper triangular.

(d) Solve R,y

— T —
2Yo = Ul(b - Axl) and set X, = sz2 where

v = [ Uy U2 ]

n~p m-n+p

+ x

(e) x = %y 9

This algorithm is particularly simple to implement using LINPACK subroutines
[7] - In MATLAB [18] it requires five lines of code.
Unfortunately, Algorithm 1.1 is not viable when A 1is large and sparse,

a situation that occurs with some frequency. The trouble lies with the fill-in

that can be expected during the formation of the product AQZ' If B is sparse

then recent sparse null space techniques could be used to generate a sparse Q_;
2’



see [15,20] . However, the sparsity of AQ2 is unpredictable with such a

process.

Another shortcoming of Algorithm 1.1 surfaces when one seeks to implement
it on systolic arrays tailored to perform fast QR factorizations. In an impor-
tant beam forming problem, one must solve the LSE problem for many different
B matrices. (A is fixed.) Ideally, one would like to "pipeline" the solution
process in Algorithm 1.1 to achieve maximum concurrency. Unfortunately, this
turns out to be impossible since the QR factorization of each AQ2 must be
calculated from scratch.

This prompts us to solve the LSE problem by the well known method of
weights. In this approach a positive weight u is chosen and the unconstrained

least squares problem

(1.4) min

W)= - (%)

is solved. The assumption (1.3) ensures that this is a full rank least-squares

¥

problem thereby having a unique solution which we designate by x(u). It is well

known that lim x(u) = % gp - FPerhaps the easiest way to see this is to
Y

observe that if
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implies 2z = x(u). Equation (1.5) arises by applying Lagrange nmultipliers to
(1.1) while (1.6) can be derived by considering the normal equations associated
with (1.4). Clearly, as 1 gets large these two systems approach one another.
Thus, x(p) = z— x = X gp as the weight p tends to infinity,.

The method of weights is attractive for its simplicity. We merely com-

pute the QR factorization
uB R
1. =
(-7 ( A ) % ( U)
0
and solve the nonsingular nxn upper triangular system

RxG) = Q' (“d>

b
where
Qu = | Q) Qz(u) ]
n mtp-n

is orthogonal. Standard LINPACK {7] routines can be used for this purpose. If A
and B are both sparse, then the George-Heath sparse least-squares algorithm can
be invoked; see [10]. In the systolic array setting, the standard QR arrays
proposed in [9] and [16] are applicable.

The accuracy of x(u) is of obvious concern with the weighting approach.
An exact expression for the error using the generalized singular value decompo~
sition is given in §2. Unfortunately, a large weight may be necessary to render
an acceptéble x(u) and this can cause severe numerical problems as we illustrate
in §3. In §4 we present an iterative procedure that can be used to improve a
"small weight" x(u). Some numerical results and implementation details are

discussed in §5.
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2. Theoretical Analysis of X op and x ()

The best way to analyze the method of weighting is through the general -
ized singular value decomposition. This decomposition is discussed in [19]
and [24]. See [23] and [26] for computational issues. We establish a specially
normalized version of the decomposition that simplifies our analysis of the LSE

problem and the method of weighting for solving it.

Theorem 2.1

mxn
If A e R (mzn) and B e RP™ (rank(B) = p) satisfy (1.3), then

there exist

U = [ul,...,um] e R (orthogonal)
vV = [vl, ,vp] e RPXP (orthogonal)
X = [xl, x ] g R™D (nonsingular)
such that
(2'1) UTAX = D diag( )
. = = la 3 e ey
A & % an
(2.2) viBx = D diag(8 £ )
. = = iag seees .
B 1 P
If o z o, 2 2 o, are the singular values of the matrix (g) then without

loss of generality we may assume that
(2.3) Ixll, =1

(2.4) || x~



(2.5) 0= a; = = aq < g+l s < Gp S ap+l = =o =
(2.6) 81 2 2 Bp 20
2.7) ai + Bi = oi (1 =1, .,p?
Proof
Let

