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A B S T R A C T
The stationary axisymmetric outflow from a rotating sphere with a (split) monopole magnetic
field is considered. The stream equation describing the outflow is linearized in terms of the
Michel magnetization parameter j¹1 p 1, which allows a self-consistent analysis of the direct
problem. It is shown that for a finite j the fast magnetosonic surface is located at a finite
distance ,j1=3RL (RL ¼ c=QF is the light cylinder). We have also found that the particle energy
at the fast surface is just equal to the Michel value g , j1=3. The particle acceleration and
magnetic field collimation are shown to become ineffective outside the fast magnetosonic
surface.
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1 I N T RO D U C T I O N

Axisymmetric stationary hydrodynamic and magnetohydro-
dynamic (MHD) flows in the vicinity of a central compact body
have long been studied in connection with many astrophysical
sources. Spherically symmetric accretion on to ordinary stars and
black holes (Bondi 1952; Shapiro & Teukolsky 1983), axisym-
metric stellar (solar) wind (Parker 1958; Michalas 1978), jets from
young stellar objects (Lada 1985), outflows from axisymmetric
magnetosphere of rotating neutron stars (Michel 1991; Beskin,
Gurevich & Istomin 1993) – all these are flows of the indicated
type.

The MHD models are now developed intensely in connection
with the theory of the magnetospheres of rotating supermassive
black holes (M , 108 –109 M(), which are thought of as a ‘central
engine’ in active galactic nuclei (AGNs) and quasars (Begelman,
Blandford & Rees 1984; Thorne, Price & Macdonald 1986). In
particular, it is the MHD model that is now most popular in
connection with the problem of the origin and stability of the
jets. Indeed, purely gas-dynamic models require extremely high
densities of the thermal energy, which contradicts the observed
fluxes of X-ray radiation from AGNs. In turn, within the radiation
models it is difficult to explain the existence of Lorentz factors of
ejected matter g > 3, registered in some jets (Blandford 1992). As
for the MHD models, one can easily understand both the activity of
the sources (rotating energy of compact objects), and the mechan-
ism of the energy and angular momentum loss. Moreover, within
this approach the energy transformation from electromagnetic field
to particles may become ineffective which could, in principle,
explain the transportation of energy from central engine to the
radiating regions. On the other hand, it is well known for young
radio pulsars that, even at distances that are small in comparison
with the size of a supernova remnant, the greater part of the energy
is transferred by particles rather than by an electromagnetic wave,

though within the light cylinder the situation is reversed (Rees &
Gunn 1974; Kennel & Coroniti 1984).

From the theoretical point of view, the crucial point here is the
question of how large the longitudinal electric current circulating in
the magnetosphere is. When it exceeds the Goldreich–Julian (1969)
current, the pinch effect (the attraction of parallel currents) becomes
possible, which results in the collimation of magnetic field lines
along the rotational axis. One should remember here that within the
force-free approach the longitudinal current is a free parameter.
However, in the general MHD approach the number of singular
surfaces increases and the smooth transition through them becomes
possible only with a definite choice of longitudinal current.

It is well known that for axisymmetric stationary flows the
magnetic surfaces are described by the stream equation, which is
a non-linear partial differential equation containing (in the general
case) five integrals of motion. This equation has been discussed by
many authors (Soloviev 1967; Okamoto 1975; Ardavan 1976, 1979;
Blandford & Payne 1982; Lovelace et al. 1986; Camenzind 1987;
Heyvaerts & Norman 1989; Sakurai 1990; Pelletier & Pudritz
1992; Li, Chiueh & Begelman 1992; Fendt, Camenzind & Appl
1995), and recently it was obtained in the most general case of the
Kerr metric (Nitta, Takahashi & Tomimatsu 1991; Beskin & Pariev
1993). Nevertheless, only a few analytical solutions of the stream
equation are now known (Michel 1973; Blandford & Znayek 1977;
Low & Tsinganos 1986; Tsinganos & Sauty 1992; Bogovalov 1992;
Beskin & Pidoprigora 1995; Pariev 1996; Beskin & Malyshkin
1996).

In this paper we consider the relativistic MHD outflow from a
magnetized sphere with a (split) monopole magnetic field. This
approach may be interesting with regard to the problem of a jet
formation from the ‘central engine’ in AGN and recently discovered
jets from radio pulsars (Markwardt & Ögelman 1995; Hester et al.
1995). Henceforth the case of a cold plasma is considered. Such an
assumption is quite reasonable because thermal processes play no
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role in the magnetosphere of radio pulsars. As for the jets from
AGN, this approximation is applicable in the rarefied polar regions
of magnetosphere, where the density of accreting gas is small
enough. Finally, the flow is assumed to be near the Michel (1973)
force-free monopole analytical solution. In other words, the Michel
(1969) magnetization parameter j is assumed to be much larger
than 1. As a result, the stream equation describing the outflow can
be linearized in terms of the value j¹1, and the self-consistent
analysis of the flow can be produced.

