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We review our work on the minimal length uncertainty relation as suggested by perturbative
string theory. We discuss simple phenomenological implications of the minimal length uncertainty
relation and then argue that the combination of the principles of quantum theory and general
relativity allow for a dynamical energy-momentum space. We discuss the implication of this for
the problem of vacuum energy and the foundations of nonperturbative string theory.

1. Introduction

One of the unequivocal characteristics of string theory [1–3] is its possession of a fundamental
length scale which determines the typical spacetime extension of a fundamental string. This is
ℓs =

√
α′, where ℏc/α′ is the string tension. Such a feature is to be expected of any candidate

theory of quantum gravity, since gravity itself is characterized by the Planck length ℓP =√
ℏGN/c3. Moreover, ℓP ∼ ℓs is understood to be the minimal length below which spacetime

distances cannot be resolved [4–7]

δs � ℓP ∼ ℓs. (1.1)

Quantum theory, on the other hand, is completely oblivious to the presence of such a scale,
despite its being the putative infrared limit of string theory. A natural question to ask is,
therefore, whether the formalism of quantum theory can be deformed or extended in such
a way as to consistently incorporate the minimal length. If it is at all possible, the precise
manner in which quantum theory must be modified may point to solutions of yet unresolved
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mysteries such as the cosmological constant problem [8–12], which is quantum gravitational
in its origin. It should also illuminate the nature of string theory [13], whence quantum theory
must emerge [14].

The idea of introducing a minimal length into quantum theory has a fascinating and
long history. It was used by Heisenberg in 1930 [15, 16] to address the infinities of the newly
formulated theory of quantum electrodynamics [17]. Over the years, the idea has been picked
up by many authors in a plethora of contexts, for example, [18–42] to list just a few. Various
ways to deform or extend quantum theory have also been suggested [43–47]. In this paper,
we focus our attention on how a minimal length can be introduced into quantum mechanics
by modifying its algebraic structure [48–50].

The starting point of our analysis is the minimal length uncertainty relation (MLUR)
[51, 52],

δx ∼
(

ℏ

δp
+ α′ δp

ℏ

)
, (1.2)

which is suggested by a resummed perturbation expansion of the string-string scattering
amplitude in a flat spacetime background [53–56]. This is essentially a Heisenberg micro-
scope argument [57] in the S-matrix language [58–61] with fundamental strings used to
probe fundamental strings. The first term inside the parentheses on the right-hand side is the
usual Heisenberg term coming from the shortening of the probe wavelength as momentum
is increased, while the second term can be understood as due to the lengthening of the probe
string as more energy is pumped into it

δp =
δE

c
∼ ℏ

α′ δx. (1.3)

Equation (1.2) implies that the uncertainty in position, δx, is bounded from below by the
string length scale,

δx �
√
α′ = ℓs, (1.4)

where the minimum occurs at

δp ∼ ℏ√
α′

=
ℏ

ℓs
≡ µs. (1.5)

Thus, ℓs is the minimal length below which spatial distances cannot be resolved, consistent
with (1.1). In fact, the MLUR can be motivated by fairly elementary general relativistic con-
siderations independent of string theory, which suggests that it is a universal feature of quan-
tum gravity [4–7].

Note that in the trans-Planckian momentum region δp ≫ µs, the MLUR is dominated
by the behavior of (1.3), which implies that large δp (UV) corresponds to large δx (IR), and
that there exists a correspondence between UV and IR physics. Such UV/IR relations have
been observed in various string dualities [1–3], and in the context of AdS/CFT correspond-
ence [62, 63] (albeit between the bulk and boundary theories). Thus, the MLUR captures
another distinguishing feature of string theory.
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In addition to the MLUR, another uncertainty relation has been pointed out by Yoneya
as characteristic of string theory. This is the so-called spacetime uncertainty relation (STUR)

δxδt ∼ ℓ2s
c
, (1.6)

which can bemotivated in a somewhat hand-wavingmanner by combining the usual energy-
time uncertainty relation δEδt ∼ ℏ [64–66] with (1.3). However, it can also be supported via
an analysis of D0-brane scattering in certain backgrounds in which δx can be made arbitrary
small at the expense ofmaking the duration of the interaction δt arbitrary large [67–73]. While
the MLUR pertains to dynamics of a particle in a nondynamic spacetime, the STUR can be
interpreted to pertain to the dynamics of spacetime itself in which the size of a quantized
spacetime cell is preserved.

In the following, we discuss how the MLUR and STUR may be incorporated into
quantum mechanics via a deformation and/or extension of its algebraic structure. In
Section 2, we introduce a deformation of the canonical commutation relation between x̂ and
p̂ which leads to the MLUR and discuss its phenomenological consequences. In Section 3, we
take the classical limit by replacing commutation relations with Poisson brackets and derive
the analogue of Liouville’s theorem in the deformed mechanics. We then discuss the effect
this has on the density of states in phase space. In Section 4, we discuss the implications of
the MLUR on the cosmological constant problem. We conclude in Section 5 with some spec-
ulations on how the STUR may be incorporated via a Nambu triple bracket and comment on
the lessons for the foundations of string theory and on the question “What is string theory?”

2. Quantum Mechanical Model of the Minimal Length

2.1. Deformed Commutation Relations

To place the MLUR, (1.2), on firmer ground, we begin by rewriting it as

δxδp ≥ ℏ

2

(
1 + βδp2

)
, (2.1)

where we have introduced the parameter β = α′/ℏ
2. The minimum value of δx as a function

of δp is plotted in Figure 1. This uncertainty relation can be reproduced by deforming the
canonical commutation relation between x̂ and p̂ to

1

iℏ

[
x̂, p̂
]
= 1 −→ 1

iℏ

[
x̂, p̂
]
= A
(
p̂2
)
, (2.2)

with A(p2) = 1 + βp2. Indeed, we find

δxδp ≥ 1

2

∣∣〈[x̂, p̂
]〉∣∣ = ℏ

2

(
1 + β

〈
p̂2
〉)

≥ ℏ

2

(
1 + βδp2

)
, (2.3)

since δp2 = 〈p̂2〉 − 〈p̂〉2. The function A(p2) can actually be more generic, with βp2 being the
linear term in its expansion in p2.
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Figure 1: The δp-dependence of the lower bound of δx under the minimal length uncertainty relation (2.1)
(red curve). The bound for the usual Heisenberg relation δx ≥ ℏ/(2δp) is shown in blue, and the linear
bound δx ≥ (ℏβ/2)δp is shown in green.