(A
B
, . A . T T
be the singular value decomposition (SVD) of (B) with QlQl + Q2Q2 = 1
n

cvr20 2 0 and ZTZ =1 . Let
1 n n

(o)

Q1 diag(ol,...,on)zT
Q2

1%
1w

[of

|
TN
(@] (]
< o
—
——
w (@]
\_/
=
3

RrPXP

be the CS decomposition of Q1 and Q2 where U ¢ R s Ve » and
W e RN are each orthogonal and where
. mx
C = diag( cl,...,cn ). e R n ci.z 0
- . pXn
S diag( sl,...,sp ) e R s, P s, 2. 2 sp 2
. T T, A
satisfy CC+ S's = In. (The SVD and the CS decomposition are discussed in
[11].) Our theorem follows by setting D, =g C , D_ = ¢ S , and
A n B n
X = o¢_Z diag( l se e l YW
n g o}
1 n

Note that (1.3) guarantees that o is positive. a



Note that (1.2) implies Sp > 0 . We define the generalized singular

values to be the quotients

(2.8) u, = cxi/Bi (i=1,...,p) .
From (2.5) and (2.6) it follows that

(2.9) 0 = W, = ...=1p_ <y S ... 5

Moreover, we have
(2.10) Ax, = a,u, (i =1,...,n

(2.11) Bx, ='8.v, ' (i

[l
—
v

.

.
-
d
N -

Thus, N(A) = span{xl,...,xq} .
Theorem 2.1 can be used to effectively diagonalize the LSE problem. In

particular, by setting

~ T T, T
b = Ub = (ulb seses umb )
~
T
d = Vid = (vid ,..., via)T
1 P
. T
x = Xy = X(yl,...,y )
we find that (1.1) transforms to
(LSE") min || D,y - ||

DBy==d

It is not hard to show that



T T T T T
v.d v d u ub

Y = 1 s s E s E+1 ’ s n

LSE = 2 o 7:—
"1 ) p+l n

solves (LSE') . In light of the normalization (2.5) we have

P T n
_ _ v.d 1 T
(2.12) X gp = XyLSE = 'Z A oxy + 5 . z (uib)xi .
i=1 Bi n  i=p+l

Note that the minimum 2-norm solution to the uncenstrained LS problem

min || Ax - b H2 is given by

T n
(2.13) X o = E Uy o+ L o) x,
. i . i i
i=q+l «, o i=p+l
i n
Using (2.12), (2.13) and recalling (2.10) we have
T or v T
(2.14) s T P CAgg = ] (ubu o+ 2 (uy b) uy
i=1 i=n+1l
P
(2.15) TLse T P TAX gt T+ L0 Yy
i=qgq+l
where
- T _ T .

(2.16) p; = uib s vid 1i=1,...,p)
Note that

P
(2.17) a2 = Y 2

. i

i=1

measures how much the minimum residual increases as a result of the constraint

Bx = d.



The generalized singular value decomposition can also be used to obtain

a useful expression for x(u). Note that x(u) satisfies the normal equation

T 2
(2.18) aTa + v23TB)x() = aTb + %874 .

Analogous to how we obtained (LSE'), this equation transforms to

T 2T . Te 2 Tw
(DD, + WD DY) = D,b + wDyd
where x(p) = Xy +  1is easy to deduce from this diagonal system that
P T 2 T n
a.ub + v.d 1
(2.19) x(w) = ) id SCAr! x, *t = ) (u?b)x.
i=1 2 2 2 n i=p+1 * 1
ai + U Bi

Subtracting (2.12) from this expression and doing a little algebra we obtain

the following expansion for the error:

2
- P vy N
(2.20) e() = x() - x o = ] - - — X,
i=q+1 ui + u i -

Note that the error is confined to the subspace span {x »+++5X_} and that
P

q+l

it obviously tends to zero as the weight tends to infinity.