The goal of this paper is to demonstrate how all characteristics of
a flow (magnetic structure, particle energy as well as the position
of singular surfaces) can be obtained from a definite number of
boundary conditions at the sphere surface. It will be shown that the
fast magnetosonic surface placed for the force-free flow at infinity is
located in our case of finite j at finite distance ,j1=3RL from the
rotational axis (RL is the light cylinder), the particle energy at
the fast surface being just equal to the Michel value g , j1=3. It will
also be shown that, outside the fast magnetosonic surface, the
acceleration of particles becomes ineffective. At the same time,
the disturbance of magnetic field lines does not exceed j¹2=3 here,
and grows very slowly at large distances.

2 A L G E B R A I C R E L AT I O N S

Let us consider a stationary axisymmetric MHD outflow of cold
plasma in a flat space–time

grr ¼ 1; gvv ¼ r2
; gJJ ¼ Ã2 ¼ r2 sin2 v: ð1Þ

Units where c ¼ 1 are used throughout the paper.
In the stationary axisymmetric case, the magnetic field may be

written in the form

B ¼
=W × eĴ

2pÃ
¹

2I
Ã

eĴ: ð2Þ

Here Wðr; vÞ is the magnetic flux, and Iðr; vÞ is the total electric
current flowing inside the region W < Wðr; vÞ. On the other hand,
assuming that the magnetosphere contains enough plasma to screen
the longitudinal electric field, one can find

E ¼ ¹
QF

2p
=W; ð3Þ

the angular velocity QF ¼ QFðWÞ being constant on the magnetic
surfaces Wðr; vÞ ¼ constant.

Further, using continuity of the flow =·ðnuÞ ¼ 0, we have

u ¼
h

n
B þ gQFÃeĴ: ð4Þ

Here n is the concentration of particles in the reference frame
comoving with the hydrodynamic flow v, g¹1 ¼

�������������
1 ¹ v2

p
, and

u ¼ v=
�������������
1 ¹ v2

p
is the space component of the four-velocity of the

flow. As =B ¼ 0, a new quantity h is constant on the magnetic
surfaces as well: h ¼ hðWÞ:

To find two more integrals of motion, one has to write down the
energy–momentum conservation law. It immediately follows from
this relation that the energy E and the z-component of the angular
momentum L must be conserved along a magnetic field line

E ¼ EðWÞ ¼
QFI
2p

þ mhg; ð5Þ

L ¼ LðWÞ ¼
I

2p
þ mhÃuĴ; ð6Þ

where for cold plasma the enthalpy m is constant. The fifth integral
of motion is, in fact, the zero entropy per unit particle sðWÞ ¼ 0.

As a result, all other physical parameters are determined by

algebraic relations, e.g.

I
2p

¼
L ¹ QFÃ2E

1 ¹ Q2
FÃ2 ¹ M2 ; ð7Þ

g ¼
1
mh

ðE ¹ QFLÞ ¹ M2E

1 ¹ Q2
FÃ2 ¹ M2 ; ð8Þ

uĴ ¼
1

Ãmh

ðE ¹ QFLÞQFÃ2 ¹ LM2

1 ¹ Q2
FÃ2 ¹ M2 ; ð9Þ

where

M2 ¼
4ph2m

n
: ð10Þ

To determine the Mach number M, one should use an obvious
relation g2 ¹ u2 ¼ 1 which gives

K

Ã2A2 ¼
1

64p4

M4ð=WÞ2

Ã2 þ m2h2
; ð11Þ

where

A ¼ 1 ¹ Q2
FÃ2 ¹ M2

; ð12Þ

and

K ¼ Ã2ðE ¹ QFLÞ2ð1 ¹ Q2
FÃ2 ¹ 2M2Þ þ M4ðÃ2E2 ¹ L2Þ: ð13Þ

Equations (7)–(9) and (11) are the algebraic relations, which for the
known stream function W [and, hence, for the known poloidal field
BP (2)] and for the given integrals of motion allow us to find all other
characteristics of a flow (Weber & Davis 1967; Mestel 1968;
Okamoto 1978; Kennel, Fujimura & Okamoto 1983; Camenzind
1986; Bogovalov 1990; Takahashi et al. 1990).

