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Abstract. We study the asymptotic behavior at infinity of solutions of a second order evolution
equation with linear damping and convex potential. The differential system is defined in a real
Hilbert space. It is proved that if the potential is bounded from below, then the solution trajectories
are minimizing for it and converge weakly towards a minimizer of Φ if one exists; this convergence
is strong when Φ is even or when the optimal set has a nonempty interior. We introduce a second
order proximal-like iterative algorithm for the minimization of a convex function. It is defined by an
implicit discretization of the continuous evolution problem and is valid for any closed proper convex
function. We find conditions on some parameters of the algorithm in order to have a convergence
result similar to the continuous case.
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1. Introduction. Consider the following differential system defined in a real
Hilbert space H:

u′′ + γu′ + ∇Φ(u) = 0,(1.1)

where γ > 0 and Φ : H → R is differentiable. It is customary to call this equation non-
linear oscillator with damping. Here, the damping or friction has a linear dependence
on the velocity. This is a particular case of the so-called dissipative systems. In fact,
given u solution of (1.1) define E(t) := 1

2 |u′|2 + Φ(u); it is direct to check that E′ =
−γ|u′|2. Thus, the energy of the system is dissipated as t increases. Although (1.1)
appears in various contexts with different physical interpretations, the motivation for
this work comes from the dynamical approach to optimization problems.

Roughly speaking, any iterative algorithm generating a sequence {xk}k∈N may
be considered as a discrete dynamical system. If it is possible to find a continuous
version for the discrete procedure, one expects that the properties of the corresponding
continuous dynamical system are close to those of the discrete one. This occurs,
for instance, for the now classical proximal method for convex minimization: given
x0 ∈ H, solve the iterative scheme

(Prox)
xk+1 − xk

λk
+ ∂f(xk+1) � 0,

where λk > 0, f : H → R ∪ {∞} is a closed proper convex function and ∂f denotes
the usual subdifferential in convex analysis. (Prox) is an implicit discretization for the
steepest descent method, which consists of solving the following differential inclusion:

(SD) x′ + ∂f(x) � 0.
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Under suitable conditions, both the trajectory {x(t) : t → ∞} defined by (SD) and
the sequence {xk} generated by (Prox) converge toward a particular minimizer of f
(see [5, 6, 7] for (SD) and [18] for (Prox); see also [12] for a survey on these and
new results). The dynamical approach to iterative methods in optimization has many
advantages. It provides a deep insight into the expected behavior of the method,
and sometimes the techniques used in the continuous case can be adapted to obtain
results for the discrete algorithm. On the other hand, a continuous dynamical system
satisfying nice properties may suggest new iterative methods.

This viewpoint has motivated increasing attention in recent years; see, e.g., [1, 2,
3, 4, 8, 13, 14]. In [3], Attouch, Goudou, and Redont deal with nonconvex functions
that have, a priori, many local minima. The idea is to exploit the dynamics defined
by (1.1) to explore critical points of Φ (i.e., solutions of ∇Φ(x) = 0). If Φ is coercive
(bounded level sets) and of class C1 with a locally Lipschitz gradient, then it is
possible to prove that for any u solution of (1.1) we have ∇Φ(u(t)) → 0 as t → ∞.
The convergence of the trajectory {u(t) : t→ ∞} is a more delicate problem. When
Φ is coercive, an obvious sufficient condition for the convergence of the trajectory
is that the critical points, also known as equilibrium points, are isolated. Certainly,
this is not necessary. In one dimension (H = R) and without additional conditions,
the solution always converges toward an equilibrium (see, e.g., [10]). The proof relies
on topological arguments that are not generalizable to higher dimensions. Indeed,
this is no longer true even in two dimensions: it is possible to construct a coercive
C1 function defined on R

2 whose gradient is locally Lipschitz and for which at least
one solution of (1.1) does not converge as t → ∞ (see [3]). Thus, a natural question
is to find general conditions under which the trajectory converges in the degenerate
case, that is, when the set of equilibrium points of Φ contains a nontrivial connected
component. A positive result in this direction has recently been given by Haraux and
Jendoubi [11], where convergence to an equilibrium is established when Φ is analytic.
However, this assumption is very restrictive from the optimization point of view.

Motivated by the previous considerations, in this work we focus our attention on
the asymptotic behavior as t→ ∞ of the solutions of (1.1) when Φ is assumed to be
convex. The paper is organized as follows. In section 2 we prove that if Φ is convex
and bounded from below, then the trajectory {u(t) : t→ ∞} is minimizing for Φ. If
the infimum of Φ on H is attained, then u(t) converges weakly towards a minimizer of
Φ. The convergence is strong when Φ is even or when the optimal set has a nonempty
interior. In section 2.2 we give a localization result for the limit point, analogous
to the corresponding result for the steepest descent method [13]. In section 2.4 we
generalize the convergence result to cover the equation u′′ + Γu′ + ∇Φ(u) = 0, where
Γ : H → H is a bounded self-adjoint linear operator which we assume to be elliptic:
there is γ > 0 such that for any x ∈ H, 〈Γx, x〉 ≥ γ|x|2. We refer to this equation as
nonlinear oscillator with anisotropic damping. This equation appears to be useful to
diminish oscillations or even eliminate them, and also to accelerate the convergence of
the trajectory. In section 2.3 we give an heuristic motivation of the above mentioned
facts, which is based on an analysis of a quadratic function. Still under the convexity
condition on Φ, section 3 deals with the discretization of (1.1). Here, we consider the
implicit scheme

uk+1 − 2uk + uk−1

h2
+ γ

uk+1 − uk
h

+ ∇Φ(uk+1) = 0,

where h > 0. Since Φ is convex, the latter is equivalent to the following variational
problem:



1104 FELIPE ALVAREZ

uk+1 = argmin

{
Φ(x) +

1 + γh

2h2
|x− zk|2 : x ∈ H

}
,

where zk = uk + 1
1+γh (uk − uk−1). This procedure does not require Φ to be differ-

entiable and allows us to introduce the following more general iterative-variational
algorithm:

1

λk
(uk+1 − (1 + αk)uk + αkuk−1) + ∂εkf(uk+1) � 0,(1.2)

where εk, λk > 0, αk ∈ [0, 1[, f : H → R ∪ {∞} is a closed proper convex function
and ∂εf is the ε-approximate subdifferential in convex analysis. We call (1.2) the
inertial proximal method. We find conditions on the parameters αk, εk, and λk in
order to have a convergence result similar to the continuous case. Finally, in section
4 we state some of the questions opened by this work. Let us mention that the first
to consider (1.1) for finite dimensional optimization problems was B. T. Polyack [16].
He studied a two-step discrete algorithm called the “heavy-ball with friction” method,
which may be interpreted as an explicit discretization of (1.1). Both approaches are
complementary; however, the analysis and the type of results in the implicit and
explicit cases are different.

2. Dissipative differential system. Throughout this paper, H is a real Hilbert
space, 〈·, ·〉 denotes the associated inner product, and | · | stands for the corresponding
norm. We are interested in the behavior at infinity of u : [0,∞[→ H, a solution of
the following abstract evolution equation:

(Eγ ;u0, v0)

{
u′′ + γu′ + ∇Φ(u) = 0,
u(0) = u0, u

′(0) = v0,

where γ > 0, Φ : H → R, and u0, v0 ∈ H are given. Note that if we assume that the
gradient ∇Φ is locally Lipschitz, then the existence and uniqueness of a local solution
for (Eγ ;u0, v0) follow from standard results of differential equations theory. In that
case, to prove that u is infinitely extendible to the right, it suffices to show that its
derivative u′ is bounded. Set

E(t) :=
1

2
|u′(t)|2 + Φ(u(t)).

Since E′(t) = −γ|u′(t)|2, the function E is nonincreasing. If we suppose that Φ is
bounded from below, then u′ is bounded.

2.1. Asymptotic convergence. In that which follows, we suppose the exis-
tence of a global solution of (Eγ ;u0, v0). We write inf Φ for the infimum value of Φ
on H; thus, inf Φ > −∞ will mean that Φ is bounded from below. We denote by
Argmin Φ the set {x ∈ H : Φ(x) = inf Φ}. On the nonlinearity we shall assume

(hΦ) Φ ∈ C1(H; R) is convex and inf Φ > −∞.
Theorem 2.1. Suppose that (hΦ) holds. If u ∈ C2([0,∞[;H) is a solution of

(Eγ ;u0, v0), then u′ ∈ L2([0,∞[;H), u′(t) → 0 as t→ ∞, and
lim
t→∞ Φ(u(t)) = inf Φ.(2.1)

Furthermore, if Argmin Φ �= ∅, then there exists û ∈ Argmin Φ such that u(t) ⇀ û
weakly in H as t→ ∞.
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We begin by noticing that u′ is bounded (see the argument above). In order to
prove the minimizing property (2.1), it suffices to prove that

lim sup
t→∞

Φ(u(t)) ≤ Φ(x)

for any x ∈ H. Fix x ∈ H and define the auxiliary function ϕ(t) := 1
2 |u(t)−x|2. Since

u is a solution of (Eγ), it follows that

ϕ′′ + γϕ′ = 〈∇Φ(u), x− u〉 + |u′|2,
which together with the convexity inequality Φ(u) + 〈∇Φ(u), x− u〉 ≤ Φ(x) yields

ϕ′′ + γϕ′ ≤ Φ(x) − Φ(u) + |u′|2.(2.2)

We do not have information on the behavior of Φ(u(t)) but we know that E(t) is
nonincreasing. Thus, we rewrite (2.2) as

ϕ′′ + γϕ′ ≤ Φ(x) − E(t) +
3

2
|u′|2.

Given t > 0, for all τ ∈ [0, t] we have

ϕ′′(τ) + γϕ′(τ) ≤ Φ(x) − E(t) +
3

2
|u′(τ)|2.

After multiplication by eγτ and integration we obtain

ϕ′(t) ≤ e−γtϕ′(0) +
1

γ
(1 − e−γt)[Φ(x) − E(t)] +

3

2

∫ t

0

e−γ(t−τ)|u′(τ)|2dτ.

We write this equation with t replaced by θ, and use the fact that E(t) decreases and
integrate once more to obtain

ϕ(t) ≤ ϕ(0) +
1

γ
(1 − e−γt)ϕ′(0) +

1

γ2
(γt− 1 + e−γt)[Φ(x) − E(t)] + h(t),(2.3)

where

h(t) :=
3

2

∫ t

0

∫ θ

0

e−γ(θ−τ)|u′(τ)|2dτdθ.

Since E(t) ≥ Φ(u(t)), (2.3) gives

1

γ2
(γt− 1 + e−γt)Φ(u(t)) ≤ ϕ(0) +

1

γ
(1 − e−γt)ϕ′(0) +

1

γ2
(γt− 1 + e−γt)Φ(x) + h(t).

Dividing this inequality by 1
γ2 (γt− 1 + e−γt) and letting t→ ∞ we get

lim sup
t→∞

Φ(u(t)) ≤ Φ(x) + lim sup
t→∞

γ

t
h(t).

It suffices to show that h(t) remains bounded as t→ ∞. By Fubini’s theorem

h(t) =
3

2

∫ t

0

∫ t

τ

e−γ(θ−τ)|u′(τ)|2dθdτ =
3

2γ

∫ t

0

|u′(τ)|2(1 − e−γ(t−τ))dτ.
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Note that from the equality E′ = −γ|u′|2 it follows that

1

2
|u′|2 + Φ(u) + γ

∫ t

0

|u′(τ)|2dτ = E0,

and in particular, ∫ t

0

|u′(τ)|2dτ ≤ E0 − inf Φ

γ
<∞.

