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cycle vectors when what we want is a single approximate solution?
One approach we are actively considering involves the use of the
cycle vectors to create new “pseudodata,” which is then fed back and
the algorithm restarted.

To be precise, the feedback method works as follows: assum-

mg convergence of BI-SMART to a limit cycle of \' vectors,

222 N 2N . we replace each old data value y; with the new vaiue

(P;/").;, where 7 is in the subset S™*', and we set S° = S+, The
new data vector is then used in exactly the same way the old y was,
beginning with the same initial vector and performing BI-SMART
until convergence to a second limit cycle. The infinite sequence of
data vectors calculated in this way can be shown to converge to
a vector ¥, for which the system y™ = Pz is (nonnegatively)
consistent. In simulations we have noted two interesting phenomena:
first, this convergence is remarkably quick, with y™ often reached
within two or three repetitions of the feedback; and second, the
solution x of y™ = Pz is a strictly positive vector in most cases.
This suggests that the repeated feedback is regularizing the problem;
that is, effecting a filtering of the original data. The exact criterion
implicitly used here is not yet understood. This feedback has been
tried in connection with BI-EMML with some success [22].
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On the Metric Properties of Discrete Space-Filling Curves

C. Gotsman and M. Lindenbaum

Abstract—A space-filling curve is a linear traversal of a discrete finite
multidimensional space. In order for this traversal to be useful in many
applications, the curve should preserve “locality.”

We quantify “locality” and bound the locality of multidimensional
space-filling curves. Classic Hilbert space-filling curves come close to
achieving optimal locality.

1. INTRODUCTION

Denote [N] = {1..., N}. A discrete m-dimensional space-filling
curve of length N™ is a bijective mapping C : [N™] — [N]™
such that d(C'({).C(i + 1)) = 1 for all i € [N™ — 1], where d()
is the Euclidean metric. In other words, the curve C of length N™
traverses all N points of the m-dimensional grid with side length
V', making unit steps and turns only at right angles. For a historical
account of classical space-filling curve constructions, see [8].

Space-filling curves are useful in applications where a traversal
(scan) of a multidimensional grid is needed. Some algorithms perform
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local computations on neighborhoods, or exploit spatial correlation
present in the data; therefore, the preservation of “locality” during the
traversal is desirable. By “locality,” we mean that the traversal reflects
proximity between the points of [N]™, namely, that points close in
[N]™ are also close in the traversal order, and vice versa. Sample
applications are image halftoning (see [11] and references therein),
data organization [4], data compression [5], and color quantization
[9].

The little work on this topic to date has addressed only one
direction of this question, namely, how to design space-filling curves
such that points close in the multidimensional space are also close
along the curve. In general, as we shall show later (Theorem 2), this
is impossible—for every space-filling curve C, there will atways be
at least one pair of close points in [N]™ that are very far apart along
C'. However, as these cases are rare, on the average , the situation
will be much better. Perez er al. [7] quantify this using the average
locality measure

L(C) = Z

LgE[N™]LI<y

li - |
[ D 1
ACH).CUN M

and describe a hierarchical construction for 2-D space-filling curves,
which comes close to minimizing this measure.

Mitchison and Durbin [6] investigate similar measures of locality,
taking into account only short (unit) Euclidean distances. This is
because they regard the grid as an abstract lattice graph, ignoring its
underlying geometry. They treat general 2-D mappings C' : [N?] —
[N]” (not necessarily defining a curve). Their family of measures,
parametrized by ¢ € [0, 1], is

L‘q(c) = Z

{4, 0€[N2]i<y,d(C'(4),C(5))=1}

i —j1* @

Interestingly enough, for the case ¢ = 1, which may be compared
with the measure (1), the optimal mapping turns out to be quite
different from that in [7] (it is not even a curve).

For the more interesting case ¢ < 1, which de-emphasizes longer
distances along the curve, Mitchison and Durbin prove the lower
bound

. 1 142y r2q
£4(C) 2 g5 NI+ o)
and provide an explicit construction C'x for any N with good, albeit
suboptimal, locality. They conjecture that the optimal mapping must
define a curve with a “fractal” character.

Voorhies [10] defines a more heuristic measure of locality, related
to computer graphics applications, and experimentally compares the
measures obtained for a variety of space-filling curves. He concludes
that the Hilbert curve [3] is superior to other curves in this respect.

In this correspondence, we mainly address the converse question,
i.e., to which extent can two points, which are close in the traversal
order along the curve, be far apart in the multidimensional Euclidean
metric. To quantify this, we use the following measures:

ACE).CuN™

L) = z.,,,e[lnwl'%.iq li — 7| &
Ly(C) = min MD— 4)
i, JE[N™M] i<y ;z -_ j{

The use of the exponent m in (3) and (4) is justified by the fact that
the maximal distance between points of [N]™ is O(N) and between
two points of [N"™] is O(N™). This correspondence presents bounds
on Li(C") and Lo(C).