The MHD cold flow described by the algebraic relations (7)–(9)
is characterized by the following singular surfaces.

(1) The Alfvénic surface defined from the condition of nulling
the denominator A (12) in the relations (7)–(9),

A ¼ 0: ð14Þ

It is necessary to stress that the algebraic relations (7)–(9) them-
selves contain no singularity, and the regularity conditions (zero
nominators for zero denominators) define the position of the
Alfvénic surface. At the same time, as shown below, the stream
equation itself has a singularity on the Alfvén surface.

(2) The fast magnetosonic surface defined as a singularity in the
gradient of M2. Indeed, equation (11) may be expressed in an
equivalent form ð=WÞ2 ¼ FðM2

;E;L; h;QFÞ, where

F ¼
64p4

M4

K

A2 ¹
64p4

M4 Ã2m2h2
: ð15Þ

Taking the gradient of both sides of equation (15), one can obtain
the following expression for =M2,

=aM2 ¼
Na

D
¼ ¹

A

ð=WÞ2D
=bW=a=bW þ

A
2

=0
aF

ð=WÞ2D
; ð16Þ

where for a cold flow we have

D ¼
A

M2 þ
1

M2

B2
Ĵ

B2
P

: ð17Þ

Here, the subscripts a; b run through the values r; v only, the
gradient =0 acts on all the variables except M2, and everywhere
the symbol = means a covariant differentiation in the flat space with
metric gik (1). It is the regularity conditions

D ¼ 0;

Nr ¼ 0; ð18Þ

Nv ¼ 0;
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together with the regularity condition on the Alfvénic surface, that
determine fully the structure of a flow (Heyvaerts 1996). It is
obviously enough that the slow magnetosonic surface is absent
for the cold flow considered here.

3 T H E S T R E A M E Q UAT I O N

The general form of the stream equation in the Kerr metric was
obtained by Nitta et al. (1991) and Beskin & Pariev (1993). Then for
a cold flow s ¼ 0 (and neglecting the gravity), we have

A =k
1

Ã2 =kW

� �
þ

1
Ã2ð=WÞ2

=aW=bW=a=bW

D

" #

þ
1

Ã2 =0
kA=kW ¹

A

Ã2ð=WÞ2

1
2D

=0
kF=kW

þ QFð=WÞ2 dQF

dW

þ
64p4

Ã2

1
2M2

∂
∂W

G
A

� �
¹ 16p3mn

1
h

dh

dW
¼ 0;

ð19Þ

where

G ¼ Ã2ðE ¹ QFLÞ2 þ M2L2 ¹ M2Ã2E2
; ð20Þ

and the derivative ∂=∂W acts only on the integrals of motion while
the other variables are considered as constants. One can see that the
solution of the stream equation (19) is to fulfil the regularity
condition on the Alfvénic surface A ¼ 0

1
Ã2 =0

kA=kW þ QFð=WÞ2 dQF

dW

þ
64p4

Ã2

1
2M2

∂
∂W

G
A

� �
¹ 16p3mn

1
h

dh

dW
¼ 0:

ð21Þ

This relation is equivalent to the regularity condition on the light
cylinder in the force–free pulsar equation (Michel 1973; Mestel &
Wang 1979). In turn, the quantity M2 is to be considered as a
function of the gradient ð=WÞ2 and the four integrals of motion.
Hence, one must determine M2 as M2 ¼ M2 ð=WÞ2

;EðWÞ; LðWÞ;
�

hðWÞ;QFðWÞÿ. The latter relation is an implicit form of equation
(11).

It is well known that in the force-free limit M2 → 0, h → 0,
(D¹1 → 0) for specially chosen integrals of motion QF ¼ constant,

L0ðWÞ ¼
QF

8p2 ð2W ¹ W2
=W0Þ;

E0ðWÞ ¼ QFL0ðWÞ;

ð22Þ

the stream equation has the (split) monopole solution (Michel 1973)

Wðr; vÞ ¼ W0ð1 ¹ cos vÞ: ð23Þ

Here W0 is the whole flux of the magnetic field through the
hemisphere. In accordance with (22), (23) one can rewrite (22) as
E0 ¼ EA sin2 v, where

EA ¼
Q2

FW0

8p2 :