Then u′ ∈ L2([0,∞[;H), and

h(t) ≤ 3

2γ

∫ t

0

|u′(τ)|2dτ ≤ 3

2γ

∫ ∞

0

|u′(τ)|2dτ <∞.

On the other hand, since E(·) is nonincreasing and bounded from below by inf Φ,
it converges as t → ∞. If limt→∞E(t) > inf Φ, then limt→∞ |u′(t)| > 0 because of
(2.1). This contradicts the fact that u′ ∈ L2. Therefore, limt→∞E(t) = inf Φ, hence
u′(t) → 0 as t→ ∞.

The task now is to establish the weak convergence of u(t) when Argmin Φ �= ∅.
For this purpose, we shall apply the Opial lemma [15], which holds interest in that
it allows one to prove convergence without knowing the limit point. We state it as
follows.

Lemma (Opial). Let H be a Hilbert space, let {u(t) : t→ ∞} ⊂ H be a trajectory,
and denote by W the set of its weak limit points

W := {y ∈ H : ∃tk → ∞ s.t. u(tk) ⇀ y}.
If there exists ∅ �= S ⊂ H such that

∀z ∈ S, lim
t→∞ |u(t) − z| exists,(2.4)

thenW �= ∅. Moreover, ifW ⊂ S, then u(t) converges weakly toward û ∈ S as t→ ∞.
In order to apply the above result, we must find an adequate set S. Suppose that

there exists û ∈ H such that u(tk) ⇀ û for a suitable sequence tk → ∞. The function
Φ is weak lower-semicontinuous, because Φ is convex and continuous; hence

Φ(û) ≤ lim inf
k→∞

Φ(u(tk)) = lim
t→∞ Φ(u(t)) = inf Φ,

and therefore û ∈ Argmin Φ. According to the Opial lemma, we have only to prove
that

∀z ∈ Argmin Φ, lim
t→∞ |u(t) − z| exists.

For this, fix z ∈ Argmin Φ and define ϕ(t) := 1
2 |u(t) − z|2. The following lemma

provides a sufficient condition on [ϕ′]+, the positive part of the derivative, in order to
ensure convergence for ϕ.

Lemma 2.2. Let θ ∈ C1([0,∞[; R) be bounded from below. If [θ′]+ ∈ L1([0,∞[; R),
then θ(t) converges as t→ ∞.

Proof. Set

w(t) := θ(t) −
∫ t

0

[θ′(τ)]+dτ.
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Since w(t) is bounded from below and w′(t) ≤ 0, then w(t) converges as t→ ∞, and
consequently θ(t) converges as t→ ∞.

On account of this result, it suffices to prove that [ϕ′]+ belongs to L1(0,∞). Of
course, to obtain information on ϕ′ we shall use the fact that u(t) is solution of (Eγ).
Due to the optimality of z, it follows from (2.2) that

ϕ′′ + γϕ′ ≤ |u′|2.(2.5)

Lemma 2.3. If ω ∈ C1([0,∞[; R) satisfies the differential inequality

ω′ + γω ≤ g(t)(2.6)

with γ > 0 and g ∈ L1([0,∞[; R), then [ω]+ ∈ L1([0,∞[; R).
Proof. We can certainly assume that g ≥ 0, for if not, we replace g by |g|.

Multiplying (2.6) by eγt and integrating we get

ω(t) ≤ e−γtω(0) +

∫ t

0

e−γ(t−τ)g(τ)dτ.

Thus

[ω(t)]+ ≤ e−γt[ω(0)]+ +

∫ t

0

e−γ(t−τ)g(τ)dτ,

and Fubini’s theorem gives
∫∞
0

∫ t

0
e−γ(t−τ)g(τ)dτdt = 1

γ

∫∞
0
g(τ)dτ <∞.

Recalling that |u′|2 ∈ L1([0,∞[; R), the proof of the theorem is completed by
applying Lemma 2.3 to (2.5).

We say that ∇Φ is strongly monotone if there exists β > 0 such that for any
x, y ∈ H we have

〈∇Φ(x) −∇Φ(y), x− y〉 ≥ β|x− y|2.

A weaker condition is the strong monotonicity over bounded sets, that is to say, for
all K > 0 there exists βK > 0 such that for any x, y ∈ B[0,K] we have

〈∇Φ(x) −∇Φ(y), x− y〉 ≥ βK |x− y|2.(2.7)

If the latter property holds, then we have strong convergence for u(t) when the in-
fimum of Φ is attained. The argument is standard: let û be the (unique) minimum
point for Φ and set K := max{supt≥0 |u(t)|, |û|}; then from (2.7) we deduce

Φ(û) +
βK
2

|u(t) − û|2 ≤ Φ(u(t)).(2.8)

Since we have proven that limt→∞ Φ(u(t)) = inf Φ = Φ(û), estimate (2.8) implies
u(t) → û strongly in H. Note that we do not need to apply the Opial lemma.

The latter is the case of a nondegenerate minimum point. When Φ admits multiple
minima, it is not possible to obtain strong convergence without additional assumptions
on Φ or the space H. For instance, we have the following.

Theorem 2.4. Under the hypotheses of Theorem 2.1, if either
(i) Argmin Φ �= ∅ and Φ is even

or
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(ii) int(Argmin Φ) �= ∅,
then

u(t) → û strongly in H as t→ ∞,

where û ∈ Argmin Φ.
Proof. The proof is adapted from the corresponding results for the steepest de-

scent method; see [7] for the analogous hypothesis of (i) and [6] for (ii).
(i) Fix t0 > 0 and define g : [0, t0] → R by

g(t) := |u(t)|2 − |u(t0)|2 − 1

2
|u(t) − u(t0)|2.

Then g′(t) = 〈u′(t), u(t) + u(t0)〉 and g′′(t) = 〈u′′(t), u(t) + u(t0)〉 + |u′(t)|2.
Consequently

g′′(t) + γg′(t) = 〈−∇Φ(u(t)), u(t) + u(t0)〉 + |u′(t)|2.