When we have more than one spatial dimension, the above commutation relation can
be generalized to

1

iℏ

[
x̂i, p̂j

]
= A
(
p̂2
)
δij + B

(
p̂2
)
p̂ip̂j , (2.4)

where p̂2 =
∑

i p̂
2
i . The right-hand side is the most general form that depends only on the

momentum and respects rotational symmetry. Assuming that the components of the mo-
mentum commute among themselves,

[
p̂i, p̂j

]
= 0, (2.5)

the Jacobi identity demands that

1

iℏ

[
x̂i, x̂j

]
= −
{
2
(
Â + B̂p̂2

)
Â′ − ÂB̂

}
L̂ij , (2.6)

where we have used the shorthand Â = A(p̂2), Â′ = (dA/dp2)(p̂2), B̂ = B(p̂2), and L̂ij =

(x̂ip̂j − x̂j p̂i)/Â. That L̂ij generates rotations can be seen from the following:

1

iℏ

[
L̂ij x̂k

]
= δikx̂j − δjkx̂i,

1

iℏ

[
L̂ij p̂k

]
= δikp̂j − δjkp̂i,

1

iℏ

[
L̂ij L̂kℓ

]
= δikL̂jℓ − δiℓL̂jk + δjℓL̂ik − δjkL̂iℓ .

(2.7)

Note that the noncommutativity of the components of position can be interpreted as a
reflection of the dynamic nature of space itself, as would be expected in quantum gravity.
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Various choices for the functions A(p2) and B(p2) have been considered in the litera-
ture. Maggiore [48, 49] proposed that

A
(
p2
)
=
√
1 + 2βp2, B

(
p2
)
= 0,

1

iℏ

[
x̂i, x̂j

]
= −2βL̂ij , (2.8)

while Kempf et al. [50] assumed that

A
(
p2
)
= 1 + βp2, B

(
p2
)
= β′ = constant, (2.9)

in which case

1

iℏ

[
x̂i, x̂j

]
= −
{(

2β − β′
)
+ β
(
2β + β′

)
p̂2
}
L̂ij . (2.10)

Kempf’s choice encompasses the algebra of Snyder [19, 20]

A
(
p2
)
= 1, B

(
p2
)
= β′,

1

iℏ

[
x̂i, x̂j

]
= β′L̂ij , (2.11)

and that of Brau and Buisseret [74, 75]

A
(
p2
)
= 1 + βp2, B

(
p2
)
= 2β,

1

iℏ

[
x̂i, x̂j

]
= O
(
β2
)
, (2.12)

for which the components of the position approximately commute. In our treatment, we
follow Kempf and use (2.9).

2.2. Shifts in the Energy Levels

Let us see whether the above deformed commutation relations led to a reasonable quantum
mechanics, with well-defined energy eigenvalues and eigenstates. Given a Hamiltonian in
terms of the deformed position and momentum operators, H(x̂, p̂), we would like to solve
the time-independent Schrödinger equation

H(x̂, p̂)|E〉 = E|E〉. (2.13)

The operators which satisfy (2.4), (2.5), and (2.6), subject to the choice (2.9), can be
represented using operators which obey the canonical commutation relation [q̂i, p̂j] = iℏδij as
[50, 76]

x̂i = q̂i + β
p̂2q̂i + q̂ip̂

2

2
+ β′

p̂i
(
p̂ · q̂
)
+
(
q̂ · p̂
)
p̂i

2
,

p̂i = p̂i.

(2.14)
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The β and β′ terms are symmetrized to ensure the hermiticity of x̂i. Note that this representa-
tion allows us to write the Hamiltonian in terms of canonical q̂i’s and p̂i’s

H ′(q̂, p̂) ≡ H(x̂(q̂, p̂), p̂). (2.15)

Thus, our deformation of the canonical commutation relations is mathematically equivalent
to a deformation of the Hamiltonian. (In this work, we do not address the question of whether
the dependence of the Hamiltonian on the position and momentum operators also need be
modified in the presence of a minimal length. Lacking in any guideline to do so, we simply
keep them fixed to their standard forms.)

By the standard replacements

q̂i = qi, p̂i =
ℏ

i

∂

∂qi
, or q̂i = iℏ

∂

∂pi
, p̂i = pi, (2.16)

x̂i and p̂j can be represented as differential operators acting on a Hilbert space of L2 functions
in either the qi’s or the pi’s, and one can write down a Schrödinger equation for a given
Hamiltonian in either q-space or p-space to solve for the energy eigenvalues. Note, however,
that while the pi’s are the eigenvalues of the momentum operators p̂i, the qi’s are not
the eigenvalues of the position operator x̂i. In fact, the existence of the minimal length
implies that x̂i cannot have any eigenfunctions within either Hilbert spaces. Therefore, the
meaning of the wave function in q-space is somewhat ambiguous. Nevertheless, the q-space
representation is particularly useful when the Schrödinger equation cannot be solved exactly,
since one can treat

ΔH(q̂, p̂) = H ′(q̂, p̂) −H(q̂, p̂) (2.17)

as a perturbation and calculate the shifts in the energies via perturbation theory in q-space.
In the following, we look at the energy shifts induced by nonzero β and β′ in the har-

monic oscillator [77, 78], the Hydrogen atom [74, 79], and a particle in a uniform gravitational
well [75, 76]. Since detailed derivations can be found in the respective references, we only
provide an outline of the results in each case.

2.2.1. Harmonic Oscillator

Consider a D-dimensional isotropic harmonic oscillator. The Hamiltonian is of course

Ĥ =
p̂2

2m
+
1

2
mω2x̂2. (2.18)

The p-space representation of the operators is

x̂i = iℏ

[(
1 + βp2

) ∂

∂pi
+ β′pipj

∂

∂pj
+

{
β + β′

(
D + 1

2

)
− δ
(
β + β′

)}
pi

]
,

p̂i = pi.

(2.19)
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Here, δ is an arbitrary real parameter which can be used to simplify the representation of

the operator x̂i at the expense of modifying the definition of the inner product in p-space
to

〈
f | g

〉
δ
=

∫
dDp

[
1 +
(
β + β′

)
p2
]δ f

∗(p)g(p). (2.20)

The introduction of δ is a canonical transformation which does not affect the energy eigen-

values [76]. The choice

δ =
β + β′((D + 1)/2)

β + β′
(2.21)

eliminates the third term in the expression for x̂i.