The stream equation (19) contains only the magnetic flux Wðr; vÞ
and four integrals of motion QFðWÞ; hðWÞ;EðWÞ and LðWÞ. On the
other hand, for cold flow it has two singular surfaces (14) and (18).
As a result, we have actually three critical conditions, i.e. D ¼ 0 and
Nr ¼ 0 at the fast surface, and (21) at the Alfvénic surface. Together
these three conditions determine three values, i.e. the disturbance of
current lðvÞ, disturbance of stream function f (because it is the

second boundary condition to the stream equation), and the position
of the fast surface. As to the condition Nv ¼ 0, it determines the
density on the fast surface. The simplest versions of these critical
conditions are well-known on the example of the spherically
symmetric transonic flows (Bondi 1952; Parker 1958) when
Nv ; 0, and two regularity conditions, D ¼ 0 and Nr ¼ 0, together
determine the radius of the sound surface and the sound velocity at
this surface. As a result, this problem requires four boundary
conditions on the star surface r ¼ R (Heyvaerts 1996), say, the
angular velocity QF, Lorentz-factor gin, plasma density in the
laboratory frame nin, and the magnetic flux on the star surface
WðR; vÞ. For simplicity, we consider the case

QFðR; vÞ ¼ QF ¼ constant; ð24Þ

gðR; vÞ ¼ gin ¼ constant; ð25Þ

nðR; vÞ ¼ nin ¼ constant; ð26Þ

and put WðR; vÞ ¼ W0ð1 ¹ cos vÞ, i.e. the same as in the monopole
solution. Introducing small disturbances to the Michel force-free
integrals (22) E0 and L0 as

EðWÞ ¼ E0ðWÞ þ bðWÞ;

LðWÞ ¼ L0ðWÞ þ lðWÞ;
ð27Þ

one can check that for a star radius R p RL the algebraic relations
(7)–(9) give h ¼ nin=Bp. One can also introduce for convenience a
new quantity e ¼ E ¹ QFL. In our case

e ¼ E ¹ QFL ¼ b ¹ QFl ¼
Bp

4p
M2ðRÞ ¼ ginmh; ð28Þ

the integrals of motion h, QF, and e being constant in the whole
space. Here M2ðRÞ is the Mach number on the star surface,
nðr; vÞ ¼ nin=gin, and Bp ¼ W0=2pR2 is the radial magnetic field
on the star surface. According to (28), we can define
bðWÞ ¼ e þ QFlðWÞ: As to lðWÞ [which for small disturbances of
the monopole magnetic field can be considered as a function v only,
i.e. l ¼ lðvÞ], it must be determined from the regularity condition at
the critical surfaces. As a result, the stream equation (19) has a
simpler form

A =k
1

Ã2 =kW

� �
þ

=aW=bW=a=bW

DÃ2ð=WÞ2

" #

þ
=0

kA=kW

Ã2 ¹
A

Ã2ð=WÞ2

1
2D

=0
kF=kW

þ
64p4

Ã2A
L

dL
dW

¹ Ã2E
dE
dW

� �
¼ 0:

ð29Þ

Let us consider the case

j ¼
EA

mh
q 1; gin < j1=3 ð30Þ

(j is just the Michel magnetization parameter), so that e=E p 1 as
well. Then one can seek the solution of the stream equation (29) in
the form

Wðr; vÞ ¼ W0½1 ¹ cos v þ «f ðr; vÞÿ; ð31Þ

where « , j¹1 p 1 is a small parameter. Substituting the relation
(31) into (29), we find

«A
∂2f

∂r2 þ «A
D þ 1
Dr2 sin v

∂
∂v

1
sin v

∂f
∂v

� �
¹ 2«Q2

Fr sin2 v
∂f
∂r

¹ 2«Q2
F sin v cos v

∂f
∂v
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þ 2«Q2
Fð3 cos2 v ¹ 1Þf þ

8p2QF

W0

1
sin v

d
dv

ðsin2 vlÞ

¹ 2«
A

Dr2

cos v

sin v

∂f
∂v

þ 2«
A

Dr2

ð1 þ cos2 vÞ

sin2 v
f

¹
64p4A

Q2
FDW2

0

cos v

sin2 v

e2

M4

þ 2A cos v
1 ¹ M2

DQ2
Fr4 sin2 v

þ
16p2 cos vA

Q2
Fr2 sin2 v

e
DW0

¹
8p2 sin vA

DQFr2W0

d
dv

l

sin2 v

� �
¹

1
Dr2

A cos v

Q2
Fr2 sin2 v

þ 2Q2
F sin2 v cos v

M2

A
¹ 16p2Q2

Fr2 sin2 v cos v
e

AW0
¼ 0;

ð32Þ

the Mach number M2½ð=WÞ2
;E;L;QF; hÿ being the physical root of

the algebraic equation (11).