Since E(t) = 1
2 |u′(t)|2 + Φ(u(t)) is decreasing and Φ is even, we deduce that

E(t) ≥ 1

2
|u′(t0)|2 + Φ(−u(t0))

for all t ∈ [0, t0]. By the convexity of Φ we conclude that

E(t) ≥ 1

2
|u′(t0)|2 + Φ(u(t)) + 〈∇Φ(u(t)),−u(t) − u(t0)〉

and hence that

1

2
|u′(t)|2 ≥ 〈−∇Φ(u(t)), u(t) + u(t0)〉.

Thus

g′′(t) + γg′(t) ≤ 3

2
|u′(t)|2.

The standard integration procedure yields

g(t0) − g(t) ≤ 1

γ
(e−γt − e−γt0)g′(0) +

3

2

∫ t0

t

∫ θ

0

e−γ(θ−τ)|u′(τ)|2dτdθ.

Therefore, for all t ∈ [0, t0] we have that

1

2
|u(t) − u(t0)|2 ≤ |u(t)|2 − |u(t0)|2 +

1

γ
(e−γt − e−γt0)g′(0) + h(t0) − h(t),(2.9)

where

h(t) =
3

2

∫ t

0

∫ θ

0

e−γ(θ−τ)|u′(τ)|2dτdθ.

On the other hand, in the proof of Theorem 2.1 we have shown that h(t) is convergent
as t → ∞. We also proved that for all z ∈ Argmin Φ the limt→∞ |u(t) − z| exists.
Since Φ is convex and even, we have 0 ∈ Argmin Φ whenever the infimum is realized.
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In that case, |u(t)| is convergent as t→ ∞ and we infer from (2.9) that {u(t) : t→ ∞}
is a Cauchy net. Hence u(t) converges strongly as t → ∞ and, by Theorem 2.1, the
limit belongs to Argmin Φ.

(ii) Let z0 ∈ int(Argmin Φ). There exists ρ > 0 such that for every z ∈ H with
|z − z0| ≤ ρ, then z ∈ int(Argmin Φ). In particular, if |z − z0| ≤ ρ, then ∇Φ(z) = 0.
Consequently,

〈∇Φ(x), x− z0〉 ≥ 〈∇Φ(x), z − z0〉
for every x ∈ H and z with |z − z0| ≤ ρ. Hence,

〈∇Φ(x), x− z0〉 ≥ ρ|∇Φ(x)|
for every x ∈ H. Applying this inequality to x = u(t) we deduce that

−〈u′′ + γu′, u− z0〉 ≥ ρ|u′′ + γu′|.
Set ϕ(t) := 1

2 |u(t) − z0|2. We thus obtain

−ϕ′′ + |u′|2 − γϕ′ ≥ ρ|u′′ + γu′|.
Integrating this inequality yields

ϕ′(0) − ϕ′(t) +

∫ t

0

|u′(τ)|2dτ + γ(ϕ(0) − ϕ(t)) ≥ ρ

∫ t

0

|u′′(τ) + γu′(τ)|dτ.

We have already proved that the limt→∞ ϕ(t) exists and limt→∞ ϕ′(t) = 0. More-
over, u′ ∈ L2(0,∞;H). As a conclusion, u′′ + γu′ ∈ L1(0,∞;H). We deduce that
the limt→∞ u′(t) + γu(t) exists, which finishes the proof because u′(t) → 0 as t →
∞.

2.2. Localization of the limit point. In the proof of Theorem 2.1 we have
used the differential inequality (2.2), which in some sense measures the evolution of
the system. A simpler but analogous inequality appears in the asymptotic analysis
for the steepest descent inclusion (SD). This was used by B. Lemaire in [13] to locate
the limit point of the trajectories of (SD). Following this approach, in this section we
give a localization result of the limit point of the solutions of (Eγ). For simplicity of
notation, set S := Argmin Φ and we denote by projS : H → S the projection operator
onto the closed convex set S.

Proposition 2.5. Let u be solution of (Eγ ;u0, v0) and û ∈ S be such that
u(t) ⇀ û weakly as t→ ∞. Then, for all x ∈ S

|û− x| ≤ |u0 +
1

γ
v0 − x| +

1

γ
δ(u0),(2.10)

where δ(u0) =
√

2[Φ(u0) − inf Φ]1/2. Consequently

(i) |û− projS(u0 +
1

γ
v0)| ≤ d(u0 +

1

γ
v0, S) +

1

γ
δ(u0),

where d(u0, S) is the distance between u0 and the set S.
(ii) If S is an affine subspace of H, then

|û− projS(u0 +
1

γ
v0)| ≤ 1

γ
δ(u0).
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If, moreover, Φ is a quadratic form, then

u(t) → projS(u0 +
1

γ
v0) strongly in H as t→ ∞.

Proof. Let x ∈ S and set ϕ(t) := 1
2 |u(t) − x|2. The inequality (2.2) and the

optimality of x give ϕ′′ + γϕ′ ≤ |u′|2. Hence

ϕ(t) ≤ ϕ(0) +
1

γ
(1 − e−γt)ϕ′(0) +

∫ t

0

∫ θ

0

e−γ(θ−τ)|u′(τ)|2dτdθ.

Due to the weak lower-semicontinuity of the norm and Fubini’s theorem, we can let
t→ ∞ to obtain

1

2
|û− x|2 ≤ 1

2
|u0 − x|2 +

1

γ
〈v0, u0 − x〉 +

1

γ

∫ ∞

0

|u′(τ)|2dτ.(2.11)

On the other hand, from the energy equation

1

2
|u′|2 + Φ(u) + γ

∫ t

0

|u′(τ)|2dτ =
1

2
|v0|2 + Φ(u0),

it follows that ∫ ∞

0

|u′(τ)|2dτ ≤ 1

γ

[1

2
|v0|2 + Φ(u0) − inf Φ

]
.