The rotational symmetry of the Hamiltonian, (2.18), allows us to write the wave

function in p-space as a product of a radial wave-function and a D-dimensional spherical

harmonic:

ΨD(p) = R
(
p
)
YℓmD−2mD−3···m2m1(Ω), p ≡ |p|. (2.22)

The radial Schrödinger equation is then

−mℏω

[{
[1 + (β + β′)p2]

∂

∂p

}2

+
(D − 1)

(
1 + βp2

)[
1 +
(
β + β′

)
p2
]

p

∂

∂p

−
L2
(
1 + βp2

)2

p2

]
R
(
p
)
+

1

mℏω
p2R
(
p
)
=

2E

ℏω
R
(
p
)
,

(2.23)

where

L2 = ℓ(ℓ +D − 2), ℓ = 0, 1, 2, . . . (2.24)

is the eigenvalue of the angular momentum operator inD dimensions. The solution to (2.23)

has been worked out in detail in [78], and the energy eigenvalues are

Enℓ = ℏω

⎡
⎢⎣
(
n +

D

2

)
√√√√1 +

{
β2L2 +

(
Dβ + β′

)2

4

}
m2ℏ2ω2

+

{
(
β + β′

)(
n +

D

2

)2

+
(
β − β′

)
(
L2 +

D2

4

)
+ β′

D

2

}
mℏω

2

⎤
⎥⎦,

(2.25)
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with eigenfunctions given by

Rnℓ

(
p
)
=
(
β + β′

)D/4

√
2(2k + a + b + 1)k!Γ(k + a + b + 1)

Γ(k + a + 1)Γ(k + b + 1)

(
1 − z

2

)λ/2(1 + z

2

)ℓ/2

P
(a,b)
k (z).

(2.26)

Here, P
(a,b)
k

(z) is the Jacobi polynomial of order k = (n − ℓ)/2 with argument

z =

(
β + β′

)
p2 − 1

(
β + β′

)
p2 + 1

,

a =
1

mℏω
(
β + β′

)

√√√√1 +

{
β2L2 +

(
Dβ + β′

)2

4

}
m2ℏ2ω2, b =

D

2
+ ℓ − 1,

λ =
Dβ + β′

2
(
β + β′

) + a.

(2.27)

Note that due to the (n + D/2)2-dependent term in (2.25), the energy levels are no longer
uniformly spaced. Note also that, due to the explicit L2 dependence, the original

(D + n − 1)!

(D − 1)!n!
(2.28)

fold degeneracy of the nth energy level, whichwas due to states with different k and ℓ sharing
the same n = 2k + ℓ, is resolved, leaving only the

(D + ℓ − 1)!

(D − 1)!ℓ!
− (D + ℓ − 3)!

(D − 1)!(ℓ − 2)!
(2.29)

fold degeneracy for each value of ℓ due to rotational symmetry alone [80–82]. For example,
in D = 2 dimensions, the (n + 1)-fold degeneracy of the nth level breaks down to the 2-fold
degeneracies between the pairs of m = ±ℓ states. This is illustrated in Figure 2.

2.2.2. Hydrogen Atom

The introduction of a minimal length to the coulomb potential problemwas first discussed by
Born in 1933 [18]. There, it was argued that the singularity at r = 0 will be blurred out. Here,
we find a similar effect. We consider the usual Hydrogen atomHamiltonian inD dimensions:

Ĥ =
p̂2

2m
− e2

r̂
, (2.30)
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Figure 2: The energy levels of the 2D isotropic harmonic oscillator for the cases β′ = 0 (left) and β = 0
(right). The purple solid lines indicate s-wave states which are singlets. The dashed lines are doublets
with the color indicating that ℓ = 1 (blue), ℓ = 2 (green), ℓ = 3 (yellow), ℓ = 4 (orange), and ℓ = 5 (red).√
βmℏω is the ratio of the minimal length ℏ

√
β to the characteristic length scale

√
ℏ/mω of the system.

where the operator 1/r̂ is defined as the inverse of the square root of the operator

r̂2 =
D∑

i=1

x̂2
i . (2.31)

1/r̂ will be best represented in the basis in which r̂2 is diagonal. The eigenvalues of r̂2 can be
obtained from those of the harmonic oscillator, (2.25), by taking the limit m → ∞:

r2kℓ = lim
m→∞

2Enℓ

mω2

= ℏ
2(β + β′

)
⎡
⎢⎣

⎧
⎨
⎩

(
2k + ℓ +

D

2

)
+

1

β + β′

√

β2L2 +

(
Dβ + β′

)2

4

⎫
⎬
⎭

2

− β′

β + β′

{
L2 +

(D − 1)2

4

}⎤
⎥⎦.

(2.32)

The corresponding eigenfunctions are given by the same expression as (2.26) except with a
replaced with

a =
1

β + β′

√

β2L2 +

(
Dβ + β′

)2

4
. (2.33)

Denoting these eigenfunctions as Rkℓ(p), we can define

1

r̂
Rkℓ

(
p
)
=

1

rkℓ
Rkℓ

(
p
)
. (2.34)
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Figure 3: Energy shifts of the n = 1, 2, and 3 states of the Hydrogen atom for the β′ = 0 (left) and β = 0
(right) cases. a0 = ℏ

2/me2 is the Bohr radius, and the energy is in units of the Rydberg constant e2/2a0.
The color of the lines indicates the orbital angular momentum: s (red), p (green), and d (blue). The s-
wave states are affected nonperturbatively even for very small β or β′, indicating their sensitivity to the
singularity of the Coulomb potential at the origin.

As in the harmonic oscillator case, the rotational symmetry of the Hamiltonian allows us
to write an energy eigenstate wave function as a product of a radial wave function and a
spherical harmonic. The radial wave function can then be expressed as a superposition of the

r̂2 eigenfunctions with fixed ℓ:

Rℓ

(
p
)
=

∞∑

k=0

fkRkℓ

(
p
)
. (2.35)

The radial Schrödinger equation will impose a recursion relation on the coefficients fn, which

can be solved numerically on a computer. The condition that the resulting function be square

integrable determines the eigenvalues E. The detailed procedure can be found in [76, 79].

Here, we only display the results for theD = 3 case in Figure 3. As can be seen, the degeneracy

between difference angular momentum states is lifted, just as in the harmonic oscillator
case.

It is also possible to calculate the energy shifts perturbatively using the q-space repre-

sentation for the cases D ≥ 4 or ℓ /= 0. The unperturbed energy eigenfunctions in D dimen-

sions are

Rnℓ

(
q
)
=

√√√√ 22D

aD
0 (2n +D − 3)D+1

(n − ℓ − 1)!