4 FA S T M AG N E T O S O N I C S U R FAC E

To determine the position of the fast magnetosonic surface r ¼ rF

(and to determine the physical root M2) it is necessary to solve the
fourth-order algebraic equation (11). Let us define a new quantity

g ¼
M2

Q2
FÃ2 : ð33Þ

According to (8) and (33), g p 1 for j q 1, and

g ¼
E
mh

g: ð34Þ

Hence, g is actually the ratio of the particle energy flux to total flux
of energy. For g p 1, particles play no role in the total energy
losses.

As a result one can rewrite the algebraic equation (11) in the form
(cf. Tomimatsu 1994)

2g3 ¹ y þ
1

Q2
Fr2 sin2 v

� �
g2 þ

m2h2

E2 þ
e2

Q2
Fr2 sin2 vE2 ¼ 0; ð35Þ

where we omit the term g4 (which gives the unphysical root g < 0),
and introduce

y ¼ 1 ¹
Q4

Fr2 sin2 vð=WÞ2

64p4E2 : ð36Þ

One can check that y ¼ 0 for the force-free Michel solution (22)–
(23), and y p 1 for j¹1 p 1. As a result, we find

yðr; vÞ ¼ 2
e þ QFl

E
¹

2«

sin v

∂f
∂v

þ 4«
cos v

sin2 v
f : ð37Þ

It is the dependence of y on «f that allows us to analyse the problem
self-consistently.

The fast magnetosonic surface corresponds to the intersection of
two roots of equation (35) at one point (see Fig. 1). On the other
hand, equation (35) has two real positive roots if Q # 0, where Q is
the discriminant of the third-order algebraic equation (35). For r
near rF, where the last term in (35) can be neglected, we have

Q ¼
1
16

m4h4

E4 ¹
1

16 × 27
m2h2

E2 y þ
1

Q2
Fr2 sin2 v

� �3

; ð38Þ

the regularity conditions at the fast magnetosonic surface r ¼ rF being

Q ¼ 0;

∂Q=∂r ¼ 0;

∂Q=∂v ¼ 0:

ð39Þ

One can check that equations (39) just correspond to the regularity
conditions D ¼ 0, Nr ¼ 0, and Nv ¼ 0 (18). As a result, we can
rewrite the condition Q ¼ 0 as

yðrF; vÞ þ
1

Q2
Fr2

F sin2 v
¼ 3

mh

E

� �2=3
; ð40Þ

and ∂Q=∂r ¼ 0 as

rF
∂y

∂r

� �
r¼rF

¹
2

Q2
Fr2

F sin2 v
¼ 0: ð41Þ

As for the third condition Nv ¼ 0, as was already stressed, it
determines the density n on the fast surface. As a result, using the
approximation rðdy=drÞ < y, we see that

yðrFÞ < j¹2=3; QFrF < j1=3
: ð42Þ

It means that the disturbance y remains small on any way up to the
fast surface rF, where

rFðvÞ < RLj1=3 sin¹1=3 v; ð43Þ

when v > j¹1=2, and

rF < RLðj=ginÞ
1=2
; ð44Þ

near the axis. The positions of Alfvénic and fast magnetosonic
surfaces are shown in Fig. 2. On the other hand, for gin > j1=3 the
fast magnetosonic surface is a sphere with the radius (44), and there
is no particle acceleration for r < rF (cf. Bogovalov 1996).

Moreover, as the root gðrFÞ at r ¼ rF does not depend on the
second term in (35), we have exactly

gðrF; vÞ ¼
mh

E

� �2=3
; ð45Þ

and, hence,

gðrF; vÞ ¼
E
mh

� �1=3

¼ j1=3 sin2=3 v; ð46Þ

which just corresponds to Michel’s (1969) result. The only differ-
ence is that this energy is achieved at a finite distance rF (43). As we
see from (41), it takes place because we took into consideration the
dependence of y on the field disturbance «f . Indeed, according to
(28) and (42), it is the disturbance of the magnetic surfaces «f that
plays the main role in (37) at the fast magnetosonic surface.

Our conclusions are also in full agreement with results obtained
by Begelman & Li (1994). In their consideration of the flux tubes
geometry diverging from a precisely radial flow, it was found that
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the fast magnetosonic surface moves inward from infinity and the
kinetic energy at the fast point is close to the cube root of the total
energy, which confirms the result (46).

