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Abstract. The ropelength of a knot is the quotient of its length by its thick-
ness, the radius of the largest embedded normal tube around the knot. We
prove existence and regularity for ropelength minimizers in any knot or link
type; these ar€!>! curves, but need not be smoother. We improve the lower
bound for the ropelength of a nontrivial knot, and establish new ropelength
bounds for small knots and links, including some which are sharp.

Introduction

How much rope does it take to tie a knot? We measuredpelengthof a

knot as the quotient of its length over tticknessthe radius of the largest
embedded normal tube around the knot. A ropelength-minimizing configu-
ration of a given knot type is callagyht.

Tight configurations make interesting choices for canonical representa-
tives of each knot type, and are also referred to as “ideal knots”. It seems
that geometric properties of tight knots and links are correlated well with
various physical properties of knotted polymers. These ideas have attracted
special attention in biophysics, where they are applied to knotted loops of
DNA. Such knotted loops are important tools for studying the behavior
of various enzymes known as topoisomerases. For information on these
applications, see for instance [Sum, SKEKBM T, KOP™,DS1,DS2,CKS,
LKS™] and the many contributions to the botwleal Knots[SKK].

In the first section of this paper, we show the equivalence of various
definitions that have previously been given for thickness. We use this to
demonstrate that in any knot or link type there is a ropelength minimizer,
and that minimizers ar€"! curves (Theorem 7).
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Fig. 1. A simple chain ofc > 2 rings, the connect sum &f— 1 Hopf links, can be built from
stadium curves (with circles at the ends). This configuration has ropeléfgth 4)k — 8
and is tight by Theorem 10; it shows that ropelength minimizers need ot be

The main results of the paper are several new lower bounds for rope-
length, proved by considering intersections of the normal tube and a span-
ning surface. For a link of unit thickness, if one component is linked to
others, then its length is at lea&t + P,, where P, is the length of the
shortest curve surroundingdisjoint unit-radius disks in the plane (Theo-
rem 10). This bound is sharp in many simple cases, allowing us to construct
infinite families of tight links, such as the simple chain shown in Figure 1.
The only previously known example of a tight link was the Hopf link built
from two round circles, which was the solution to the Gehring link prob-
lem [ES, Oss,Gag]. Our new examples show that ropelength minimizers
need not b2, and need not be unique.

Next, if one component in a unit-thickness link has total linking num-
bern with the other components, then its length is at I@ast- 27/n, by
Theorem 11. We believe that this bound is never sharp.for 1. We ob-
tain it by using a calibration argument to estimate the area of a cone surface
spanning the given component, and the isoperimetric inequality to convert
this to a length bound. For links with linking number zero, we need a differ-
ent approach: here we get better ropelength bounds (Theorem 21) in terms
of theasymptotic crossing numbef Freedman and He [FH].

Unit-thickness knots have similar lower bounds on length, but the esti-
mates are more intricate and rely on two additional ideas. In Theorem 18,
we prove the existence of a point from which any nontrivial knot has cone
angle at leastir. In Section 5, we introduce thparallel overcrossing
numberof a knot, which measures how many times it crosses over a par-
allel knot: we conjecture that this equals the crossing number, and we
prove it is at least the bridge number (Proposition 14). Combining these
ideas, we show (Theorem 19) that any nontrivial knot has ropelength at
leastdr + 27v/2 ~ 6.831 ~ 21.45. The best previously known lower
bound [LSDR] wasbm ~ 15.71. Computer experiments [SDKP] using
Pieranski's SONO algorithm [Pie] suggest that the tight trefoil has rope-
length around2.66. Our improved estimate still leaves open the old ques-
tion of whether any knot has ropelength un@dr that is: Can a knot be
tied in one foot of one-inch (diameter) rope?
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1. Definitions of Thickness

To define the thickness of a curve, we follow the paper [GM] of Gonza-
lez and Maddocks. Although they considered only smooth curves, their
definition (unlike most earlier ones, but see [KS]) extends naturally to the
more general curves we will need. In fact, it is based on Menger’s notion
(see [BM,§10.1]) of the three-point curvature of an arbitrary metric space.
For any three distinct points, y, z in R?, we letr(z, y, z) be the radius
of the (unique) circle through these points (setting oo if the points are
collinear). Also, ifV, is a line throughz, we letr(V,, y) be the radius of
the circle throughy tangent tol/, atz.
Now let L be a link inIR3, that is, a disjoint union of simple closed
curves. For any: € L, we define thehicknessr(L) of L in terms of a
local thickness (L) atx € L:

7(L) := inf 75(L), Tz(L) = inf r(x,y,z).
e L
TAYF2F#T

To apply this definition to nonembedded curves, note that we consider only
triples of distinct points:, y, = € R3. We will see later that a nonembedded
curve must have zero thickness unless its image is an embedded curve,
possibly covered multiple times.

Note that any sphere cut three times bymust have radius greater
than7(L). This implies that the closest distance between any two com-
ponents ofL is at leastr, as follows: Consider a sphere whose diameter
achieves this minimum distance; a slightly larger sphere is cut four times.

We usually prefer not to deal explicitly with our space curves as maps
from the circle. But it is important to note that below, when we talk about
curves being in clas€*®, or converging inC* to some limit, we mean
with respect to the constant-speed parametrization on the unit circle.

Our first two lemmas give equivalent definitions of thickness. The first
shows that the infimum in the definition ef L) is always attained in a
limit when (at least) two of the three points approach each other. Thus, our
definition agrees with one given earlier by Litherlaatal. [LSDR] for
smooth curves. It # y € L andx — y is perpendicular to botf, . and
T, L, then we callz — y| adoubly critical self-distancéor L.

Lemma 1. Supposd. is C*, and letT, L be its tangent line at € L. Then
the thickness is given by

7(L) = inf

T.L,y).
w#yELT( x 7y)

This equals the infimal radius of curvature bfor half the infimal doubly
critical self-distance, whichever is less.