(n + ℓ +D − 3)!
e−ρ/2ρℓL

(2ℓ+D−2)
n−ℓ−1

(
ρ
)
, (2.36)
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where a0 = ℏ
2/me2 is the Bohr radius, L

(λ)
k

(ρ) the order k Laguerre polynomial, and

ρ =
2q

a0(n + ((D − 3)/2))
. (2.37)

The eigenvalues are

En = − e2

2a0(n + ((D − 3)/2))2
, n = 1, 2, 3, . . . . (2.38)

The operator 1/r̂ can be expanded in powers of β and β′ as [76]

1

r̂
=

1

q
+ ℏ

2β

(
1

q

∂2

∂q2
+
D − 2

q2
∂

∂q
− L2 +D − 2

q3

)
+ ℏ

2β′
(

1

q

∂2

∂q2
+
D − 2

q2
∂

∂q
+
D2 − 5D + 8

4q3

)

+ · · · ,
(2.39)

and the expectation value of the extra terms converges for ℓ /= 0 or D ≥ 4, yielding

ΔEnℓ =
e2

a0(n + ((D − 3)/2))3
ℏ
2

a2
0

[
(D − 1)

(
2β − β′

)

4(ℓ + ((D − 3)/2))(ℓ + ((D − 2)/2))(ℓ + ((D − 1)/2))

+

(
2β + β′

)

(ℓ + ((D − 2)/2))
−

(
β + β′

)

(n + ((D − 3)/2))

]
,

(2.40)

which agrees very well with the numerical results for all cases to which it is applicable. For
D = 3, this formula reduces to

ΔEnℓ =
e2

a0n3

ℏ
2

a2
0

[ (
2β − β′

)

2ℓ(ℓ + (1/2))(ℓ + 1)
+

(
2β + β′

)

(ℓ + (1/2))
−
(
β + β′

)

n

]
, (2.41)

which is clearly problematic for ℓ = 0. This is due to the breakdown of the expansion

equation (2.39) near q = 0 for D ≤ 3. Physically, this can be interpreted to mean that the

s-wave in 3D and lower dimensions is sensitive to the nonperturbative resolution of the

singularity at the origin due to the minimal length. Interestingly, in 4D and higher, there

are enough spatial dimensions for the wavefunction to spread out around the origin so that

even the s-wave is insensitive to the singularity, and the effect of the minimal length becomes

perturbative.
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2.2.3. Uniform Gravitational Potential

This subsection is based on unpublished material by Benczik in [76]. Consider the 1Dmotion
of a particle in a linear potential

V (x) =

⎧
⎨
⎩
mgx x > 0,

∞ x ≤ 0.
(2.42)

The Hamiltonian is

Ĥ =
p̂2

2m
+mgx̂. (2.43)

Since x̂ does not have any eigenstates within the Hilbert space, the condition x > 0 is replaced
with 〈x̂〉 > 0. In the q-space representation, the operators are given by

x̂ = q

(
1 − ℏ

2β
d2

dq2

)
,

p̂ =
ℏ

i

d

dq
,

(2.44)

and the Schrödinger equation becomes

Ĥψ = − ℏ
2

2m

d2ψ

dq2
+mgq

(
1 − ℏ

2β
d2

dq2

)
ψ = Eψ. (2.45)

The condition 〈x̂〉 > 0 can be imposed by restricting the domain of q to q > 0 and demanding
that the wave function vanish at q = 0. The solution to the β = 0 case is given by the Airy
function

ψn

(
q
)
=

1∣∣Ai′(αn)
∣∣Ai
(q
a
+ αn

)
, a =

[
ℏ
2

2m2g

]1/3
, (2.46)

with eigenvalues

En

mga
= −αn, (2.47)

where

· · · < α3 < α2 < α1 < 0 (2.48)



Advances in High Energy Physics 13

10

8

6

4

2

0
0 0.2 0.4 0.6 0.8 1

b/a

E
/
m
g
a

Figure 4: The b dependence of the lowest energy levels of a particle of mass m in a linear gravitaional

potential V (x) = mgx with x > 0. a = [ℏ2/2m2g]1/3 is the characteristic length scale of the system, and
b = ℏ

√
β is the minimal length.

are the zeroes of Ai(z). The solution to the β /= 0 case is given in terms of the confluent hyper-
geometric function of the second kind [83–85]

ψ
(
q
)
∝ e−q/bU

(
−1
2

[
E

mgb
+
a3

b3

]
; 0; 2

[
a3

b3
+
q

b

] )
, a =

[
ℏ
2

2m2g

]1/3
, b = ℏ

√
β. (2.49)

The energy eigenvalues are determined by the condition

U

(
−1
2

[
E

mgb
+
a3

b3

]
; 0;

2a3

b3

)
= 0, (2.50)

which can be solved numerically using Mathematica. In Figure 4, we plot the b dependence
of the energies of the lowest lying states. The energies of higher-dimensional cases, in which
there are one or more spatial dimensions orthogonal to the potential direction, are discussed
in [75, 76].

2.3. Experimental Constraints

As these three examples show, the main effect of the introduction of the minimal length into
quantum mechanical systems is the shifts in energy levels which also leads to the breaking
of well-known degeneracies. The natural question arises whether these shifts can be used to
constrain the minimal length experimentally. Of course, if the minimal length is at the Planck
scale, detecting its actual effect would be impossible. However, the exercise is of interest to
models of large extra dimensions which possess a much lower effective Planck scale than the
4D value [86–89].

In the case of the harmonic oscillator, actual physical systems are never completely har-
monic, so it is difficult to distinguish the shift in energy due to an harmonicity with that due
to a possible minimal length. Reference [78] considers using the energy levels of an electron



14 Advances in High Energy Physics

in a Penning trap to constrain β and finds that even under highly optimistic and unrealistic
assumptions, the best bound that can be hoped for is

1√
β

� 1GeV/c. (2.51)

References [76, 79] consider placing a bound on β using the 1S Lamb shift of the
hydrogen atom. The current best experimental value is that given by Schwob et al. in
[90]

L
exp

1s = 8172.837(22)MHz. (2.52)

This is to be compared with the theoretical value, for which we use that given in [91, 92]

Lth
1s = 8172.731(40)MHz. (2.53)

The calculation requires the experimentally determined proton rms charge radius rp as an
input, and the error on Lth

1s is dominated by the experimental error on rp. Here, the value of
rp = 0.862(12) fm [93] was used. Attributing the entire discrepancy to β (β′ = 0), [76, 79]
cite

1√
β

� 7GeV/c, (2.54)

which is only slightly better than (2.51). There is no bound on β′ (β = 0) since the shift is in
the wrong direction as can be seen in Figure 3.

The energy levels of neutrons in a linear gravitational potential have been measured
by Nesvizhevsky et al. [94–96]. However, as analyzed by Brau and Buisseret [75], the exper-
imental precision is still very many orders of magnitude above what is necessary to place a
meaningful bound on β. The current lower bound on 1/

√
β is on the order of 100 eV/c.