Replacing the last estimate in (2.11), it easy to show that (2.10) holds.
For (i), it suffices to take x = projS(u0 + 1

γ v0) in (2.10).

For (ii), let e := û− projS(u0 + 1
γ v0). If e �= 0, then set

xr := projS

(
u0 +

1

γ
v0

)
− rd

(
u0 +

1

γ
v0, S

) e
|e| ,

which belongs to S. An easy computation shows that∣∣∣u0 +
1

γ
v0 − xr

∣∣∣− |û− xr| =
(√

1 + r2 − r
)
d
(
u0 +

1

γ
v0 − x, S

)
− |e|,

which together with (2.10) yields

|e| ≤
(√

1 + r2 − r
)
d
(
u0 +

1

γ
v0 − x, S

)
+

1

γ
δ(u0).

Letting r → ∞ we get the result.
Finally, suppose that Φ(x) = 1

2 〈Ax, x〉 where A : H → H is a positive and self-
adjoint bounded linear operator. Then S = {x ∈ H | Ax = 0} the null space of A.
Let z ∈ S; for all t ≥ 0 we have that

〈u′(t) − v0, z〉 + γ〈u(t) − u0, z〉 =

∫ t

0

〈u′′(τ) + γu′(τ), z〉dτ

=

∫ t

0

〈−Au(τ), z〉dτ

=

∫ t

0

−〈u(τ), Az〉dτ = 0.

Since u′(t) → 0 and u(t) → û ∈ S strongly (Φ is even) as t→ ∞, we can deduce that〈
û−

(
u0 +

1

γ
v0

)
, z
〉

= 0

for all z ∈ S, which completes the proof.
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2.3. Linear system: Heuristic comparison. Before proceeding further, it is
interesting from the optimization viewpoint to compare the behavior of the trajectories
defined by

(Eγ) u′′ + γu′ + ∇Φ(u) = 0,

with the steepest descent equation

(SD) u′ + ∇Φ(u) = 0,

and with the continuous Newton’s method

(N) u′ + ∇2Φ(u)−1∇Φ(u) = 0.

For simplicity, in this section we restrict ourselves to the associated linearized systems
in a finite dimensional space. We shall consider H = R

N and assume that Φ ∈
C2(RN ; R). Related to (SD), we have the linearized system around some x0 ∈ R

N ,
which is defined by

(LSD) x′ + ∇2Φ(x0)(x− x0) + ∇Φ(x0) = 0.

We assume that the Hessian matrix ∇2Φ(x0) is positive definite. An explicit computa-
tion shows that x(t) → x̂ := x0 −∇2Φ(x0)−1∇Φ(x0) as t→ ∞. In fact, the solutions
of (LSD) are of the form y(t) = x̂ + η(t), where η solves the homogeneous equation
η′ + ∇2Φ(x0)η = 0. Take a matrix P such that P−1∇2Φ(x0)P = diag(λ1, . . . , λN ),
where λi > 0, and set Pξ = η. We obtain the system ξ′i+λiξi = 0, whose solutions are
ξi(t) = Cie

−λit. Generally speaking, if there is a λi << 1, we will have a relative slow
convergence towards the solution; on the other hand, when dealing with large λi’s
the numerical integration by an approximate method will present stability problems.
Thus we see that the numerical performance of (SD) is strongly determined by the
local geometry of the function Φ.

We turn now to the linearized version of (N), given by

(LN) y′ + y − x̂ = 0.

The solutions are of the form y(t) = x̂+e−ty(0), which are much better than the pre-
vious ones. The major properties are (1) the straight-line geometry of the trajectories;
(2) that the rate of convergence is independent of the quadratic function to be min-
imized. Certainly, this is just a local approximation of the original function and the
global behavior of the trajectory may be complicated. Nevertheless, this outstanding
normalization property of Newton’s system makes it effective in practice, due to the
fact that the associated trajectories are easy to follow by a discretization method.
Of course, an important disadvantage of (N) is the computation of the inverse of the
Hessian matrix, which may be involved for a numerical algorithm.

Finally, we consider

(LEγ) z′′ + γz′ + ∇2Φ(x0)(z − x0) + ∇Φ(x0) = 0.

For this equation we have z(t) = x̂ + ε(t), where ε solves the homogeneous problem
ε′′ + γε′ +∇2Φ(x0)ε = 0. Setting Pδ = ε with P as above, then δi satisfies δ′′i + γδ′i +
λiδi = 0. It is a simple matter to show that |δi(t)| ≤ Cie

−µi(γ)t with µi :]0,∞[→]0,∞[
continuous and Ci a constant independent of γ. In fact, µi(γ) = γ

2 if γ ∈]0, 2
√
λi] and
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µi(·) is nonincreasing on ]2
√
λi,∞[. Moreover, if γ ≥ 2

√
λi, then the corresponding

δi(t) does not present oscillations. Thus the choice γ = 2
√
λi gives µi =

√
λi, the

greatest rate that can be obtained. But we can get any value in the interval ]0,
√
λi];

for instance, when λi > 1 we obtain µi = 1 either with γ = 2 or γ = λi + 1. The
last choice has the advantage that the associated trajectory is not oscillatory, which
is interesting by numerical reasons. Note that we should take a different parameter γ
according to the corresponding eigenvalue λi.

Therefore, the presence of the damping parameter γ gives us a control on the
behavior of the solutions of (Eγ) and, in particular, on some qualitative properties
of the associated trajectories. For a general Φ we must take into account that (a) a
careful selection of the damping parameter γ should depend on the local geometry of
the function Φ, leading to a nonautonomous damping; (b) this selection could give a
different value of γ for some particular directions, leading to an anisotropic damping.
No attempt has been made here to develop a theory in order to guide these choices.