As part of a general analysis that we shall perform in §4, we show that

A

epll, =0 — %
2u P

| =)

This suggests that if SP is small (or equivalently up is large) then

a large weight may be mnecessary. As we discuss in the next section, this can
cause numerical difficulties. However, it should be noted from (2.12) that
X op will be sensitive to perturbation in this case and so we can expect

difficulties no matter what method we use to compute X gp
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3. Difficulties Associated with a Large Weight

It is well known that care must be exercised when Householder matrices
are used to compute the QR factorization of a matrix whose rows vary greatly
in norm, e.g., the matrix in (l1.4). Powell and Reid (21] examined this prob-
lem in conjunction with the Businger-Golub algorithm described in [6] and
advise incorporation of row interchanges, much as in Gaussian elimination.
Specifically, they recommend that the k-th column be searched and its largest
entry pivoted to the (k,k) position before the k-th Househeolder matrix is
applied.

Note that near-domination of the pivot elements will result if we apply

the Businger-Golub algorithm to (5?) but not if we apply it to the matrix
in

N . A b

(3.1 mn (uB) * (ud> ‘2

which is mathematically equivalent to (1.4). To appreciate the difference be-
tween the B-over-A and the A-over-B approaches to the LSE problem, consider

the example

1 2 1
A = s b = » B = (1 -1) , 4 = (2) ,
3 4 1
This problem is well-conditioned and has exact solution -L (39 , —-19)T . In
29
Table 1 we record the magnitude of ||x(u) - X gp H2 for both approaches as

a function of u.
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{
g 100 110”107 | 107 | 10® | 10Mt | 1013 1015 | o7
B—?ver—A 10—3 10—7 lo-ll 10—15 10-15 10—17 10—17 10—17 10-17
Error
A-over-R 10—3 10—7 10—11 lo—ll lo—lO 10—7 10—6 10—4 10—2
Error
Table 1.

Computations were performed using VAX double-precision arithmetic in the MATLAB

environment. Let machep be the machine precision, in our case 10_17 . The diver-

genbe of performance between the two approaches in the vicinity of = (machep)_‘/2

is fairly typical. We observed this to be the case even in ill-conditioned

examples. Although the B-over-A approach is always preferable from the num-

erical standpoint, it is sometimes difficult to set up (1.4) with the con-

straint equations on top. For example, the minimization of fill-in may force

us to choose some alternative row-ordering. However, some interesting thoughts

abogt how to preserve both sparsity and stability are given in [4] .
Another inconvenience thrust-upon us if we must employ a large weight is

the need for column interchanges when computing the QR factorization of (uB) .

A

An example suggested by our colleague Per-Ake Wedin makes this clear.. Suppose

(1 1 1] 1]

Ao 3 oo |2
1 -1 1 3

1 1 1 4]

5 - 1 1 1 4 o |7
1 1 -1 4J

(46,-2,12) 7

Qi

This example is well-conditioned and Xigp =



In Table 2

we tabulate the error in x(u) for various values of u

when column pivoting is used and when it is not are recorded.

. The cases

- 10t 10° 10° 10 10° 10" | 1013 418
w%?;;¥§22m1 10—2 10—7 lo—lO 10—14 10—16 10—16 10—16 10-16
N;isgiggg 1072 | 1077 | 107 107 | 1070 | 1077 | 1075 | 173

Table 2.

Trouble arises without column pivoting because the first two columns of the

. {uB
matrix ( s | are nearly

dependent for large u . Consequently, the (2,2) element

in (1.7) approaches

—nf the upper triangular matrix Rp zero. These difficulties

are circumvented when column interchanges are performed.

From the examples in this section we conclude that both row and column
ordering can be critical when the weighting method is used to solve the LSE
problem. This limits its usefulness for sparse problems and complicates its
implementation on systolic architectures because the QR arrays that have thus
See Gentleman and

far been proposed do not have column pivoting capability.

Kung and Heller and Ipsen

[8] [13] for example.
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4. An Improvement Scheme for x(u)

We now show how the solution x (i) can be improved using onlv the QR
uB . . . . ' 1 .
factorization of (1 ) . This will give us the opportunity to "get by" with

reasonably small weights thereby circumventing the problems alluded to in the

previous section. The key idea behind our procedure is to correct solutions to

(1.6) by exploiting (1.5).

Algorithm 4.1

Choose p and compute the solution x(p) to (1.4).