5 I N N E R R E G I O N

In the region r sin v p rF we can essentially simplify our problem. It
can be found, for the physical root of equation (35) (i.e. the root
corresponding to a subsonic flow D > 0 for r < rF and a supersonic
flow D < 0 for r > rF, see Fig. 1) at distances much smaller than rF,
that

gðr; vÞ ¼
1

j sin2 v

��������������������������������
g2

in þ r2Q2
F sin2 v

q
: ð47Þ

In accordance with (34), we have for particle energy

gðr; vÞ ¼

��������������������������������
g2

in þ r2Q2
F sin2 v

q
: ð48Þ

In the inner region r sin v p gin we have then gðr; vÞ ¼ gin and,
hence, the particle energy here remains the same as on the star
surface.

In the intermediate region gin < r sin v, r < rF we have for the
physical root D > 0

g ¼
QFr

j sin v
; ð49Þ

and for the non-physical root, D < 0,

gn ¼
1

2Q2
Fr2 sin2 v

: ð50Þ

Accordingly, here

gðr; vÞ ¼ QFr sin v; ð51Þ

that is, the energy grows linearly with the distance in this range and
D ¼ M¹2 while

M2ðr; vÞ ¼
Q3

Fr3

j
sin v:

As we can see, in this region all the physical characteristics of a flow
do not depend on the field disturbance «f ðr; vÞ.

It is also quite straightforward that at distances r p rF we have
D ¼ M¹2 ¼ 1=ðgQ2

Fr2 sin2 vÞ q 1. Substituting this expression
together with (47) in equation (32), one obtains that in the limit
QFr sin v q 1 the non-uniform part N of (32) takes the form

N <
Q2

F

sin v

d
dv

lQF

EA
sin2 v

� �
¹

2Q4
Fr2 sin2 v cos v

jð1 ¹ Q2
Fr2 sin2 vÞ

��������������������������������
g2

in þ r2Q2
F sin2 v

q
¹ gin

� �

¹
Q4

Fr2 sin2 v cos v

j
��������������������������������
g2

in þ Q2
Fr2 sin2 v

q
:

ð52Þ

The first term in (52) is of the order of l=L0 everywhere, while the
value of the others grows as r2Q2

F=ðjginÞ at the distances
r sin v p ginRL, and grows as rQF=j when ginRL p r sin v p rF. It
will be shown further that for all r sin v > RL, the latter two terms are
higher in magnitude than the former one. Owing to the linearity of
equation (32), we can seek its particular solution as the sum of
solutions found for each term in (52).

If we take only the first term into account, the stream equation
coincides with the force-free equation

«ð1 ¹ x2 sin2 vÞ
∂2f

∂x2

þ «ð1 ¹ x2 sin2 vÞ
sin v

x2

∂
∂v

1
sin v

∂f
∂v

� �
¹ 2«x sin2 v

∂f
∂x

¹ 2« sin v cos v
∂f
∂v

þ 2«ð3 cos2 v ¹ 1Þf þ IA
1

sin v

1
sin v

d
dv

ðl sin2 vÞ ¼ 0: ð53Þ

Here x ¼ QFr and the disturbance of current is written as
IM þ dIðvÞ ¼ IA sin2 v þ lðvÞ:

Equation (53) has a singularity on the Alfvénic surface, coincid-
ing in the force-free limit with the light cylinder x sin v ¼ 1. In view
of the simple power-like dependence on the variable x, one can seek
the solution of this equation as a series,

f ðx; vÞ ¼
X∞

m¼1

Zmðx; vÞ; ð54Þ

where

Zmðx; vÞ ¼
Xm

n¼1

am;nðvÞx
2n
: ð55Þ

Now it is readily seen that for each set of harmonics n, the
coefficient corresponding to x2n will contain only the function
an;nðvÞ and its derivatives, the one corresponding to x2n¹2 will
contain functions an;nðvÞ and an;n¹1ðvÞ only, the coefficient corre-
sponding to x2n¹4 will contain the functions an;n¹1ðvÞ and an;n¹2ðvÞ,
and so on. As for the coefficient of a free term, it is an equation
giving us the eigenfunctions lmðvÞ, and we must use them in the
expansion of a current disturbance function lðvÞ.
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Figure 2. Spatial structure of Alfvénic and fast magnetosonic surfaces for
gin p j1=3.
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Unfortunately in the general case of an arbitrary lðvÞ both the
coefficients am;n and the eigenfunctions lmðvÞ are too complicated.
However, for the specially chosen disturbance lðvÞ ¼

ðEA=QFÞh sin2 v, h ¼ constant p 1 (and for R p RL), we have the
following exact solution of equation (53) which has no singularity
on the Alfvénic surface:

«f ðr; vÞ ¼ hQ2
Fr2 sin2 v cos v: ð56Þ

Of course, one can use (56) if «f p 1 only. Because of the
simplicity of this solution we shall henceforth consider only this
special form of lðvÞ.