Proof. The infimum in the definition of thickness either is achieved for
some distinct points;, y, z, or is approached along the diagonal when
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say, approaches, giving usr(7,L,y). But the first case cannot happen
unless the second does as well: consider the sphere of ragiugx, y, z)

with z, y andz on its equator, and relabel the points if necessary so that
y andz are not antipodal. Since thisis infimal, L must be tangent to the
sphere atc. Thusr(7,L,y) < 7, and we see that(L) = inf r(T, L, y).

This infimum, in turn, is achieved either for some# y, or in a limit as

y — x (when it is the infimal radius of curvature). In the first case, we can
check that: andy must be antipodal points on a sphere of radipwith L
tangent to the sphere at both points. That means, by definitior2thata
doubly critical self-distance fof.. O

A version of Lemma 1 for smooth curves appeared in [GM]. Similar
arguments there show that the local thickness can be computed as

T(L) = yir;fmr(TyL,x).

Lemma 2. For anyC" link L, the thickness of equals the reach af; this
is also the normal injectivity radius dfi.

Thereachof a setL in R3, as defined by Federer [Fed)], is the largest
for which any point in the p-neighborhood of. has a unique nearest point
in L. The normal injectivity radiusof a C! link L in R3 is the largest
for which the union of the open normal disks foof radius. forms an
embedded tube.

Proof. Let 7, p, and: be the thickness, reach, and normal injectivity radius
of L. We will show thatr < p < (< 7.

Suppose some poipthas two nearest neighbarsandy at distancey.
Thus L is tangent atr andy to the sphere aroung, so a nearby sphere
cuts L four times, givingr < p.

Similarly, suppose somg is on two normal circles of. of radius..
Thisp has two neighbors oh at distance, sop < «.

We know that is less than the infimal radius of curvaturelofFurther-
more, the midpoint of a chord df realizing the infimal doubly self-critical
distance ofL is on two normal disks of.. Using Lemma 1, this shows that
v < 7, completing the proof. O

If L has thickness > 0, we will call the embedded (open) normal tube
of radiusT aroundL thethick tubearoundLl.

We define theopelengthof a link L to beLen(L)/7(L), the (scale-
invariant) quotient of length over thickness. Every curve of finite roplength
is C&1, by Lemma 4 below. Thus, we are free to restrict our attention
to C! curves, rescaled to have (at least) unit thickness. This means they
have embedded unit-radius normal tubes, and curvature bounded above
by 1. The ropelength of such a curve is (at most) its length.
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Fig. 2. These elbow curves consist of straight segments connected by a circular arc of unit
radius. No matter how small the angle of the arc is, the curve has unit thickness, as demon-
strated by the maximal embedded normal neighborhoods shown. THe'seurves con-

verge inC'! to a straight segment, with infinite thickness.

2. Existence and Regularity of Ropelength Minimizers

We want to prove that, within every knot or link type, there exist curves of
minimum ropelength. The lemma below allows us to use the direct method
to get minimizers. If we wanted to, we could work wifit convergence

in the space of>>! curves, but it seems better to state the lemma in this
stronger form, applying to all rectifiable links.

Lemma 3. Thickness is upper semicontinuous with respect tathwpol-
ogy on the space @' curves.

Proof. This follows immediately from the definition, sineéx, y, z) is a
continuous function (from the set of triples of distinct points in space)
to (0, oo]. For, if curvesL; approachL, andr(z,y, z) nearly realizes the
thickness ofL,, then nearby triples of distinct points bound from above the
thicknesses of thé,;. O

This proof (compare [KS]) is essentially the same as the standard one
for the lower semicontinuity of length, when length of an arbitrary curve
is defined as the supremal length of inscribed polygons. Note that thick-
ness can jump upwards in a limit, even when the convergen€g.igor
instance, we might have an elbow consisting of two straight segments con-
nected by a unit-radius circular arc whose angle decreases to zero, as shown
in Figure 2.

When minimizing ropelength within a link type, we care only about
links of positive thickness > 0. We next prove three lemmas about such
links. It will be useful to consider theecant mags for a link L, defined,
forz #y € L, by

S(z,y) == iﬁ € RP%

Note that asc — y, the limit of S(x, y), if it exists, is the tangent lin&, L.

Therefore, the link isC! exactly if S extends continuously to the diago-
nal Ain L x L, and isC'*! exactly when this extension is Lipschitz. When
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Fig. 3. The secant map for a thick knot is Lipschitz by
Lemma 4: wherny andz are close along the knot, the se-
cant direction&y andzz are close. Here = r(z,y, 2)

is an upper bound for the thickness of the knot.

speaking of particular Lipschitz constants we use the following metrics:
on L x L, we sum the (shorter) arclength distances in the factor® Bh

the distance between two pointsdis= sin #, wheref is the angle between
(any) lifts of the points t&?2.

Lemma 4.1f L has thickness > 0, then its secant mag has Lipschitz
constantl /27. ThusL is C1L.

Proof. We must prove tha$ has Lipschitz constarit/27 on (L x L) \ A;

it then has a Lipschitz extension. By the triangle inequality, it suffices to
prove, for any fixed: € L, thatd(S(z,y), S(z, 2)) < |y—z|/27 whenever

y andz are sufficiently close alon§. Settingd := Zzzy, we have

. ‘y_Z’ ‘y_Z’
—_ —_ <
d(S(:v,y),S(:l:,z)) =sinf = Syl S 2

using the law of sines and the definition=infr. O

Although we are primarily interested in links (embedded curves), we
note that Lemma 4 also shows that a nonembedded cumaist have
thickness zero, unless its image is contained in some embedded curve. For
such a curvd., contains some point where at least three arcs meet, and at
least one pair of those arcs will fail to join in@!! fashion aip.