2.4. Linear and anisotropic damping. In the preceding section we have seen
that it may be of interest to consider an anisotropic damping. With the aim of
contributing to this issue, in this section we establish the asymptotic convergence for
the solutions of the following system:

(EΓ;u0, v0)

{
u′′ + Γu′ + ∇Φ(u) = 0,
u(0) = u0, u

′(0) = v0,

where Γ : H → H is a bounded self-adjoint linear operator, which we assume to be
elliptic:

(hΓ) there exists γ > 0 such that for any x ∈ H, 〈Γx, x〉 ≥ γ|x|2.
Theorem 2.6. Suppose (hΦ) and (hΓ) hold. If u ∈ C2([0,∞[;H) is a solution

of (EΓ;u0, v0), then it satisfies u′ ∈ L2([0,∞[;H), u′(t) → 0 as t→ ∞, and
lim
t→∞ Φ(u(t)) = inf Φ.(2.12)

Furthermore, if Argmin Φ �= ∅, then there exists û ∈ Argmin Φ such that u(t) ⇀ û
weakly in H as t→ ∞.

Proof. We only need to adapt the proof of Theorem 2.1. First, note that the
properties of existence, uniqueness, and infinite extendibility to the right of the so-
lution follow by similar arguments. Likewise, the energy E(t) := 1

2 |u′(t)|2 + Φ(u(t))
satisfies E′ = −〈Γu′, u′〉, and we can deduce that u′ ∈ L2.

Next, define the operator A : H → H by Ax := Γx − γx, with γ > 0 given by
(hΓ). Fix x ∈ H and set ϕ(t) := 1

2 |u(t) − x|2 and ρ(t) := 1
2 〈A(u(t) − x), u(t) − x〉, in

such a way that

ϕ′′ + γϕ′ + ρ′ = 〈∇Φ(u), x− u〉 + |u′|2.(2.13)

As in the proof of Theorem 2.1, (2.13) gives

ϕ′(t) +

∫ t

0

e−γ(t−τ)ρ′(τ)dτ ≤ e−γtϕ′(0) +
1

γ
(1 − e−γt)[Φ(x) − E(t)] + r(t),(2.14)

with

r(t) :=
3

2

∫ t

0

e−γ(t−τ)|u′(τ)|2dτ,
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the only difference being the term
∫ t

0
e−γ(t−τ)ρ′(τ)dτ . An integration by parts yields∫ t

0

e−γ(t−τ)ρ′(τ)dτ = ρ(t) − e−γtρ(0) − γ
∫ t

0

e−γ(t−τ)ρ(τ)dτ.

Setting f(t) :=
∫ t

0
e−γ(t−τ)ρ(τ)dτ , we have∫ t

0

e−γ(t−τ)ρ′(τ)dτ = f ′(t) − e−γtρ(0).

Thus, we can rewrite (2.14) as

ϕ′(t) + f ′(t) ≤ e−γt(ϕ′(0) + ρ(0)) +
1

γ
(1 − e−γt)[Φ(x) − E(t)] + r(t).

We leave it to the reader to verify that the minimizing property (2.12) can now be
established as in Theorem 2.1. The proof of u′(t) → 0 as t→ ∞ is analogous.

When Argmin Φ �= ∅, we fix z ∈ Argmin Φ and consider the corresponding func-
tions ϕ and ρ as above (with x replaced by z). Using the optimality of z, it follows
that

ϕ′(t) + f ′(t) ≤ e−γt(ϕ′(0) + ρ(0)) +

∫ t

0

e−γ(t−τ)|u′(τ)|2dτ,(2.15)

with f associated with ρ as above. Integrating this inequality we conclude that ϕ(t)
stays bounded as t → ∞, but we cannot deduce its convergence. Then, we rewrite
(2.15) in the form

ϕ′(t) +

∫ t

0

e−γ(t−τ)ρ′(τ)dτ ≤ e−γtϕ′(0) +

∫ t

0

e−γ(t−τ)|u′(τ)|2dτ,

and we conclude that [ϕ′(t) +
∫ t

0
e−γ(t−τ)ρ′(τ)dτ ]+ ∈ L1([0,∞[; R). We note that

ϕ′(t) +

∫ t

0

e−γ(t−τ)ρ′(τ)dτ = µ′(t) + ξ′(t),

where

µ(t) :=
1

2γ
〈Γ(u(t) − z), u(t) − z〉,

and

ξ(t) := − 1

γ

∫ t

0

e−γ(t−τ)ρ′(τ)dτ.

By virtue of Lemma 2.2, if we show that ξ(t) is bounded from below, then µ(t) + ξ(t)
converges as t → ∞. Since ρ′(t) = 〈Au′(t), u(t) − z〉, there exists a constant M > 0
independent of t such that |ρ′(t)| ≤ M |u′(t)|√ϕ(t) for any t > 0. We conclude that
ρ′(t) → 0 as t → ∞. From this fact it follows easily that ξ(t) → 0 as t → ∞.
Therefore, µ(t) + ξ(t) converges as t→ ∞, hence µ(t) converges as well.

The proof is completed by applying the Opial lemma to the trajectory {u(t) : t→
∞}, where the Hilbert space H is endowed with the inner product 〈〈·, ·〉〉 : H×H → R

defined by 〈〈x, y〉〉 := 1
γ 〈Γx, y〉 and its associated norm.
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Remark 1. In Theorems 2.1, 2.4, and 2.6 we do not require any coerciveness
assumption on Φ. When Argmin Φ �= ∅, the dissipativeness in the dynamics suffices
for the convergence of the solutions. If the infimum value is not realized, the trajectory
may be unbounded as in the one-dimensional equation u′′ + γu′ + eu = 0, whose
solutions u ∈ C2([0,∞[; R) are so that u(t) → −∞ and u′(t) → 0 as t → ∞. In
any case, our results assert that the dynamical system defined by (Eγ) (or more
generally by (EΓ)) is dissipative in the sense that every trajectory evolves towards a
minimum of the energy. Certainly, there is a strong connection with the concept of
point dissipativeness or ultimately boundedness in the theory of dynamical systems,
where the Lyapunov function associated with the semigroup is usually supposed to
be coercive (cf. [9, gradient systems]).