Set
x(l) = x(w)
r(l) = b - Ax(w)
W= 12 - )

For k = 1,2,... -

Compute the residual associated with (1.5):

—6:{1()- d 0 0 B i )\(k)-‘
6§k) = v - o 1 a (0
Ldgk) 0 B AT of | x®

Solve the (1.6) system

-2 (k) M (K)]
u Ip 0 B AX 61
I A Ar(k) = é(k)
m 2
B AT 0 Ax(k) 6§k)
Set
x(k+1) x(k) + A)‘(k)
S () + A?EF)
LD L k), ()
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(k)

1t is not at all obvious that the x converge to X o Nor is it obvious

how one would actually solve for the corrections L3(k) r(k) , and Ax(k)

s o

These issues will be addressed once we make some simplifications based on the

following theorem:

Theorem 4.1
For all k in Algorithm 4.1, 6§k> = 0 and 6§k> = Q
Proof
Since
W1 0 B 5 (D
P
= 0] I A r(l)
m
BT AT 0 x(l)
- _l
we have dél) = 0 and Gél) = 0 . Now suppose for some k 2 1 that éék) =0
and égk) =0 Since
_ 1) - -
£ GetD) 0 B 09
k+1 - (k
5+ - 3 e PR
5 (k1) s () BTAA(k) + ATAr(k)
3 3

the theorem will fo}low if we can show that

and

(k) (k)

+ AAX

I
(@]

Ar

BTM\(k) + ATAr(k) = 0

But these two results hold because by the induction hypothesis we have



-2 (k) (k)
1 ] B A
b1 A 8
0 Im A Ar(k) = 0
BT AT 0 Ax(k> 0 EJ
Observing from (1.6) that ASX(k) solves the problem
(k)
(4,1) min (UB) z (udl
z A 0 2

we see that Algorithm 4.1 transforms to

Algorithm 4.2

Choose u and compute the solution x%(p) to (l.4).

Set x(l) = x(u)

For k = 1,2,...
(k)
61

= d - Bx(k)

(k)
uB> JLCO (uél )
A 0

L) ()

Solve min

2

+ Ax(k)

S,

It is important to stress that only a single QR factorization is necessary to

carry out the iteration. In particular, once we have the QR factorization
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(”B> = 10,0 5 QG ] (Ru)

A 0
then
R ox(w) = o (T (“d)
u 1
b
and
k)
k T [uef
R ax®) o g () <“61) .
u 1 \
0
We're now set to analyze the convergence properties of Algorithm 4.2 . We
(k)

first establish an explicit expression for the error in x

Theorem 4.1

(k)

The vectors x in Algorithm 4.2 satisfy

B« + e(u,k)

LSE

where

2
P CH s k
(4.2) e(p,k) = Z = ( 7 —= 5 Xi
i i
1



Proof

From (2.20) it is clear that the theorem holds for k = 1.

to establish the result for general k. Since

x(1:<+1) -
LSE

(k)

e(u,k+1l) = = e(u,k) + rx

and from the normal equations for (4.1) we have

(ATA + UZBTB)AX(k) = uzBT 6{k) = UZBT(d - Bx(k)) =
= uz BT [ (a4 - BXLSE) + B(xLSE - x(k)
= - U2 BTB e(H,k)
it follows that
e(u,ktl) = [T - uz(ATA + u2 BTB)—1 BTB ] e(u,k)

We use induction

Using the generalized singular value decomposition of A and B (see §2) we have

[1 - uz(ATA - BTB)—l BB ] ox, =

for i = qg+l,...,p . Assuming that the theorem holds for k it follows that it

holds for k+1 since

e(u,k+1) = [ I - u?(ATA + w2 ")t Ts

5o
i=q+1 a; W

With this result we can establish bounds on the error in x

(k)

as on the associated residuals b - Ax

and d - Bx

(k)

2

(k)