Lemma 5.1f L is a link of thickness > 0, then any points;, y € L with
|x — y| < 27 are connected by an arc df of length at most

|z —yl
27
Proof. The two pointst andy must be on the same component/gfand
one of the arcs of. connecting them is contained in the ball with diame-
terzy. By Lemma 1, the curvature df is less tharl /7. Thus by Schur’s
lemma, the length of this arc df is at most27 arcsin(|z — y|/27), as
claimed. Note that Chern’s proof [Che] of Schur’s lemma for space curves,
while stated only forC? curves, applies directly t6'-! curves, which have
Lipschitz tantrices on the unit sphere. (As Chern notes, the lemma actually
applies even to curves with corners, when correctly interpreted.)

) T
27 arcsin < —lx—yl.

Lemma 6. Supposd.; is a sequence of links of thickness at least 0,
converging inC? to a limit link L. Then the convergence is actually,
and L is isotopic to (all but finitely many of) thg;.
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Proof. To showC! convergence, we will show that the secant maps of
the L; converge (inC?) to the secant map af. Note that when we talk
about convergence of the secant maps, we view them (in terms of constant-
speed parametrizations of tlig) as maps from a common domain. Since
these maps are uniformly Lipschitz, it suffices to prove pointwise conver-
gence.

So consider a pair of points, ¢ in L. Takee < |p — ¢|. For large
enoughi, L; is within €2/2 of L in C°, and hence the corresponding points
pi, ¢;i in L; have|p; — p| < €2/2 and|g; — q| < €?/2. We have moved
the endpoints of the segmerit by relatively small amounts, and expect its
direction to change very little. In fact, the anglbetweerp; — ¢; andp — ¢
satisfiesin § < (¢2/2+¢2/2)/e = e. That is, the distance iR P? between
the pointsS;(p;, ¢;) andS(p, q) is given bysin f < e.

Therefore, the secant maps converge pointwise, which shows thiat the
converge inC! to L. Since the limit link L has thickness at least by
Lemma 3, it is surrounded by an embedded normal tube of diameter
Furthermore, all (but finitely many) of thg; lie within this tube, and by
C' convergence are transverse to each normal disk. Eachisigsotopic
to L by a straight-line homotopy within each normal diskd

Our first theorem establishes the existencegtit configurations (rope-
length minimizers) for any link type. This problem is interesting only for
tame links: a wild link has n@!! realization, so its ropelength is always
infinite.

Theorem 7.There is a ropelength minimizer in any (tame) link type; any
minimizer isC'!*!, with bounded curvature.

Proof. Consider the compact space of @ll-' curves of length at most
Among those isotopic to a given linkg, find a sequencé,; supremiz-
ing the thickness. The lengths 6f approachtl, since otherwise rescaling
would give thicker curves. Also, the thicknesses approach some 0,
the reciprocal of the infimal ropelength for the link type. Replace the se-
quence by a subsequence converging inGienorm to some linkL. Be-
cause length is lower semicontinuous, and thickness is upper semicontinu-
ous (by Lemma 3), the ropelength bfis at mostl /7. By Lemma 6, all but
finitely many of theL; are isotopic ta., so L is isotopic toLy.

By Lemma 4, tight links must b&'>!, since they have positive thick-
ness. O

This theorem has been extended by Gonzated. [GM+], who mini-
mize a broad class of energy functionals subject to the constraint of fixed
thickness. See also [GdIL].

Below, we will give some examples of tight links which show ti&t
regularity cannot be expected in general, and that minimizers need not be
unique.
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3. The Ropelength of Links

Suppose in a linl. of unit thickness, some componeistis topologically
linked ton other components’;. We will give a sharp lower bound on the
length of K in terms ofn. When every component is linked to at most five
others, this sharp bound lets us construct tight links.

To motivate the discussion below, suppdS&vas a planar curve, bound-
ing some regiomR in the plane. Eacli; would then have to puncturi.
Since eachk; is surrounded by a unit-radius tube, these punctures would
be surrounded by disjoint disks of unit radius, and these disks would have
to avoid a unit-width ribbon aroundt”. It would then be easy to show that
the length of K was at leas2w more thanpP,, the length of the shortest
curve surrounding disjoint unit-radius disks in the plane.

To extend these ideas to nonplanar curves, we need to consider cones.
Given a space curv& and a pointp € R3, the coneover K from p is
the disk consisting of all line segments frgmto points in K. The cone
is intrinsically flat away from the single cone poimtand thecone angle
is defined to be the angle obtainedpaif we cut the cone along any one
segment and develop it into the Euclidean plane. Equivalently, the cone
angle is the length of the projection &f to the unit sphere around Note
that the total Gauss curvature of the cone surface eQuaisinus this cone
angle.

Our key observation is that a space curve may be coned to someppoint
in such a way that the intrinsic geometry of the cone surface is Euclidean.
We can then apply the argument above in the intrinsic geometry of the
cone. In fact, we can get even better results when the cone angle is greater
than27. We first prove a technical lemma needed for this improvement.
Note that the lemma would remain true without the assumptionsgi¢hiat
C11 and has curvature at mokt But we make use only of this case, and
the more general case would require a somewhat more complicated proof.

Lemma 8.Let S be an infinite cone surface with cone angle> 27 (so
that S has nonpositive curvature and is intrinsically Euclidean away from
the single cone point). Ldt be a subset of which includes the cone point,
and let/ be a lower bound for the length of any curveSrsurroundingR.
Consider aC'''! curveK in S with geodesic curvature bounded abovel by

If K surroundsR while remaining at least unit distance froR) thenK has
length at least + 4.

Proof. We may assume thdt has nonnegative geodesic curvature almost
everywhere. If not, we simply replace it by the boundary of its convex hull
within S, which is well-defined sinc& has nonpositive curvature. This
boundary still surround® at unit distance, i€'!, and has nonnegative
geodesic curvature.