The solution (56) demonstrates that in the force-free limit the
current lðvÞ on the star surface is a free parameter, and the solution in
the region r p rF can be constructed for arbitrary values of h p 1.
The disturbance of current lðvÞ, as was already stressed, can be
determined only within the full MHD equation together with the
regularity conditions on the fast surface. Unfortunately, the exact
analytical determination of lðvÞ is impossible. On the other hand,
comparing the solution (56) with the regularity condition (42) on
the fast surface, one can restrict the disturbance of current

l=L0 , j¹4=3
: ð57Þ

As we see, the disturbance of current must be very small to have
no singularity on the fast magnetosonic surface. It confirms our
choice of monopole solution (22)–(23) with the Michel current
I ¼ 2pL0ðWÞ as a zero approximation.

Evaluation (57) explains as well what was said earlier about the
magnitude of the terms in (52). Indeed, we see now that the ratio of
the first term in (52) and the second and third is of the order of
gin=ðj

1=3 x2Þ in the region 1 p x p gin, and ,1=ðj1=3xÞ in the
regiongin p x p rFQF , j1=3, which is much less than unity in
both ranges. However, we cannot neglect the first term of (52)
because the solution (56) corresponding to it is not negligible in the
vicinity of a fast magnetosonic surface because of the regularity
condition.

The expression (56) also shows us that for I < IM (and hence
h < 0), the field lines are slightly deviated to form a disc ( f < 0),
light surface jEj ¼ jBj being located at a finite distance
ÃC ¼ j2hj¹1=4RL, where the disturbance of the monopole field is
still small. Accordingly, for I > IM (h > 0), the magnetic field lines
are stretched along the rotational axis (f > 0), and in this case light
surface is achieved only at infinity.

Now let us turn to the equation corresponding to the second and
third terms in (52). Because the latter shows complex behaviour in
the region x , 1, we shall consider this equation only at distances
x q 1 and neglect all the terms of the order of 1=ðx2 sin2 vÞ in it.
Then equation (32) looks like

«
∂2f

∂x2 x2 þ 2
∂f
∂x

x þ sin v
∂
∂v

1
sin v

∂f
∂v

� �
þ 2

cos v

sin v

∂f
∂v

¹ 2
ð3 cos2 v ¹ 1Þ

sin2 v
f

þ 2
cos v

j sin2 v

���������������������������
g2

in þ x2 sin2 v

q
¹ gin

� �
þ

x2 sin2 v cos v

j
���������������������������
g2

in þ x2 sin2 v
q ¼ 0: ð58Þ

We seek the solution of (58) as a series

«f ðx; vÞ ¼
X∞

k¼1

P2
kðcos vÞTkðxÞ; ð59Þ

and we find that there exists an explicit expression of the functions
TkðxÞ as a series of powers of x with coefficients depending upon x,
but it is too complex to be written here. Nevertheless, from this
exact expression one can obtain some asymptotic describing the
behaviour of «f far from the point ginrL, namely

«f ¼ a3P2
3ðcos vÞ

x2 ln x
jgin

þ
X∞

k¼5

ak P2
k ðcos vÞ

x2

jgin
; RL p r p ginRL ð60Þ

«f ¼
X∞

k¼3

bk P2
k ðcos vÞ

x
j
; ginRL p r p rF; ð61Þ

where ak and bk are some constants. This result could also be
obtained as an exact solution of equation (58), where we substitute
for the last terms of (58) their asymptotic expressions in the ranges
indicated in (60) and (61). The first way of dealing with this
problem, however, enables us to obtain an exact solution at
distances ,gin.

Solution (61) satisfies directly the regularity conditions (42)
because all bk are approximately equal to unity. Finally, one can
see from (56), (60) and (61) that it is the field disturbance «f , rather
than the change of integrals of motion e and lðvÞ, that plays the main
role in the regularity conditions (42)–(44) at the fast magnetosonic
surface. It gives us «f ðrFÞ , j¹2=3

: Hence, the disturbance of the
magnetic surfaces remains small on any way up to the fast surface
r ¼ rF. On the other hand, we can conclude that it is impossible to
analyse the regularity conditions in a given magnetic field «f ¼ 0.
Indeed, for «f ¼ 0 we have ð∂y=∂rÞ ¼ 0, and hence rF → ∞ (cf.
Michel 1969). In other words, the finite radius of the fast magneto-
sonic surface results from the self-consistency of our analysis.