Certain curve designs may be used to produce a family of curves
for increasing values of N: C = {Cx : N = 1,2,...} . In this case, it
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P3 Py Py Py
N-1
Py Py Py P3
Fig. 1. Two possible distinct traversals through the four corner points of

the 2-D case considered in the proof of Theorem I. All other traversals are
symmetric to these.

o *
T

Fig. 2. Two-dimensional raster space-filling curve B3, on [N']2. For the two
grid points at the two ends of any scan line, both the Euclidean distance and
that along the curve, are N — 1; therefore, L 1(R?\~) =N-1.

Fig. 3. Recursive construction of the Hilbert curve: (top left) “Seed” H 12;
(top right) HZ constructed from four (rotated) versions of H?. HP is
constructed recursively in an analogous fashion; (bottom) “seed” Hj. H}
is constructed recursively from the seed curve.

is interesting to investigate the limits (with a slight abuse of notation)
Li(C) = \lim Li(Cn)
Ls(C) = lim La(C).

Essentially, we show that for any m-dimensional curve family C, if
these limits exist, then L;(C) > 2™ — 1, and Ly,(C) = 0.

II. LocALITY OF SPACE-FILLING CURVES

In this section, we provide a lower bound on L; and an upper
bound on Ls for multidimensional space-filling curves.
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m=2n=40,r=3,d> =824+ 162 =320
(a)
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m=2,n=40,r =3,d? = 8% + 122 = 208
(b)

Fig. 4. Upper bounds on L (H 42): (a) Quantities of Theorem 3. Any Hilbert subpath of length 16 < n < 64 must lie within two adjacent quadrants
of size 8 x 8; (b) Case 5 of Theorem 4. The subpath of (a), as any Hilbert subpath of length 32 < n < 48, is actually contained in four adjacent

quadrants of size 4 x 4, resulting in a tighter bound on d.

Theorem 1: If C is a discrete m-dimensional (m > 1)
filling curve on [N]™, then

Li(C)> (2™ = 1)(1 - 1/N)™.

space-

Proof: Consider the 2™ corner points {1, N}™ of the [N]™
grid. Any space-filling curve must start at some arbitrary grid point,
pass through these corner points in some order, and then end at
another arbitrary grid point. Consider the increasing sequence of
indices {PI},Q;1 of these corner points along any such ordering. Fig.
1 shows the two possible distinct orderings of these four indices for
the case m = 2. The Euclidean distance between any two consecutive
points is d(C'(P;), C(Py1)) > N —1. Since Porm —P1 < N, there
exists an 1 < ¢ < 2™ such that P41 —FP; < N™ /(2™ —1). For those

UELQCPNT 5 (9™ —1)(1 - 1/N)". O
Remark: For the 2-D Camse, the limit constant given by Theorem
1 is 3. By a computerized exhaustive search, we have improved this
to 3.25, implying that the bound of Theorem 1 is not tight. This
was achieved by considering all possible paths through a specific
configuration of nine points in the plane, analogously to the four
corner points in the theorem proof. )
Whether |[i — j| can be considered a good estimate for
d(C{i),C(7))™ depends on the existence of a positive constant
lower bound on L2(C'). The answer to this is negative, relying on
the following discrete analog of the classic topological theorem ([2],
ch. 5, Theorem 2.3) that no mapping f : [0,1] — [0,1]™ (m > 1)
can be continuous and possess a continuous inverse.
Theorem 2: If C'is a discrete m-dimensional space-filling curve
on [N]™, then

two points, we have

Lo(Cy = O(N'™™).

Proof: Choose a segment S of C of length at least + N™ and at
most %N'“. By the isoperimetric inequality on the multidimensional
grid [1], the boundary of S , namely, the set of grid points in 5
that have an immediate neighbor in C' — S, denoted 0.5, satisfies
[0S] = Q(N™71).! Form a list of the points of 8.5 sorted by their
position along (', and choose the point p at the middle of this list.
The distance along C' from p to the nearest endpoint of .S must now
be at least |£|9S]]. This distance bounds from below the distance

! Qf(N)) denotes a quantity that is not less than cf(.\)
constant ¢ and sufficiently large N

for some

along C' between p and any of its neighbors in C' — S. The Euclidean
distance between such a pair is 1, and the distance along the curve
is Q(N™7Y), implying L2(C') = O(N'™™). O

III. HiLBERT CURVES

The standard m-dimensional raster space-filling curve on [N]™ ,
which is denoted R}, does not have good locality properties, namely,
Li(RY) = 52(.\'"7_1) (see Fig. 2). On the other hand, the Hilbert
curve [3] is an excellent example of a locality-preserving space-filling
curve. The m-dimensional Hilbert curve of order k&, which is denoted
H}", may be consiructed recursively for any N = 2%, as described
in Fig. 3. The locality of the Hilbert curve is demonstrated by the
following theorem, showing that it is close to optimal (compare with
Theorem 1).