Fort < 1, let K; denote the inward normal pushoff, or parallel curve
to K, at distance within the cone. Since the geodesic curvaturefof
is bounded byl, these are all smooth curves, surroundiRgand hence
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Fig. 4. Two views of the same cone, whose cone angle is precizelyon a symmetric
trefoil knot.

surrounding the cone point. K, denotes the geodesic curvaturefof in
S, the formula for first variation of length is

d
o7 Len(K;) = —/Kt/ig ds = —#6,

where the last equality comes from Gauss—Bonnet, sthiseintrinsically
flat except at the cone point. Thign(K) = Len(K};) + t6; since K
surroundsR for everyt < 1, it has length at leagt and we conclude that
Len(K)>¢+6. O

Lemma 9. For any closed curvés, there is a poinip such that the cone
over K from p has cone angl@r. WhenK has positive thickness, we can
choosep to lie outside the thick tube around.

Proof. Recall that the cone angle atis given by the length of the radial
projection of K onto the unit sphere centeredjatf we choosey on a chord

of K, this projection joins two antipodal points, and thus must have length
at least2r. On any doubly critical chord (for instance, the longest chord)
the pointg at distance-(K) from either endpoint must lie outside the thick
tube, by Lemma 2.

Note that the cone angle approackest points far fromk . The cone
angle is a continuous function on the complemenkah R3, a connected
set. WhenK has positive thickness, even the complement of its thick tube
is connected. Thus if the cone angle & greater thar, the intermediate
value theorem lets us choose sopr(eutside the tube) from which the cone
angle is exactl@x. Figure 4 shows such a cone on a trefoil knal

Our first ropelength bound will be in terms of a quantity we dall
defined to equal the shortest length of any plane curve enclasifigjoint
unit disks. Considering the centers of the disks, using Lemma 8, and scaling
by a factor of2, we see thaP’, = 27 + 2Q.,, whereQ,, is the length of the
shortest curve enclosingpoints separated by unit distance in the plane.
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P,

Fig. 5. The shortest curve enclosimgunit disks in the plane has lengtf,, and is unique
forn < 4. Forn = 4, there is a one-parameter family of equally short curves.

For smalln it is not hard to determiné),, and P,, explicitly from the
minimizing configurations shown in Figure 5. Cleafy = 2x, while for
2 < n < 5,we haveP, = 27 + 2n since@, = n. Note that the least-
perimeter curves in Figure 5 are unique for< 4, but forn = 4 there
is a continuous family of minimizers. Fer = 5 there is a two-parameter
family, while forn = 6 the perimeter-minimizer is again unique, Wit =
4 ++/3. Itis clear thatQ,, grows like/n for n large?!

Theorem 10.SupposéX is one component of a link of unit thickness, and
the other components can be partitioned intgublinks, each of which is
topologically linked toK. Then the length oK is at least2w + P,,, where

P, is the minimum length of any curve surroundinglisjoint unit disks in
the plane.

Proof. By Lemma 9 we can find a poiptin space, outside the unit-radius
tube surroundings’, so that coningx” to p gives a cone of cone anger,
which is intrinsically flat.

Each of the sublinkd.; nontrivially linked to K must puncture this
spanning cone in some poipt Furthermore, the fact that the link has unit
thickness implies that thg, are separated from each other and frahby
distance at leagtin space, and thus by distance at leasgtithin the cone.

! This perimeter problem does not seem to have been considered previously. However,
Schirmann [Sch2] has also recently examined this question. In particular, he conjectures
that the minimum perimeter is achieved (perhaps not uniquely) by a subset of the hexagonal
circle packing fom < 54, but proves that this is not the case for> 370.
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Fig. 6. Each component in this link uses one of the perimeter-minimizing shapes from

Figure 5, according to how many other components it links. The link is therefore tight

by Theorem 10. This minimizer is not unique, in that some components could be rotated
relative to others. In other examples, even the shape of individual components (linking four
or five others) fails to be unique.

Thus in the intrinsic geometry of the cone, theare surrounded by
disjoint unit-radius disks, anfl’ surrounds these disks while remaining at
least unit distance from them. Sinéé has unit thickness, it i€'"! with
curvature bounded above hy Since the geodesic curvature &f on the
cone surface is bounded above by the curvatur€ of space, we can apply
Lemma 8 to complete the proof.0

Forn < 5, itis easy to construct links which achieve these lower bounds
and thus must be tight. We just ensure that each component linlattgers
is a planar curve of length equal to our lower bownd+ P,. In particu-
lar, it must be the outer boundary of the unit neighborhood of some curve
achievingP,. In this way we construct the tight chain of Figure 1, as well
as infinite families of more complicated configurations, including the link
in Figure 6. These examples may help to calibrate the various numerical
methods that have been used to compute ropelength minimizers [Pie, Raw,
Lau]. Forn > 6, this construction does not work, as we are unable to simul-
taneously minimize the length @ and the length of all the components it
links.

These explicit examples of tight links answer some existing questions
about ropelength minimizers. First, these minimizers fail, in a strong sense,
to be unique: there is a one-parameter family of tight five-component links
based on the family of curves with length. So we cannot hope to add
uniqueness to the conclusions of Theorem 7. In addition, these minimizers
(except for the Hopf link) are nat?. This tells us that there can be no better
global regularity result than that of Theorem 7. However, we could still
hope that every tight link ipiecewisesmooth, or even piecewise analytic.

Finally, note that the ropelength of a composite link should be somewhat
less than the sum of the lengths of its factors. It was observed in {$KB
that this deficit seems to be at least — 4. Many of our provably tight
examples, like the simple chain in Figure 1 or the link in Figure 6, are
connect sums which give precise confirmation of this observation.
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4. Linking Number Bounds

We now adapt the cone surface arguments to find a lower bound on rope-
length in terms of the linking number. These bounds are more sensitive to
the topology of the link, but are not sharp, and thus provide less geometric
information. In Section 8, we will present a more sophisticated argument,
which implies Theorem 11 as a consequence. However, the argument here
is concrete enough that it provides a nice introduction to the methods used
in the rest of the paper.

Theorem 11.Suppose. is a link of unit thickness. LeK be one compo-
nent of the link and/ be the union of the other components. Orient the
components aof. to maximize the total linking numbek(J, K). Then

Len(K) > 27 + 2m+/Lk(J, K).