Remark 2. To ensure local existence and uniqueness of a classical solution for
the differential equation, it suffices to require a local Lipschitz property on ∇Φ. Ac-
tually, in some situations this hypothesis is not necessary and the existence may be
established by other arguments. For instance, that is the case of the Hille–Yosida
theorem for evolution equations governed by monotone operators and the theory of
linear and nonlinear semigroups for partial differential equations. Note that such a
Lipschitz condition on the gradient is not used in the asymptotic analysis of the tra-
jectories. Therefore, the previous asymptotic results remain valid for other classes of
infinite dimensional dissipative systems provided the existence of a global solution.
It is not our purpose to develop this point here for the continuous system because it
exceeds the scope of this paper. However, in the next section we consider an implicit
discretization of the continuous system. As we will see, the existence of the discrete
trajectory is ensured by variational arguments. This will allow us to apply the discrete
scheme to nonsmooth convex functions and to adapt the asymptotic analysis to this
case.

3. Discrete approximation method. Once we have established the existence
of a solution of an initial value problem, we are interested in its numerical values. We
must accept that most differential equations cannot be solved explicitly; we are thus
led to work with approximate methods. An important class of these methods is based
on the approximation of the exact solution over a discrete set {tn}: associated with
each point tn we compute a value un, which approximates u(tn) the exact solution at
tn. Generally speaking, these procedures have the disadvantage that a large number
of calculations has to be done in order to keep the discretization error en := un−u(tn)
sufficiently small. In addition to this, the estimates for the errors strongly depend on
the length of the discretization range for the t variable. It turns out that these methods
are not well adapted to the approximation of the exact solution on an unbounded
domain.

Nevertheless, there is an important point to note here. If our objective is the
asymptotic behavior of the solutions as t goes to ∞, then the accurate approximation
of the whole trajectory becomes immaterial. We present a discrete method whose
feature is that no attempt is made to approximate the exact solution over a set of
points but that the discrete values are sought only to preserve the asymptotic behavior
of the solutions.

3.1. Implicit iterative scheme. Dealing with the discretization of a first order
differential equation y′ = F (y), it is classical to consider the implicit iterative scheme

yk+1 − yk
h

= F (yk+1),(3.1)
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where h > 0 is a parameter called step size. In the case of equation (Eγ), or more
precisely its first order equivalent system, (3.1) corresponds to recursively solve

uk+1 − 2uk + uk−1

h2
+ γ

uk+1 − uk
h

+ ∇Φ(uk+1) = 0.(3.2)

Since Φ is convex, (3.2) is equivalent to the following variational problem:

uk+1 = argmin

{
Φ(x) +

1 + γh

2h2
|x− zk|2 : x ∈ H

}
,

where zk = uk+ 1
1+γh (uk−uk−1). This motivates the introduction of the more general

iterative procedure

uk+1 = argmin

{
Φ(x) +

1

2λ
|x− zk|2 : x ∈ H

}
,

where zk = uk+α(uk−uk−1), λ and α are positive. Note that when α = 0, we recover
the standard (Prox) iteration. If α > 0, the starting point for the next iteration is
computed as a development in terms of the velocity of the already generated sequence.
Therefore, this iterative scheme defines a second order dynamics, while (Prox) is
actually of a first order nature.

We have been working under the assumption that Φ is differentiable. However,
for the above iterative variational method this regularity is no longer necessary. Thus,
in that which follows f : H → R ∪ {∞} denotes a closed proper convex function (see
[17]), which eventually realizes the value ∞, and we consider

uk+1 = argmin

{
f(x) +

1

2λ
|x− zk|2 : x ∈ H

}
,(3.3)

where zk = uk +α(uk−uk−1). In terms of the stationary condition, (3.3) is equivalent
to

1

λ
(uk+1 − (1 + α)uk + αuk−1) + ∂f(uk+1) � 0,

where ∂f is the standard convex subdifferential [17].

3.2. Convergence for the variational algorithm. By numerical reasons, it
is natural to consider the following approximate iterative scheme:

1

λk
(uk+1 − (1 + αk)uk + αkuk−1) + ∂εkf(uk+1) � 0,(3.4)

where αk is nonnegative, λk is positive, and ∂εf is the ε-subdifferential. Note that a
sequence {uk} ⊂ H satisfying (3.4) always exists. Indeed, given uk−1, uk ∈ H, we can
take uk+1 as the unique solution of the strongly convex problem min{f(x) + 1

2λk
|x−

zk|2 : x ∈ H} with zk as above.
Theorem 3.1. Assume that f is closed proper convex and bounded from below.

Let {uk} ⊂ H be a sequence generated by (3.4), where
(i) 0 ≤ αk ≤ 1 and {λk} is bounded from below by a positive constant,
(ii) the sequence {αk/λk} is nonincreasing and

∑
λkεk <∞.

Then

lim
k→∞

1

λk
(uk+1 − (1 + αk)uk + αkuk−1) = 0,(3.5)
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and in particular limk→∞ d(0, ∂εkf(uk+1)) = 0.
When Argmin f �= ∅, assume in addition that
(iii) there exists ᾱ ∈]0, 1[ such that 0 ≤ αk ≤ ᾱ, and {λk} is bounded from above
if there is at least one αk > 0.

Then, there exists û ∈ Argmin f such that uk ⇀ û weakly as k → ∞.
Proof. The proof consists of adapting the analysis done for the differential equa-

tion (Eγ). We begin by defining the discrete energy by

Ek+1 =
αk

2λk
|uk+1 − uk|2 + f(uk+1),

and we study the successive difference Ek+1 − Ek. Since αk/λk ≤ αk−1/λk−1,

Ek+1 − Ek ≤ αk

2λk

(|uk+1 − uk|2 − |uk − uk−1|2
)

+ f(uk+1) − f(uk).

