ON THE MINIMUM NUMBER OF DISTINCT EIGENVALUES FOR A SYMMETRIC MATRIX WHOSE GRAPH IS A GIVEN TREE

António Leal-Duarte and Charles R. Johnson

Abstract

It is shown that for any tree T the minimum number of distinct eigenvalues of an Hermitian matrix whose graph is T (diagonal entries free) is at least the number of vertices in a longest path of T. This is another step toward the general problem of characterizing the possible multiplicities for a given graph. Related observations are made and the result facilitates a table of multiplicities for trees on fewer than 8 vertices.

Mathematics subject classification (2000): 15A18, 15A57, 05C50, 05C05, 05C12.
Key words and phrases: Graph, tree, matrices, eigenvalues.

REFERENCES

[1] R. Brualdi and H. J. Ryser, Combinatorial Matrix Theory, University Press, New York, 1991.
[2] W. Ferguson, The Construction of Jacobi and Periodic Jacobi Matrices with Prescribed Spectra, Math. Comp. 35 (1980), 1203-1220.
[3] C. Godsil, Algebraic Combinatorics, Chapman and Hall, New York, 1993.
[4] R. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
[5] C. R. Johnson and A. Leal-Duarte, The Maximum Multiplicity of an Eigenvalue in a Matrix Whose Graph is a Tree, Linear and Multilinear Algebra 46 (1999), 139-144.
[6] S. Parter, On the Eigenvalues and Eigenvectors of a Class of Matrices, J. Soc. Indust. Appl. Math. 8 (1960), 376-388.
[7] G. WIENER, Spectral Multiplicity and Splitting Results for a Class of Qualitative Matrices, Linear Alg. Appl. 61 (1984), 15-29.