Proof. As in the proof of Theorem 10, we apply Lemma 9 to show that
we can find an intrinsically flat cone surfagebounded byK. We know
that K is surrounded by an embedded unit-radius tlibéet R = S T

be the portion of the cone surface outside the tube. Each componégnt of
is also surrounded by an embedded unit-radius tube disjoint foiret

V be theC" unit vectorfield normal to the normal disks of these tubes. A
simple computation shows thatis a divergence-free field, tangent to the
boundary of each tube, with flux over each spanning surface inside each
tube. A cohomology computation (compare [Can]) shows that the total flux
of V throughR is Fluxp (V) = w Lk(J, K). SinceV is a unit vectorfield,
this implies that

Fluxp(V) = / V-ndA< / dA = Area(R).
R R

ThusArea(R) > wLk(J, K). The isoperimetric inequality withiy' im-
plies that any curve off surroundingR has length at leagir\/Lk(J, K).
Since L has unit thickness, the hypotheses of Lemma 8 are fulfilled, and
we conclude that

Len(K) > 27 + 2m+/Lk(J, K),

completing the proof. O

Note that the tern2r/Lk(J, K) is the perimeter of the disk with the
same area as := Lk(J, K) unit disks. We might hope to replace this
term by P,,, but this seems difficult: although our assumptions imply that
punctures the cone surfapgimes, it is possible that there are many more
punctures, and it is not clear how to show that an appropriate setod
surrounded by disjoint unit disks.

For a link of two components with linking number like the one in
Figure 7, this bound provides an improvement on Theorem 10, raising the
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Fig. 7. The two components of this
(2,4)-torus link have linking number
two, so by Theorem 11, the total rope-
length is at leastr (1 + v/2) ~ 33.34.
Laurie et al. [LKS™] have computed a
configuration with ropelength approxi-
mately41.2.

lower bound on the ropelength of each componegtite 271/2, somewhat
greater thandr.

We note that a similar argument bounds the ropelength of any dirve
of unit thickness, in terms of its writhe. We again consider the flu¥ of
through a flat con&. If we perturbK slightly to have rational writhe (as
below in the proof of Theorem 21) and use the result that “link equals twist
plus writhe” [Cal1, Whi2], we find that this flux is at leaBfVr(K)|, so that

Len(K) > 2m/|Wr(K)|.

There is no guarantee that this flux occurs away from the boundary of the
cone, however, so Lemma 8 does not apply. Unfortunately, this bound is
weaker than the corresponding result of Buck and Simon [BS],

Len(K) > 4w/ |Wr(K))|.

5. Overcrossing Number

In Section 4, we found bounds on the ropelength of links; to do so, we
bounded the area of that portion of the cone surface outside the tube around
a given componeni in terms of the flux of a certain vectorfield across
that portion of the surface. This argument depended in an essential way on
linking number being a signed intersection number.

For knots, we again want a lower bound for the area of that portion of
the cone that is at least unit distance from the boundary. But this is more
delicate and requires a more robust topological invariant. Here, our ideas
have paralleled those of Freedman and He (see [FH, He]) in many important
respects, and we adopt some of their terminology and notation below.

Let L be an (oriented) link partitioned into two parts and B. The
linking numberLk(A, B) is the sum of the signs of the crossings of
over B; this is the same for any projection of any link isotopiciioBy
contrast, theovercrossing numbe®v(A, B) is the (unsigned) number of
crossings ofd over B, minimized over all projections of links isotopic Io

Lemma 12.For any link partitioned into two partst and B, the quantities
Lk(A, B) andOv(A, B) are symmetric ird and B, and we have

|Lk(A, B)| < Ov(A4, B); Lk(A,B)=0v(A,B) (mod 2).
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Proof. To prove the symmetry assertions, take any planar projection with
n crossings ofd over B. Turning the plane over, we get a projection with

n crossings ofB over A; the signs of the crossings are unchanged. The last
two statements are immediate from the definitions in terms of signed and
unsigned sums. O

Given a linkL, we define itparallel overcrossing numbeérC(L) to be
the minimum ofOv(L, L") taken over all parallel copies’ of the link L.
That meand.” must be an isotopic link such that corresponding components
of L and L’ cobound annuli, the entire collection of which is embedded
in R3. This invariant may be compared to Freedman and Esjgnptotic
crossing numbeAC(L) of L, defined by

AC(L) = inf Ov(pL,qL)
pLal  |pq]

Y

where the infimum is taken over all degreesatellitespl. and degreer
satellitesq L of L. (This means thatL lies in a solid torus around and
representp times the generator of the first homology group of that torus.)
Clearly,

AC(L) < PC(L) < Cr(L),

whereCr(L) is the crossing number df. It is conjectured that the asymp-
totic crossing number of. is equal to the crossing number. This would
imply our weaker conjecture:

Conjecture 13If L is any knot or link,PC(L) = Cr(L).

To see why this conjecture is reasonable, sup@gose an alternating knot
of crossing numbek. It is known [TL, Thi], using the Jones polynomial,
that the crossing number @€ U K’ is least4k for any parallelK”. It is
tempting to assume that within thesk crossings of the two-component
link, we can find not only: self-crossings of each knéf and K, but also
k crossings ofK over K’ andk crossings ofK’ over K. Certainly this is
the case in the standard pictureffand a planar parallet”’.

Freedman and He have shown [FH] that for any knot,

AC(K) > 2genus(K) — 1,

and hence that we haweC(K) > 1 if K is nontrivial. For the parallel
overcrossing number, our stronger hypotheses on the topolafyantl L’
allow us to find a better estimate in terms of tleeluced bridge humber
Br(L). This is the minimum number of local maxima of any height function
(taken over all links isotopic td)) minus the number of unknotted split
components irl..

Proposition 14.For any link L, we havePC(L) > Br(L). In particular,
if L is nontrivial, PC(L) > 2.
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Fig. 8. We show three stages of the proof of Proposition 14: At the left, we show a projection

of L U L' with PC(L) overcrossings. In the center, we It until it and L lie respectively

above and below a slab, except B8€(L) simple clasps. At the right, we isotoge to

flatten the undercrossings onto the boundary of the slab and thus show that the clasps are
the only bridges inL.