Theorem 3: If Hi* is a m-dimensional Hilbert curve on [N]|™ =
[2%}™, then

Ly(HP) < (m + 3)™/22™,

Proof: Consider any subpath of length n along H;". There
exists an integer 7 such that (2™)""' < n < (2™)". The fact
that once H;' enters a grid quadrant of order r, it does not leave
it until it has traversed all (2")™ grid points in the quadrant implies
that the subpath must lie in the union of two adjacent quadrants
containing (27)™ grid points each (see Fig. 4(a)). If this were not
true, the length of the subpath would be greater than (27)™ . The
diameter d of the set of grid points traversed by the subpath satisfies
d? < (m — 1+ 4)(2")? (by the Pythagorian theorem); therefore

m

d? S (m+3)m/22m_ O

The upper bound of Theorem 3 is far from tight in all cases. For the
2-D case, we can improve the constant 20 obtained from Theorem 3
almost to its optimal value.

Theorem 4: 1f HY is a 2-D Hilbert curve on [N]? = [2F]* | then

601~ 0(27™) < L (HE) < 62

Proof: Using the terminology of the proof of Theorem 3, a more
detailed analysis of subpath containment in quadrants of size 471
(instead of quadrants of size 4") shows that one of the following six
possibilities must hold:

1) £47 <n< 247 d® < 547, and hence, d°/n < 5.
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Fig. 5. “Worst” subpath of Hg determining the value of L) (H{‘f }. This path
was found by exhaustive search, using a computer. An analogous structure is
present in H, f for any value of & due to the recursive nature of the Hilbert
curve.

2) 24" <n < £47:d> < 247, and hence, d°/n < 5%.
3) 24" <n < £47d” < 1247, and hence, @°/n < 6%.
4) £4" <n < (47 d” < 2247, and hence, d°/n < 52.
5) 447 <n < 247 d” < 2247, and hence, d*/n < 65.
6) 124" <n <47:d” < 5-47, and hence, d°/n < 6Z.

For example, the subpath of Fig. 4(a) falls into category 5, as Fig.
4(b) illustrates. Taking the largest of the locality measures among
these cases establishes the upper bound on Ly (H}).

For the lower bound, a subpath analogous to that illustrated in Fig.
5 (for k = 6, which was found by computer search) exists in H7
for all & > 1 due to the recursive nature of the Hilbert curve. This
subpath gives a locality measure of 6(1 — O(27%)). Indeed, for HZ,
it fills two adjacent quadrants of size 257* x 273 two quadrants
of size 27 x 257 on either side of these two (aligned to a fixed
direction), and so on until there are two quadrants of size 1. The
Euclidean distance between the two endpoints is

k—3
d=2) 2'41=2"""-1

+=0
and the distance along the curve is

k—3 2
n=23 4"+ 1= 24%2
n ; + 3 -+

[

1
5

Therefore, d* /n = 6(1 — O(27%)). O
Remark: For the 3-D case, Theorem 3 yields LL(H,";) < 117.56.
By computer simulation, we have found that L, (H}) < 23. O
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IV. DISCUSSION

There remains a considerable gap between the lower bound on /.
for general space-filling curves (Theorem 1) and the upper bound on
Ly for the Hilbert curve family (Theorem 3). This leaves open the
question of whether there exist families of space-filling curves with
locality properties better than those of the Hilbert curves for all sizes.

It seems plausible that the Hilbert curves should also yield good
results with respect to other measures of locality, such as that of
Mitchison and Durbin [6]. These authors conjecture that the space-
filling curve with optimal locality properties, measured by (2) with
¢ < 1, must have a “fractal” character. Simulations performed by
us show that, in agreement with this prediction, that in some cases,
the (fractal) Hilbert curves indeed outperform the (nonfractal) curve
constructed in [6].

In conclusion, we emphasize the practical implications of our
results. Theorem 4 guarantees that if spatial correlation exists among
the values of a discrete 2-D data array, a 1-ID algorithm (such as
that compressing a 1-D data stream) may scan the the array along
a Hilbert curve, and the loss in data correlation along the scan will
be bounded.
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