.2
T
+

My

as well
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Corollarv 4.3

1y
o

2 2 2
Let m = Up / (Up + 1) where pp is the largest generalized sing-
ular value of the pair (A,B) and let A be defined by (2.17). The vectors

x(k) generated by Algorithm 4.2 satisfy

(k) _ L1 k-1
(4.3) I x X op ||2 < D
p
(4.4) la - sx® || < L X1
’ 2 7 2u
- - _au (k) b k-1
(4.5) 0 = ||b Ax o ][2 | b - Ax I T
Proof
From (4.2) it follows that
‘ P 5 g ui k=1
(4.6) e(wk) = ] 4 [ 2 | 2 x,
i=q+l B, \u,/ + Wy ot -3

Inequality (4.3) now follows by taking norms in (4.6), invoking the definition

of mu’ and using the facts

||[xq+l,...,xp] ]f < 1

™ |
IA

1 . 1
iy i=1,...,
i 8p P

and



=
A
|-

r
+
hes
o
©

Inequality (4.5) likewise follows by taking norms in the expression

. .2 k-1
a -8 = SBe(uk) = - E oy —, |5, v
i=q+l u, +u u. + u

and remembering that the vy are mutually orthogonal. Finally, note that

The upper bound in (4.5) is readily obtained by taking norms. The lower

bound follows upon comparison of

Ax, T wh) 7w §
b - = u.,b)u, -+ u,b)u, + p.u
SE 121 i i j=n+l i i i=q+1 ii

which can be derived from (2.14) and (2.15), and the expression

P s
b - ax® = b-Ax o - Y —_—
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Before passing on to the next section we address a concern of the referee
about the behavior of Algorithm 4.2 when the constraint equation Bx = d 1is in-
compatable. Suppose rank(B) = t £ p but that we still have N(A)( N(B) = {0}.
This implies that in the GSVD of A and B everything is the same as before

except that

(2.2 vIBX = diag(B.,....8 ,0,...,0) ¢ RPXP
1 t ——
p-t
The vector
t T n
(2.12") Xp = ) S x o+ = T (ulb)x,
i=1 Bi ey i=t+l] 1 i

is the unique minimum of ”Ax -b H2 subject to the constraint that HBX -d HZ
is minimum. By repeating the above analysis, which amounts to just replacing p

with t, it is easy to confirm that x(k> converges to defined by (2.12").
*LSE y
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5. Numerical Results and Implementation Details

The preceding analysis shows that in principle Algorithm 4.2 converges
for any nonzero u . However, the size of u is of great practical importance.

To illustrate this point, we applied Algorithm 4.2 to a problem in which up =

5000. The relative error in x(k) for various values of u is tabulated in
Table 3.
u k=1 | k=2 |k=3 |k=4 | k=5
10° 109 1 10° |10% |10° | 10°
10 107t | 107? {1072 |10 | 107®
10° 1072 [ 107% |107® |10711] 10714
108 1070 {107 1071 1074 | 10714

Table 3
Note that the iteration cannot substantially improve the accuracy of x(u)

2 2 2 . .
unless mu = uD/(uD + u7) is somewhat less than unity.

As a rule of thumb, we suggest implementing Algorithm 4.2 with the weight
¢ set to (machep)-Li . Larger values may be successful but will depend upon the
row and column ordering imposed by the QR factorization scheme that is invoked
as we discussed in §3,

Finally, we mention that we cannot expect greater accuracy in the com-
puted LSE solution than the condition of the underlying problem warrents. A de-—
tailed sensitivity analysis of X g using the theory of weighted pseudo-inverses
is given in [8] . The results in this reference confirm what (2.12) suggests:

X sk is sensitive to perturbation if Bp and/or on is small. Note that the
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k
error bounds for x( ) that we developed in §4 get worse as R gets small.

This prompts us to conjecture that the improvement iteration converges slowly

only on ill-conditioned LSE problems.

The conditioning issue is important from the standpoint of developing

an intelligent termination criteria for Algorithm 4.2. Let & be a predeter-

mined tolerance. We have found that the stopping criteria

(5.1 Fa-ax® < s s =®
) o 2

works quite well in practice. Proceeding heuristically, (5.1) coupled with

(4.4) implies that

el R I T P
and so
1= =, e ks g a® I,

Thus, ill-conditioning evidenced by a small g is taken into account by our

method of termination.