Proof. By the definition of parallel overcrossing number, we can isotope
L and its parallel’ so that, except foPC(L, L) simple claspsL’ lies
above, andL lies below, a slab ifR3. Next, we can use the embedded
annuli which cobound corresponding componentd afnd L’ to isotope
the part ofL below the slab to the lower boundary plane of the slab. This
gives a presentation df with PC(L) bridges, as in Figure 8.0

6. Finding a Point with Larger Cone Angle

The bounds in Theorems 10 and 11 depended on Lemma 9 to construct
a cone with cone anglé = 27, and on Lemma 8 to increase the total
ropelength by at leagt. For single unknotted curves, this portion of our
argument is sharp: a convex plane curve has maximum cone 2ngd
points in its convex hull.

However, for nontrivial knots and links, we can improve our results by
finding points with greater cone angle. In fact, we show every nontrivial
knot or link has alw cone point. The next lemma is due to Gromov [Gro,
Thm. 8.2.A] and also appears as [EWW, Thm. 1.3]:

Lemma 15.Supposd. is a link, andM is a (possibly disconnected) mini-
mal surface spanning. Then for any poinp € R? through whichn sheets
of M pass, the cone angle éfat p is at least2mn.

Proof. Let.S be the union of\/ and the exterior cone aiafrom p. Consider
the area ratio
Area (SN B, (p))

mr2

whereB,(p) is the ball of radius aroundp in R3. Asr — 0, the area ratio
approaches, the number of sheets @ff passing througlh; asr — oo,
the ratio approaches the density of the coné.drom p, which is the cone
angle divided by27. White has shown that the monotonicity formula for

)
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minimal surfaces continues to hold f8rin this setting [Whil]: the area
ratio is an increasing function of Comparing the limit values at = 0
andr = oo we see that the cone angle franis at leasRrn. O

As an immediate corollary, we obtain:

Corollary 16. If L is a nontrivial link, then there is some pojnfrom which
L has cone angle at leadtr.

Proof. By the solution to the classical Plateau problem, each component
of L bounds some minimal disk. L&t be the union of these disks. Since

L is nontrivially linked, M is not embedded: it must have a self-intersection
pointp. By the lemma, the cone anglejais at leastdr. O

Note that, by Gauss—Bonnet, the cone angle of any conefoeruals
the total geodesic curvature &f in the cone, which is clearly bounded
by the total curvature ofC in space. Therefore, Corollary 16 gives a new
proof of the Rary—Milnor theorem [&r, Mil]: any nontrivial link has total
curvature at leastr. (Compare [EWW, Cor. 2.2].) This observation also
shows that the bound in Corollary 16 cannot be improved, since there exist
knots with total curvaturdm + .

In fact any two-bridge knot can be built with total curvature (and max-
imum cone angle}r + e. But we expect that for many knots of higher
bridge number, the maximum cone angle will necessarilgber higher.

For more information on these issues, see our paper [CKKS] with Greg Ku-
perberg, where we give two alternate proofs of Corollary 16 in terms of the
second hulbf a link.

To apply the length estimate from Lemma 8, we need a stronger version
for thick knots: If K has thickness, we must show that the cone point of
angle4r can be chosen outside the tube of raditsirroundingk .

Proposition 17.Let K be a nontrivial knot, and lef’ be any embedded
(closed) solid torus with core curvE. Any smooth diskD spanningK
must have self-intersections outsifle

Proof. Replacingl” with a slightly bigger smooth solid torus if neccesary,
we may assume thd? is transverse to the boundary tor@¥ of 7". The
intersectionD N 9T is then a union of closed curves. If there is a self-
intersection, we are done. Otherwige 0T is a disjoint union of simple
closed curves, homologous withii to the core curves (via the surface

D N T). Hence, withindT, its homology class: is the latitude plus some
multiple of the meridian. Considering the possible arrangements of sim-
ple closed curves in the tordsl’, we see that each intersection curve is
homologous to zero or tera.

Our strategy will be to first eliminate the trivial intersection curves by
surgery onD, starting with curves that are innermost 8f". Then, we
will find an essential intersection curve which is innermostarnit is iso-
topic to K and bounds a subdisk d outsideT’, which must have self-
intersections.
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Fig. 9. Two views of a cone, whose cone angle is precigety on the symmetric trefoil
knot from Figure 4. Computational data shows this is close to the maximum possible cone
angle for this trefoil.

To do the surgery, supposes an innermost intersection curve homol-
ogous to zero ir0T. It bounds a diskA within 97" and a diskB within
D. Since~ is an innermost curve ofT, A N D is empty; therefore we
may replace3 with A without introducing any new self-intersections/of
PushA slightly off 0T to simplify the intersection. Repeating this process
a finite number of times, we can eliminate all trivial curvegim 07

The remaining intersection curves are each homologodsat@n 0T
and thus isotopic td{ within 7. These do not bound disks &1, but do
on D. Some such curv&” must be innermost of?, bounding an open sub-
disk D'. SinceK" is nontrivial inT', andD’ N 9T is empty, the subdisk’
must lie outsidel’. Becausds” is knotted,D’ must have self-intersections,
clearly outsid€erl’. Since we introduced no new self-intersections, these are
self-intersections oD as well. O

We can now complete the proof of the main theorem of this section.

Theorem 18.1f K is a nontrivial knot then there is a poipt outside the
thick tube aroundy, from whichK has cone angle at leadtr.