3. Classical Limit: The Liouville Theorem and the Density of States

Note that rewriting our 1D-deformed commutator as

[
x̂, p̂
]
= iℏA

(
p̂2
)

(3.1)

suggests that ℏA(p2) takes on the role of a momentum-dependent Planck constant. Given
that-ℏ determines the size of a quantum mechanical state in phase space, a momentum-
dependent ℏwould imply that the size of this statemust scale according toA(p2) as it evolves.
To see whether this interpretation makes sense, we formally take the naive classical limit by
replacing commutators with Poisson brackets,

1

iℏ

[
x̂, p̂
]
= A
(
p̂2
)
−→
{
x, p
}
= A
(
p2
)
, (3.2)
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and proceed to derive the analogue of Liouville’s theorem [97]. The Poisson brackets among
the xi’s and pi’s for the multidimensional case are

{
xi, pj

}
= Aδij + Bpipj ,

{
pi, pj

}
= 0,

{
xi, xj

}
= −
[
2
(
A + Bp2

)

A

dA

dp2
− B

]
(
xipj − xjpi

)
.

(3.3)

The generic Poisson bracket of arbitrary functions of the coordinates and momenta can then
be defined as

{F,G} =

(
∂F

∂xi

∂G

∂pj
− ∂F

∂pi

∂G

∂xj

)
{
xi, pj

}
+

∂F

∂xi

∂G

∂xj

{
xi, xj

}
. (3.4)

Here, we use the convention that repeated indices are summed. Assuming that the equations
of motion of xi and pi are given formally by

ẋi = {xi,H} =
{
xi, pj

}∂H
∂pj

+
{
xi, xj

}∂H
∂xj

,

ṗi =
{
pi,H

}
= −
{
xj , pi

}∂H
∂xj

,

(3.5)

the evolution of xi and pi during an infinitesimal time interval δt is found to be

x′
i = xi + ẋiδt = xi +

[
{
xi, pj

}∂H
∂pj

+
{
xi, xj

}∂H
∂xj

]
δt,

p′i = pi + ṗiδt = pi −
{
xj , pi

}∂H
∂xj

δt.

(3.6)

To find the change in phase-space volume associated with this evolution, we calculate
the Jacobian of the transformation from (x1, x2, . . . , xD; p1, p2, . . . , pD) to (x′

1, x
′
2, . . . , x

′
D;

p′1, p
′
2, . . . , p

′
D)

dDx′dDp′ =

∣∣∣∣∣
∂
(
x′
1, x

′
2, . . . , x

′
D; p

′
1, p

′
2, . . . , p

′
D

)

∂
(
x1, x2, . . . , xD; p1, p2, . . . , pD

)
∣∣∣∣∣d

DxdDp. (3.7)

Since

∂x′
i

∂xj
= δij +

∂ẋi

∂xj
δt,

∂x′
i

∂pj
=

∂ẋi

∂pj
δt,

∂p′i
∂xj

=
∂ṗi

∂xj
δt,

∂p′i
∂pj

= δij +
∂ṗi

∂pj
δt,

(3.8)
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we find that

∣∣∣∣∣
∂
(
x′
1, x

′
2, . . . , x

′
D; p′1, p

′
2, . . . , p

′
D

)

∂
(
x1, x2, . . . , xD; p1, p2, . . . , pD

)
∣∣∣∣∣ = 1 +

(
∂ẋi

∂xi
+
∂ṗi

∂pi

)
δt +O

(
δt2
)
, (3.9)

where

∂ẋi

∂xi
+
∂ṗi

∂pi
=

∂

∂xi

[
{
xi, pj

}∂H
∂pj

+
{
xi, xj

}∂H
∂xj

]
+

∂

∂pi

[
−
{
xj , pi

}∂H
∂xj

]

=
∂

∂xi

[{
xi, xj

}]∂H
∂xj

− ∂

∂pi

[{
xj , pi

}]∂H
∂xj

= −(D − 1)

[
2
(
A + Bp2

)

A

dA

dp2
− B

]
pj

∂H

∂xj
−
[
2
dA

dp2
+ 2

dB

dp2
p2 + (D + 1)B

]
pj

∂H

∂xj

= −
[
(D − 1)

(
2
(
A + Bp2

)

A

dA

dp2

)
+ 2

(
dA

dp2
+
dB

dp2
p2 + B

)]
pj

∂H

∂xj
.

(3.10)

On the other hand, using

δp2 = 2piδpi = 2piṗiδt = −2
(
A + Bp2

)
pj

∂H

∂xj
δt, (3.11)

we have

A′ = A +
dA

dp2
δp2

= A

[
1 −
(

2
(
A + Bp2

)

A

dA

dp2

)
pj

∂H

∂xj
δt

]
,

A′ + B′p′2 =
(
A + Bp2

)
+

(
dA

dp2
+
dB

dp2
p2 + B

)
δp2

=
(
A + Bp2

)[
1 − 2

(
dA

dp2
+
dB

dp2
p2 + B

)
pj

∂H

∂xj
δt

]
,

(3.12)

where we have used the shorthand A′ = A(p′2) and B′ = B(p′2). Thus,

(A′)D−1(A′ + B′p′2
)

AD−1(A + Bp2)

=

[
1 −
{
(D − 1)

(
2
(
A + Bp2

)

A

dA

dp2

)
+ 2

(
dA

dp2
+
dB

dp2
p2 + B

)}
pj

∂H

∂xj
δt

]
.

(3.13)
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Comparing (3.10) and (3.13), it is clear that the ratio

dDxdDp

AD−1(A + Bp2)
(3.14)

is invariant under time evolution.

This behavior of the phase space volume can be demonstrated using simple

Hamiltonians. In [98], we solve the harmonic oscillator and coulomb potential problems for

the case A = 1 + βp2 and B = β′. There, in addition to the behavior of the phase space, it

is found that the orbits of particles in these potentials no longer close on themselves. This
is consistent with the breaking of degeneracies observed in the quantum cases which are
associated with the conservation of the Runge-Lenz vector.

For the case B = 0, (3.14) reduces to dDxdDp/AD, and our interpretation of ℏA(p2) as
the momentum dependent Planck constant which determines the size of a unit quantum cell
becomes apparent. Integrating (3.14) over space,

1

V

∫
dDxdDp

AD−1(A + Bp2)
=

dDp

AD−1(A + Bp2)
, (3.15)

we can identify

ρ
(
p2
)
=

1

AD−1(A + Bp2)
(3.16)

as the density of states in momentum space. At high momentum where A and Bp2 become
large, ρ(p2)will be suppressed. We look at the impact of this suppression on the cosmological
constant problem next.