We hasten to add that ill-conditioning in the LSE problem due to a small

, k
fof surfaces when the corrections Ax( ) are calculated. If On is small then
n

then the matrix Ru in (1.7) will tend to be ill-conditioned thereby contam-

(k)

2
inating Ax with errors of order machep/ o, - (Recall that in nonzero

residual problems, the square of the condition is involved in the error bound;
see Golub and Wilkinson [13] .) Hence, the accuracy of the computed x(k)
depends upon both of the factors 1/ Bp and 1/ oi
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Note that in a problem with 0 = Bp << Bp—l the correction

u2 / ﬂ? k-1

P

L y Py i X
i=q+1 + u? Wog u? 1
i=g+ oy My u 1

is increasingly in the direction of xp - Thus we obtain the heuristic

(k) 2
A.
Ci . k(kl)Hz = 2 - 2
I e, 2
whereupon we obtain the estimate
le,
! N—"
P V1 - x

As an illustration of the effect of terminating on the relative size

of |Jd - Bx H2 we applied the method to the problem

0.2498 0.8873 0.7710 0.9195 r6.4052
0.8233  0.6996 0.2996: 0.6763 0.9185
0.0545 0.8812 0.6295 0.3206 b = |0.0437
A = 0.3511 0.0937 0.2540 0.9563 0.4819
0.6485 0.6165 0.1797 0.2535 0.2640
0.6564  0.6907 0.2486 0.3397‘J 0.4148

0.0044  0.0112  0.0086  0.0096 d = |0.2603
B = 0.2308  0.5847  0.4503  0.5022 0.632
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Inthis example, Bp = 10 and 0 = 10 © . The results are tabulated in Table

4 for the case u= 106 .

i
. lla - Bx(k)'!z MON . ‘
1 Hw|]x(k)]12 llx(k)lfz b estimate
‘ 107 107° 1o N
3 10713 o6 -
) 107 1077 1o
° 107 1077 104
° 1077 10711 1o%

Table 4.

We close with several remarks concerned with the implementation of the
algdrithm. The referee has suggested that it may be advisable to initially re-

~duce A to upper triangular form via the QR factorization. In particular, if

we compute an orthogonal @ such that

R s n
T
Q (A b)Y =
0 t m-n
n 1

then we can apply Algorithm 4.2 with (A b) replaced by (R s) . The matrix Q
need not be saved. The point of this reduction is that the matrix QU is then of

order n+p rather than m+p -- a dimension reduction that could be critical in
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large problems. Another fringe benefit of this maneuver is that A is ''concen-

trated" into R before the (possibly contaminating) effects of p are felt.
Focussing further on the large sparse case, we mention that Algorithm

4.2 can be implemented without storing the orthogonal matrix Qu . This follows

(k)

because the correction vectors Ax satisfy the normal equation

(ATA + UZBTB) Ax(k) = u2 BT éik)

and thus

(k) 2 ;T (K
1

T
) R R A = B
(5.1) L R ox U

(k)

can be found by solving a pair of triangular systems. (Of

LD

Consequently, Ax

course, QU is needed to compute = x(u), but it can be multiplied into the

right hand side Cﬁf) as it is generated.)

We refer to (5.1) as a "semi-normal equation' because the factor Ru is

stably determined via orthogonalization. (In "ordinary'" normal equations, one

would find Ru by performing the Cholesky factorization on ATA + UZBTB .) Un-

fortunately, the usual pitfalls of normal equations plague semi-normal equa-
tions unless a follow-up step of iterative improvement is executed. This is
detailed in Bjorck [ 1]. Applying his recommendations to our situation, we

(k)

should compute Ax as follows:
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RTR Az(k) = uzB
H M

RO (ubi) _ (*f)um

T (k)
61

. T
RIR aw®) = (” B> e
uou A
Ax(k) = Az(k) + Aw(k)

(k)

It can be shown that even in single precision, the Ax produced in this

fashion is as good as can be expected.
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