Proof. SpanK with a minimal diskD, and letT;, be a sequence of closed
tubes arounds’, of increasing radius, — 7(K). Applying Proposition 17,
D must necessarily have a self-intersection pgintoutside7,,. Using
Lemma 15, the cone anglemt is at leastir. Now, cone angle is a contin-
uous function orR3, approaching zero at infinity. So thpg have a subse-
quence converging to somec R?, outside all thel}, and thus outside the
thick tube aroundy<, where the cone angle is still at ledst. O

It is interesting to compare the cones of cone adgleonstructed by
Theorem 18 with those of cone andle constructed by Lemma 9; see
Figure 9.
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Fig. 10. This trefoil knot, shown with its
thick tube T, is coned to the poinp to
form the cone surfac§’, as in the proof of
Theorem 19. The disl is normal to the
knot at the point furthest from. We fol-
low two integral curves oV within T'\. D,
through at leasPC(K) intersections with
S’, until they end orD. Although we have
drawn the curves as if they close after one
trip aroundT, this is not always the case.

7. Parallel Overcrossing Number Bounds for Knots

We are now in a position to get a better lower bound for the ropelength of
any nontrival knot.

Theorem 19.For any nontrivial knoti of unit thickness,

Len(K) > 47 + 2m+/PC(K) > 2r(2 + V2).

Proof. Let T be the thick tube (the unit-radius solid torus) aroutidand
let V be theC' unit vectorfield insidel” as in the proof of Theorem 11.
Using Theorem 18, we construct a cone surféic# cone anglelr from a
pointp outsideT".

Let .S’ be the cone defined by deleting a unit neighborhoad%in the
intrinsic geometry ofS. Take anyg € K farthest from the cone point
The intersection ob with the unit normal diskD to K at ¢ consists only
of the unit line segment fromp towardsp; thus D is disjoint from.S’.

In general, the integral curves &f do not close. However, we can de-
fine a natural map frorfi’ ~. D to the unit diskD by flowing forward along
these integral curves. This map is continuous and distance-decreasing. Re-
stricting it to.S’NT gives a distance-decreasing (and hence area-decreasing)
map toD, which we will prove has unsigned degree at |d26{ K).

Note thatK’ := 05’ is isotopic toK within 7', and thusPC(K) =
PC(K'). Furthermore, each integral cur¢eof V in 7' ~. D can be closed
by an arc withinD to a knotC” parallel toK”. In the projection of”’ and
K’ from the perspective of the cone poit, must overcrosds’ at least
PC(K’) times. Each of these crossings represents an intersectioi of
with S’. Further, each of these intersections is an intersectignwith .5,
since the portion of” notin C'is contained within the disk. This proves
that our area-decreasing map fréfm 7' to D has unsigned degree at least
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PC(K). (An example of this map is shown in Figure 10.) Sidaea(D) =
7 it follows that

Area(S") > Area(S'NT) > 7 PC(K).

The isoperimetric inequality in dr cone is affected by the negative
curvature of the cone point. However, the lengthequired to surround
a fixed area ort’ is certainly no less than that required in the Euclidean

plane:
¢ > 271/PC(K).

Since each point ok’ is at unit distance fronk, we know S’ is sur-
rounded by a unit-width neighborhood inside Applying Lemma 8 we

see that
Len(K) > 4m 4 2m/PC(K),
which by Proposition 14 is at leagt (2 + /2). O

8. Asymptotic Crossing Number Bounds for Knots and Links

The proof of Theorem 19 depends on the fact tiat a single knot: for a

link L, there would be no guarantee that we could choose spanningldisks
for the tubes around the componentsiofvhich were all disjoint from

the truncated cone surface. Thus, we would be unable to close the integral
curves ofl/ without (potentially) losing crossings in the process.

We can overcome these problems by using the notion of asymptotic
crossing number. The essential idea of the proof is that (after a small defor-
mation of K) the integral curves di” will close after some number of trips
aroundk’. We will then be able to complete the proof as above, taking into
account the complications caused by traveling several times af@und

For a link L of k componentskK1, ..., K, Freedman and He [FH]
define a relative asymptotic crossing number
Ov(pKi, qL)

AC(K;, L) := inf
pKigL  |pq]

)

where the infimum is taken over all degreeatellitespK; of K; and all
degreeq satellitesgL of L. It is easy to see that, for each

AC(K;, L) = ) | Lk(K;, Kj)|.
J#i

Freedman and He also give lower bounds for this asymptotic crossing
number in terms of genus, or more precisely the Thurston norm. To un-
derstand these, |16t be a tubular neighborhood @. ThenH,(0T') has a
canonical basis consisting of latitudesand meridiansn;. Here, the lat-
itudes span the kernel of the mdp (0T) — H;(R? \ T) induced by
inclusion, while the meridians span the kernelbf(0T) — Hy(T).
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The boundary mag,(R? \ T,0T) — Hy(0T) is an injection; its
image is spanned by the classes

ai =1+ Y LK(K;, Kj)m;.
i

We now define
X—(K;, L) := mgn 1S,

where the minimum is taken over all embedded surfatepresenting the
(unique) preimage af; in Ho(R3 \. T, 0T), and|S|r is the Thurston norm
of the surfacesS. That is,

S|z =Y —x(Sh),

Sk

where the sum is taken over all componefitsof S which are not disks
or spheres, ang is the Euler characteristic. With this definition, Freedman
and He prove [FH, Thm. 4.1]:

Proposition 20.If K is a component of a link,
AC(K,L) > x_(K, L).
In particular, AC(K, L) > 2genus(K) —1. O

Our interest in the asymptotic crossing number comes from the follow-
ing bounds:

Theorem 21.Supposek is one component of a link of unit thickness.

Then
Len(K) > 2w + 2m\/AC(K, L).

If K is nontrivially knotted, this can be improved to

Len(K) > 47w + 27/ AC(K, L).

Proof. As before, we use Lemma 9 or Theorem 18 to construct a cone
surfaceS of cone angler or 47. We letS” be the complement of a unit
neighborhood 0bS, and setk’ := 9.5, isotopic toK .