By definition of ∂εkf , (3.4) yields

f(uk+1) − f(uk) ≤ − 1

λk
〈uk+1 − (1 + αk)uk + αkuk−1, uk+1 − uk〉 + εk.

As we can write

〈uk+1 − (1 + αk)uk + αkuk−1, uk+1 − uk〉 = |uk+1 − uk|2 − αk〈uk − uk−1, uk+1 − uk〉,

we have

Ek+1 − Ek ≤ − αk

2λk
|uk+1 − 2uk + uk−1|2 − 1 − αk

λk
|uk+1 − uk|2 + εk,

and consequently

N∑
k=1

[
αk

2λk
|uk+1 − 2uk + uk−1|2 +

1 − αk

λk
|uk+1 − uk|2

]
≤ E1 − EN+1 +

N∑
k=1

εk.

Noting that

E1 − EN+1 +

N∑
k=1

εk ≤ E1 − inf f +
∑

εk <∞,

and because 0 ≤ αk ≤ 1, we deduce that∑ αk

2λk
|uk+1 − 2uk + uk−1|2 <∞

and ∑ 1 − αk

λk
|uk+1 − uk|2 <∞.(3.6)

As 0 ≤ αk ≤ 1 and λk is bounded from below by a positive constant, we have

lim
k→∞

αk

λk
|uk+1 − 2uk + uk−1| = lim

k→∞
(1 − αk)

λk
|uk+1 − uk| = 0.
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Writing

uk+1 − (1 + αk)uk + αkuk−1 = αk(uk+1 − 2uk + uk−1) + (1 − αk)(uk+1 − uk),

we conclude that (3.5) holds.
Suppose now that Argmin f �= ∅. We apply the Opial lemma to prove the weak

convergence of {uk}. On account of (3.5), it is sufficient to show that for any z ∈
Argmin f , the sequence of positive numbers {|uk−z|} is convergent. Fix z ∈ Argmin f ;
since uk+1 satisfies (3.4), we have

f(uk+1) − 1

λk
〈uk+1 − (1 + αk)uk + αkuk−1, z − uk+1〉 ≤ f(z) + εk,

and by the optimality of z

〈uk+1 − uk, uk+1 − z〉 − αk〈uk − uk−1, uk+1 − z〉 ≤ λkεk.(3.7)

Set ϕk := 1
2 |uk − z|2. It is direct to check that for any k ∈ N

ϕk+1 = ϕk + 〈uk+1 − uk, uk+1 − z〉 − 1

2
|uk+1 − uk|2.

Since 〈uk−uk−1, uk+1−z〉 = 〈uk−uk−1, uk−z〉+ 〈uk−uk−1, uk+1−uk〉, (3.7) shows
that

ϕk+1 − ϕk − αk

(
ϕk − ϕk−1 +

1

2
|uk − uk−1|2 + 〈uk − uk−1, uk+1 − uk〉

)
≤ λkεk,

and therefore

ϕk+1 − (1 + αk)ϕk + αkϕk−1 ≤ δk,

where δk = αk|uk − uk−1|2 + αk

2 |uk+1 − uk|2 + λkεk. Using (iii) and (3.6) it follows
that

∑ |uk+1 −uk|2 <∞, thus
∑
δk <∞. Set θk := ϕk −ϕk−1; the above inequality

implies

[θk+1]+ ≤ ᾱ[θk]+ + δk.

Thus

[θk+1]+ ≤ ᾱk[θ1]+ +

k−1∑
j=0

ᾱjδk−j ,

which yields

∞∑
k=0

[θk+1]+ ≤ 1

1 − ᾱ

(
[θ1]+ +

∞∑
k=1

δk

)
<∞.

Set wk := ϕk −∑k
j=1[θj ]+. Since ϕk ≥ 0 and

∑
[θj ]+ < ∞, wk is bounded from

below. As {wk} is nonincreasing we have that it converges. Hence {ϕk} converges,
which completes the proof of the theorem.

For simplicity, we have considered in this section the isotropic damping system.
However, a similar analysis can be done for the anisotropic damping associated with
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an elliptic self-adjoint linear operator Γ : H → H. The variational problem associated
with the implicit discretization is

uk+1 = argmin

{
Φ(x) +

1

2h2
|x− zk|2(I+hΓ) : x ∈ H

}
,

where zk = uk + (I + hΓ)−1(uk − uk−1) and for any y ∈ H,

|y|(I+hΓ) :=
√

〈(I + hΓ)y, y〉.
For a function f : H → R ∪ {∞} closed proper and convex, the latter motivates the
scheme

R(uk+1 − (I + S)uk + Suk−1) + ∂f(uk+1) � 0,

where R : H → H is a linear positive definite operator and S : H → H is linear
and positive semidefinite. If we assume both R and I − S are elliptic, it is possible
to obtain a convergence result like the previous one. It suffices to adapt the main
arguments. Since the basic ideas are contained in the proof of Theorems 2.6 and 3.1,
we shall go no further in this matter.

4. Some open problems. In the case of multiple optimal solutions, our con-
vergence results do not provide additional information on the point attained in the
limit. A possible approach to overcome this disadvantage may be to couple the dissi-
pative system with approximation techniques such as regularization, interior-barrier
or globally defined penalizations, and viscosity methods. In the continuous case, this
alternative has been considered with success for the steepest descent equation in [2]
and for Newton’s method in [1], giving a characterization for the limit point under
suitable assumptions on the approximate scheme. On account of these results, one
may conjecture that this can be done for the equations considered in the present work.

On the other hand, we have seen that the behavior of the trajectories depends
on a relation between the damping and the local geometry of the function we wish to
minimize. This remark leads us to the obvious problem of the choice of the damping
parameter, made in order to have a better control on the trajectory. This is also a
problem in the discrete algorithm. Usually we have an incomplete knowledge of the
objective function, which makes the question more difficult. We think that a first step
in this direction may be the study of more general damped equations, with nonlinear
and/or nonautonomous damping.
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