4. Vacuum Energy and the Minimal Length

4.1. The Cosmological Constant and the Density of States

The origin of the cosmological constantΛ = 3H2
0ΩΛ remains amystery, and its understanding

presents a major challenge to theoretical physics [8–12]. It is a contentious issue for string
theory, notwithstanding its being the leading candidate for quantum gravity, though various
hints exist that may point towards its resolution [99, 100]. Furthermore, the problem has
recently assumed added urgency due to observations that the cosmological constant is small,
positive, and clearly nonzero [101, 102]. In terms of the parameter ΩΛ, the most-up-to date
value is ΩΛ ∼ 0.73. With the Hubble parameter h ∼ 0.7 (the parameter h is defined as h =

H0/(100 km/s/Mpc)), we obtain as the vacuum energy density

c2Λ

8πGN
= c2ρcritΩΛ =

(
3H2

0c
2

8πGN

)
ΩΛ

=
(
8.096 × 10−47 GeV4/ℏ

3c3
)(

ΩΛh
2
)
∼ 10−47 GeV4/ℏ

3c3.

(4.1)
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The order of magnitude of this result is set by the dimensionful prefactor in the parentheses

which can be expressed in terms of the Planck length ℓP = ℏ/µP =
√

ℏGN/c3 ∼ 10−35 m, and

the scale of the visible universe ℓ0 = ℏ/µ0 ≡ c/H0 ∼ 1026 m as

H2
0c

2

GN
=

c

ℏ3
µ2
Pµ

2
0 =

ℏc

ℓ2Pℓ
2
0

. (4.2)

In quantum field theory (QFT), the cosmological constant is calculated as the sum of
the vacuumfluctuation energies of all momentum states. This is clearly infinite, so the integral
is usually cut off at the Planck scale µP = ℏ/ℓP beyond which spacetime itself is expected to
become foamy [4], and the calculation untrustworthy. For a massless particle, we find that

1

(2πℏ)3

∫µP

d3p

[
1

2
ℏωp

]
=

c

4π2ℏ3

∫µP

0

dpp3 =
c

16π2ℏ3
µ4
P

=
ℏc

16π2

1

ℓ4P
∼ 1074 GeV4/ℏ

3c3,

(4.3)

which is about 120 orders of magnitude above the measured value. Note that this difference
is essentially a factor of (ℓ0/ℓP )

2, the scale of the visible universe in Planck units squared. The
change in the density of states suggested by the MLUR would change this calculation to

1

(2πℏ)3

∫∞
d3pρ

(
p2
)[1

2
ℏωp

]
=

c

4π2ℏ3

∫∞

0

dp
p3

A
(
p2
)2[

A
(
p2
)
+ p2B

(
p2
)] . (4.4)

For the case A(p2) = 1 + βp2, B(p2) = 0, we find [97] that

c

4π2ℏ3

∫∞

0

dp
p3

(
1 + βp2

)3 =
c

16π2ℏ3β2
=

c

16π2ℏ3
µ4
s =

ℏc

16π2

1

ℓ4s
, ℓs =

ℏ

µs
= ℏ

√
β. (4.5)

The integral is finite, without a UV cutoff, due to the suppression of the contribution of high

momentum states. (There is an intriguing similarity here with Planck’s resolution of the UV

catastrophe of the black body radiation.)However, if we make the identification ℓs = ℓP , then

this result is identical to (4.3), and nothing is gained. Of course, this is not surprising given

that ℓs is the only scale in the calculation and effectively plays the role of the UV cutoff. To

obtain the correct value of the cosmological constant from the above expression, we must

choose ℓs ∼
√
ℓPℓ0 ∼ 10−5 m, which is too large to be the minimal length, or equivalently,

µs = ℏ/ℓs ∼
√
µPµ0 ∼ 10−3 eV/c, which is too small to be the UV cutoff. However, we mention

in passing that
√
ℓPℓ0 can be considered the uncertainty in measuring ℓ0 due to the foaminess

of spacetime [4, 103, 104] and has been argued as the possible size of a spacetime quantum

cell when quantum gravity is properly taken into account [105–114]. At the moment, this

point of view seems difficult to reconcile with phenomenological considerations.
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We could introduce a second scale into the problem by letting B(p2) = β′ /= 0. This leads
to

c

4π2ℏ3

∫∞

0

dp
p3

(
1 + βp2

)2[
1 +
(
β + β′

)
p2
] =

c

8π2ℏ3

1

ββ′

[
1 − β

β′
ln

(
1 +

β′

β

)]

β′≫β−−−−→ c

8π2ℏ3

1

ββ′
=

c

8π2ℏ3
µ2
sµ

′2
s =

ℏc

8π2

1

ℓ2sℓ
′2
s

,

(4.6)

where ℓ′s = ℏ/µ′
s = ℏ

√
β′. If we identify ℓs = ℓP , then we must have ℓ′s ∼ ℓ0, which is even

more problematic than
√
ℓPℓ0.

As these considerations show, our simple choice for A(p2) and B(p2) succeeds in
rendering the cosmological constant finite but does not provide an adequate suppression.
Would some other choice of A(p2) and B(p2) do better? To this end, let us try to see whether
we can reverse engineer these functions so that the correct order of magnitude is obtained.
Let us write

ǫ4 =

∫∞

0

dpρ
(
p2
)
p3. (4.7)

To generate the correct value for the cosmological constant, we must have ǫ ∼ √
µPµ0 =

10−3 eV/c, as we have seen. At this point, we invoke some numerology and note that if the
SUSY breaking scale µSUSY is on the order of a few TeV/c, then the seesaw formula,

ǫ ∼
µ2
SUSY

µP
∼ 10−3 eV/c, (4.8)

would give the correct size for ǫ as observed by Banks [115]. This expression is reminiscent
of the well-known seesawmechanism used to explain the smallness of neutrino masses [116–
119]. One way to obtain this result is to have the density of states scale as ρ(p2) ∼ p4/µ4

P and
place the UV cutoff at µSUSY, beyond which the bosonic and fermionic contributions cancel.
This would yield ǫ4 ∼ µ8

SUSY/µ
4
P . Unfortunately, this density of states is problematic since

p4/µ4
P ≪ 1 for the entire integration region, so we are effectively suppressing everything.

Furthermore, to obtain this suppression, we must have A(p2) ∼ (µP/p)
4/3 ≫ 1, making the

effective value of ℏ, and thus the size of the quantum cell, huge at low energies in clear con-
tradiction to reality.