6 FA R A S Y M P T OT I C R E G I O N

In the far asymptotic region r q rF, the physical root D < 0 is

g ¼
y

2
1 ¹ 4

m2h2

y3E2

� �
: ð62Þ

One can check that (62) corresponds to the drift velocity

Udr ¼
jEj

jBj
<

jEj

BJ

ð63Þ

with the energy g ¼ ð1 ¹ U2
drÞ

¹1=2 just equal to (34). Indeed, using
the definition (2), (3) and relations (7)–(9), equation (11) in the
limit r q rF can be rewritten in a form

B2
J ¼ jEj2 þ

ð4pÞ2Q2
FÃ2m2h2

M4 : ð64Þ

As a result, we have

1 ¹ U2
dr <

B2
J ¹ jEj2

B2
J

<
1
g2

mh

E

� �2
; ð65Þ

which corresponds to particle energy (34). On the other hand, in this
region the stream equation can be rewritten in the simple form

«r2 ∂2f

∂r2 þ 2«r
∂f
∂r

¹ sin v
D þ 1

D
∂g
∂v

¼ 0; ð66Þ

where g < y=2, and D þ 1 ¼ 8m2h2
=ðE2y3Þ p 1. For a pure radial

flow ∂f =∂r ¼ 0 we have

dg
dv

¼ 0; ð67Þ
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in agreement with previous consideration (Heyvaerts & Norman
1989; Nitta 1995). However, as we see, in the full stream equation
(66) the derivative ∂g=∂v has a small coefficient D þ 1 p 1 (which
is actually a non-linear term). Hence, this term actually plays no
role in equation (66). As a result, omitting the last term in (66), we
have at large distances

«f ðr; vÞ ¼ j¹2=3aðvÞ; ð68Þ

where aðvÞ , 1 [formally taking the last term in (66) into
consideration one can obtain «f ~ ðln rÞ1=3 (Tomimatsu 1994), i.e.
very weak collimation]. We can see that the disturbance of magnetic
field lines does not actually exceed j¹2=3. According to (34), the
particle energy at large distances changes very slowly as well.
Hence, outside the fast magnetosonic surface the particle
acceleration and the magnetic field collimation become
ineffective, and the flow remains magnetically dominated up to
infinity.

7 C O N C L U S I O N S

Thus, studying analytically a model of a stationary axisymmetric
outflow from a rotating sphere with a (split) monopole magnetic
field, we have found that in our approach the fast magnetosonic
surface is located at a finite distance ,j1=3RL. In the inner region gin

it is shown that the particle energy retains its initial value r < ginRL

and then grows linearly with distance within the range
ginRL < r < rF. We have also obtained that on the fast magnetosonic
surface this energy is just equal to the Michel value g , j1=3 and that
outside this surface the acceleration of particles becomes ineffec-
tive – the energy here does not actually exceed j1=3.

Solving the linearized version of the stream equation in the
vicinity of Michel force-free analytical solution, we found the first-
order correction to this solution in the analytical form. We showed
that it behaves mainly as r2 in the range RL < r < ginRL but then
at a distances ginRL < r < rF the linear branch of the solution arises
giving a contribution of the same order of magnitude. Far outside
the fast magnetosonic surface, the disturbance of magnetic field
lines grows with the distance from the rotational axis but so slowly
that can be treated as a constant. Finally, it was shown that the
magnitude of the disturbance does not practically exceed j¹2=3,
which justifies our use of the linearized theory.

Negligible small divergence of magnetic flux tubes from purely
radial geometry can explain an ineffectiveness of particle accelera-
tion in our model in view of the results obtained by Begelman & Li
(1994). They pointed out that sufficient acceleration occurs through
the so-called ‘magnetic nozzle’ effect, which takes place when the
quantity BpR2 decreases significantly from its value at the fast point
to its asymptotic value at infinity once the fast point is passed. In our
consideration, however, it turned out that the disturbance of a flux
function is small in the whole space and the quantity BpR2 is
practically the same both at the fast point and at infinity, which
implies an ineffectiveness of ‘magnetic nozzle’ effect and ineffi-
ciency of particle acceleration far from the fast magnetosonic
surface.

In other words, we have constructed an example in which the
regularity conditions limit the longitudinal electric current, so the
collimation of the magnetic surfaces is ineffective. In our opinion,
the absence of any sufficient magnetic field collimation and the
ineffectiveness of the particle acceleration imply that one can
discuss the asymptotic behaviour of a flow only including by
taking the surroundings into consideration.
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