In retrospect, this result is not surprising since raising the UV cutoff from
√
µPµ0 ∼

10−3 eV/c to much higher values naturally requires the drastic suppression of contributions
from below the cutoff. Thus, it is clear that the modification to the density of states, as sug-
gested by the MLUR, by itself cannot solve the cosmological constant problem.

4.2. Need for A UV/IR Relation and a Dynamical Energy-Momentum Space

In the above discussion of summing over momentum states, the unstated assumption was
that states at different momentum scales were independent, and that their total effect on
the vacuum energy was the simple sum of their individual contributions. Of course, this
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assumption is the basis of the decoupling between small (IR) and large (UV) momentum
scales which underlies our use of effective field theories. However, there are hints that this
assumption is what needs to be reevaluated in order to solve the cosmological constant
problem.

First and foremost, the expression for the vacuum energy density itself, H2
0c

2/GN =

ℏc/ℓ2Pℓ
2
0 , is dependent upon an IR scale ℓ0 and a UV scale ℓP , suggesting that whatever theory

that explains its value must be aware of both scales and have some type of dynamical connec-
tion between them. Note that effective QFT’s are not of this type but string theory is, given
the UV/IR mixing relations discovered in several contexts as mentioned in the introduction.

Second, the contributions of the sub-Planckian modes (p < µP ) independently by
themselves are clearly too large, and there is a limit to the tweaking that can be done to
the density of states in the IR since those modes undeniably exist. The only way out of the
dilemma would be to cancel the contribution of the IR sub-Planckian modes against those of
something else, say that coming from the UV trans-Planckian modes (p > µP ) by introducing
a dynamical connection between the two regimes [115].

That the sub-Planckian (p < µP ) and trans-Planckian (p > µP ) modes should cancel
against each other is also suggested by the following argument: consider how the MLUR,
(2.1), would be realized in field theory. The usual Heisenberg relation δxδp = ℏ/2 is a simple
consequence of the fact that coordinate andmomentum spaces are Fourier transforms of each
other. The more one wishes to localize a wave packet in coordinate space (smaller δx), the
moremomentum states onemust superimpose (larger δp). In the usual case, there is no lower
bound to δx one may localize the wave packet as much as one likes by simply superimposing
states with ever larger momentum, and thus ever shorter wavelength, to cancel out the tails of
the coordinate space distributions. On the other hand, the MLUR implies that if one keeps on
superimposing states withmomenta beyond µP = 1/

√
β, then δx ceases to decrease and starts

increasing instead. (See Figure 1.) The natural interpretation of such a phenomenon would
be that the trans-Planckian modes (p > µP )when superimposed with the sub-Planckian ones
(p < µP ) would “jam” the sub-Planckian modes and prevent them from canceling out the
tails of the wave-packets effectively. The mechanism we envision here is analogous to the
“jamming” behavior seen in nonequilibrium statistical physics, in which systems are found
to freezewith increasing temperature [120–123]. In fact, it has been argued that such “freezing
by heating” could be characteristic of a background-independent quantum theory of gravity
[124–128].

We should also note, that in our calculation presented above, the phase space over

which the integration was performed was fixed and flat. Quantum gravity will naturally

change the situation, leading to a fluctuating dynamical spacetime background. Furthermore,

the MLUR implies that energy-momentum space will be a fluctuating dynamical entity

as well [129–134]. First, the necessity of “jamming” between the sub-Planckian and trans-

Planckian modes to implement the MLUR in field theory clearly illustrates that momentum

space cannot be the simple Fourier transform of coordinate space but must rather be an

independent entity. (Introducing a momentum space independent from coordinate space

in field theory would make the wave-particle duality more complete in a sense, since for

particles, momenta and coordinates are independent until the equation of motion, is imposed

[135].) Second, the quantum properties of spacetime geometry may be understood in terms

of effective expressions that involve the spacetime uncertainties:

gab(x)dx
adxb −→ gab(x)δx

aδxb. (4.9)



Advances in High Energy Physics 21

The UV/IR relation δx ∼ ℏβδp in the trans-Planckian region implies that this geometry of
spacetime uncertainties can be transferred directly to the space of energy-momentum uncer-
tainties, endowing it with a geometry as well:

gab(x)δx
aδxb −→ Gab

(
p
)
δpaδpb. (4.10)

The usual intuition that local properties in spacetime correspond to non-local features of
energy-momentum space (as implied by the canonical uncertainty relations) is obviated by
the linear relation between the uncertainties in coordinate space and momentum space.

What would a dynamical energy-momentum space entail? Let us speculate. It has been
argued that a dynamical spacetime, with its foamy UV structure [4], would manifest itself in
the IR via the uncertainties in the measurements of global spacetime distances as [103–114]

δℓ ∼
√
ℓℓP , (4.11)

a relation which is reminiscent of the famous result for Brownian motion derived by Einstein
[136] and is also covariant in 3 + 1 dimensions. Let us assume that a similar “Brownian”
relation holds in energy-momentum space due to its “foaminess” [134]

δµ ∼√µµP . (4.12)

If the energy-momentum space has a finite size, a natural UV cutoff, at µ+ ≫ µP, (a max-
imum energy/momentum is introduced in deformed special relativity [137–140]), then its
fluctuation δµ+ will be given by δµ+ =

√
µ+µP ≫ µP. The MLUR implies that the mode at

this scale must cancel, or “jam,” against another which shares the same δx, namely, the mode
with an uncertainty given by δµ− = µ2

P/δµ+ = µP

√
µP/µ+ =

√
µ−µP ≪ µP , that is,

µ− =
µ2
P

µ+

=
δµ2

−
µP

≪ µP . (4.13)

All modes between µ− and µ+ will “jam.” Therefore, µ− will be the effective UV cutoff of the
momentum integral and not µ+, which would yield

ǫ4 ∼ µ4
− ∼ δµ8

−

µ4
P

∼
µ8
P

µ4
+

. (4.14)

This reproduces the seesaw formula, (4.8), and if δµ− ∼ few TeV/c, we obtain the correct
cosmological constant.

5. Outlook: What Is String Theory?

In the concluding section, we wish to discuss a few implications of our work for non-
perturbative string theory and the question: what is string theory [13]? Our discussion of
this difficult question, being limited by the scope of our work on the minimal length, will
neccesarily be a bit speculative.
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Our toymodel for theMLURwas essentially algebraic. As such, it raises the possibility
that more general algebraic structures may play a key role in nonperturbative string theory.
In the introductory section, we mentioned that the MLUR is motivated by the scattering of
string-like excitations in first quantized string theory. If one takes into account other objects
in nonperturbative string theory, such as D-branes, one is led to the STUR, (1.6), proposed
by Yoneya. The STUR generalizes the MLUR, and can be further generalized to a cubic form
(motivated by M-theory) [67–73]

δxδyδt ∼ ℓ3P/c. (5.1)

Given the usual interpretation of the canonical Heisenberg uncertainty relations in terms of
fundamental commutators, one might look for the associated cubic algebraic structures in
string theory.

Another hint of cubic algebraic structure appears in the nonperturbative formulation
of open string field theory by Witten et al. [141, 142]. The Witten action for the classical open
string field, Φ, is of an abstract Chern-Simons type

So(Φ) =

∫
Φ ⋆Φ ⋆Φ. (5.2)

Here, the star product is defined by the world-sheet path integral,

F ⋆ G =

∫
DXF(X)G(X) exp

[
i

α′SP (X)

]
, (5.3)

which is in turn determined by the world-sheet Polyakov action

SP (X) =
1

2

∫
d2σ
√
−ggab∂aX

i∂bX
jGij + · · · . (5.4)

The fully quantum open string field theory is then, in principle, defined by yet another path
integral in the infinite dimensional space of Φ, that is,

∫
DΦ exp

[
i

gc
So(Φ)

]
. (5.5)

A more general, and in principle nonassociative structure, appears in Strominger’s formu-
lation of closed string field theory, which is also cubic [143]. Strominger’s paper mentions
the relevance of the 3-cocycle structure for this formulation of closed string field theory. Very
schematically

Sc(Ψ) =

∫
Ψ × (Ψ ×Ψ), (5.6)

where × is a nonassociative product defined in [143]. (For the role of nonassociativity in
the theories of gravity, and a relation between Einstein’s gravity and nonassociative Chern-
Simons theory, see [144]).
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Is there an underlying algebraic structure that could give rise to these cubic structures?
In our toy model, the 2-bracket appears quite naturally. Such structures can be naturally
generalized into 3-bracket. For example, the usual Lie algebra structure known from gauge
theories, [TA, TB] = fABCTC, where the structure constants fABC satisfy the usual Jacobi
identity, seems to be naturally generalized to a triple algebraic structure

[TA, TB, TC] = fABCDTD, (5.7)

where

[
Ai, Aj , Ak

]
≡ ǫabcAaAbAc, (5.8)

with the structure constants fABCD satisfying a quartic fundamental identity [145–149]. These
structures occur in the context of the theory of N-membranes [150]. They are also present in
more elementary examples. Consider a charged particle e of massm in the external magnetic
field B. As is well known, the velocities v̂a satisfy the commutation relation

[
v̂i, v̂j

]
= i

eℏ

m2
ǫijkBk, (5.9)

as well as the triple commutation relation, the associator, given by [151]

[v̂1, [v̂2, v̂3]] + [v̂2, [v̂3, v̂1]] + [v̂3, [v̂1, v̂2]] =
eℏ

2

m3
∂iBi. (5.10)

This associator is zero, and thus trivial, in the absence of magnetic monopoles: ∂iBi = 0. Note
that the triple bracket defined in (5.8) is “one-half” of the associator since

[
A, B̂, C

]
≡ ǫabcAa(AbAc) = A[B,C] + B[C,A] + C[A,B],

[
Â, B, C

]
≡ ǫabc(AaAb)Ac = [B,C]A + [C,A]B + [A,B]C.

(5.11)

The presence of monopoles is an indicator of a 3-cocycle [151]. The triple commutator has
also been encountered in the study of closed string dynamics [156].

What would be the role of such a general algebraic structure for the foundations of
string theory? Given the general open-closed string relation (the closed strings being in some
sense the bounds states of open strings) the noncommutative and nonassociative algebraic
structures might be related as in some very general and abstract form of the celebrated
AdS/CFT duality [152–155]. We recall that in the AdS/CFT correspondence, one computes
the on-shell bulk action Sbulk and relates it to the appropriate boundary correlators. The

conjecture is that the generating functional of the vacuum correlators of the operator Ô for a
d-dimensional conformal field theory (CFT) is given by the partition function Z(φ) in (Anti-
de-Sitter) AdSd+1 space

〈
exp

(∫
JÔ

)〉
= Z
(
φ
)
−→ exp

[
−Sbulk

(
g, φ, . . .

)]
, (5.12)
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where, in the semiclassical limit, the partition function becomes Z = exp(−Sbulk). Here g
denotes the metric of the AdSd+1 space, and the boundary values of the bulk field, φ, are
given by the sources, J , of the boundary CFT. Essentially, one reinterprets the RG flow of
the boundary nongravitational theory in terms of bulk gravitational equations of motion and
then rewrites the generating functional of vacuum correlators of the boundary theory in terms
of a semiclassical wave function of the bulk “universe” with specific boundary conditions.

In view of our comments on the general algebraic structures in string theory, it is
tempting to propose an extension of this duality in a more abstract sense of open and closed
string field theory, and the relationship between the non-commutative and nonassociative
structures

〈
exp

(∫
JÔ(Φ)

)〉

o

= Z(Ψ) −→ exp[−Sc(Ψ)]. (5.13)

The “boundary” in this abstract case has to be defined algebraically, as a region of the closed
string Hilbert space on which the 3-cocycle anomaly vanishes. Inside the region, the 3-cocycle
would be nonzero. In this way, we would have more abstract definitions of the “boundary”
and “bulk.” In some sense, this relation would look like a generalized Laplace transform of
an exponential of a cubic expression giving another exponential of a cubic expression, as with
the asymptotics of the Airy function

∫
dx exp(tx − x3) ∼ exp(−t3/2).

Finally, following our discussion of the vacuum energy problem in the previous
section, it seems natural that any more fundamental formulation of string theory would have
to work on a curved momentum space. This would mesh nicely with the ideas presented in
[124–133]. If curved energy-momentum space is crucial in quantum gravity (and thus string
theory) for the solution of the vacuum energy problem, then we are naturally led to question
the usual formulation of string theory as a canonical quantum theory. Also, if the vacuum
energy can be made small, what physical principle selects such a vacuum? This leads to
the question of background independence and vacuum selection. The issue of background
independence in string theory is that the fundamental equations should not select a quantum
theory the same way Einstein’s gravitational equations do not select any geometry; only
asymptotic or symmetry conditions select a geometry. Again, we are back to the questions
regarding the role of general quantum theory in the most fundamental formulation of string
theory. Note that such discussion of general quantum theory also sheds light on the question
of time evolution and the problem of time in string theory [124–128].
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