Our goal is to bound the area 6f below. As before, take the collec-
tion T' of embedded tubes surrounding the components, @ind letl” be
the C' unit vectorfield normal to the normal disks Bf Fix some compo-
nentJ of L (whereJ may be the same ds), and any normal disk of the
embedded tub&’; around.J. The flow ofV once around the tube defines a
map fromD to D. The geometry of” implies that this map is an isometry,
and hence this map is a rigid rotation by some arigleOur first claim is
that we can make &@'-small perturbation off which ensures that; is a
rational multiple of27.
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Fix a particular integral curve df. Following this integral curve once
around.J defines a framing (or normal field) ahwhich fails to close by
anglef;. If we define theéwist of a framingWW on a curve/ by

it is easy to show that this framing has zero twist. We can close this framing
by adding twist-6; /27, defining a framindg? on J. If we letWr(.J) be the
writhe of J, then the @lugareanu—White formula [@1, Gal2, Gal3, Whi2]

tells us thatLk(J, J') = Wr(J) — 6;/2m, whereJ’ is a normal pushoff

of J alongW. Since the linking numbdtk(.J, J') is an integer, this means
thatd; is a rational multiple o2~ if and only if Wr(.J) is rational. But we

can alter the writhe off to be rational with aC'!'-small perturbation off

(see [Ful,MB] for details), proving the claim.

So we may assume that, for each compongiwf L, 6; is a rational
multiple 27p s /q; of 2. Now let ¢ be the least common multiple of the
(finitely many)q ;. We will now define a distance- and area-decreasing map
of unsigned degree at leasAC(K, L) from the intersection of’ and the
cone surface’ to a sector of the unit disk of angfer/q.

Any integral curve of’ must close afteq; trips around/. Thus, the
link J¢ defined by following the integral curves througfy ; points spaced
at angle2r /q around a normal disk td is a degreey satellite ofJ. Further,
if we divide a normal disk t@ into sectors of anglgr /¢, thenJ? intersects
each sector once.

We can now define a distance-decreasing map f$6mi’; to the sector
by projecting along the integral curves st Letting .7 be the union of all
the integral curved?, and identifying the image sectors on each disk gives
amap fromS’ N T}, to the sector. By the definition &fC(K, L),

Ov(L4, K') = Ov(K, LY) > ¢ AC(K, L),

so L7 overcrossesk’ at leastq AC(K, L) times. Thus we have at least
qAC(K, L) intersections betweeh? and S’, as in the proof of Theo-
rem 19. Since the sector has aresy, this proves that the cong’ has

area at least AC(K, L), and thus perimeter at lea&t/AC(K, L). The
theorem then follows from Lemma 8 as usualtl

Combining this theorem with Proposition 20 yields:
Corollary 22. For any nontrivial knotK of unit thickness,

Len(K) > 2m (2 + /2 gems(K) —1).

For any componenk’ of a link L of unit thickness,

Len(K) > 27r(1 + v x- (K, L))7

wherey _ is the minimal Thurston norm as above



22 Jason Cantarella et al.

N R

~_

Fig. 11.At the left we see the result of replacing one component(@f &)—torus link by its
Whitehead double. In this link, the other component has Alexander norm, and hence also
Thurston norm, equal t6. Thus Corollary 22 shows the total ropelengthlofs at least

27(3 + +/5). For the three-fold link at the right, which is a bangle sum of three square-
knot tangles, we expect the Thurston norm to3bg@vhich would give ropelength at least

47 (1 + v/3)), but we have not found a way to prove it is not less.

As we observed earliedC(K;, L) is at least the sum of the linking
numbers of the; with K;, so Theorem 21 subsumes Theorem 11. Often,
it gives more information. When the linking numbers of &l} and K
vanish, the minimal Thurston norm_ (K;, L) has a particularly simple
interpretation: it is the least genus of any embedded surface spaihing
and avoidingL. For the Whitehead link and Borromean rings, this invariant
equals one, and so these bounds do not provide an improvement over the
simple-minded bound of Theorem 10.

To find an example where Corollary 22 is an improvement, we need to
be able to compute the Thurston norm. McMullen has shown [McM] that
the Thurston norm is bounded below by the Alexander norm, which is eas-
ily computed from the multivariable Alexander polynomial. One example
he suggests is @, 2n)—torus link with two components. If we replace one
componenfs by its Whitehead double, then in the new link, the other com-
ponent has Alexander norn — 1. Since it is clearly spanned by a disk
with 2n punctures (or a genussurface) avoidind<, the Thurston norm is
also2n — 1. Figure 11 (left) shows the case= 3, where the Alexander
polynomial is(1 + = + 22)%(1 — z)(1 — y).

On the other hand, i is either component of the three-fold link
on the right in Figure 11, we can spdfi with a genus-two surface, so
we expect thal_ (K, L) = 3, which would also improve our ropelength
estimate. However, it seems hard to compute the Thurston norm in this case.
The Alexander norm in this case is zero, and even the more refined bounds
of Harvey [Har] do not show the Thurston norm is any greater.

9. Asymptotic Growth of Ropelength

All of our lower bounds for ropelength have been asymptotically propor-
tional to the square root of the number of components, linking number,
parallel crossing number, or asymptotic crossing number. While our meth-
ods here provide the best known results for fairly small links, other lower
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bounds grow like thé power of these complexity measures. These are of
course better for larger links, as described in our pdjigit Knot Values
Deviate from Linear RelatiofCKS]. In particular, for a link typeC with

crossing number, the ropelength is at Ieaé%n)w, where the constant
comes from [BS]. In [CKS] we gave examples (namely {hek — 1)—torus
knots and the:-component Hopf links, which consist é&fcircles from a
common Hopf fibration 08?) in which ropelength grows exactly as t%e
power of crossing number.

Our Theorem 10 proves that for the the simple chains (Figure 1), rope-
length must grow linearly in crossing number We do not know of any
examples exhibiting superlinear growth, but we suspect they might exist,
as described below.

To investigate this problem, consider representing a link #peith
unit edges in the standard cubic latti&& The minimum number of edges
required is called the lattice numbkerof £. We claim this is within a con-
stant factor of the ropelengthof a tight configuration of. Indeed, given a
lattice representation with edges, we can easily round off the corners with
quarter-circles of radiu§ to create a'''! curve with length less thahand

thickness%, which thus has ropelengthat most2k. Conversely, it is clear

that any thick knot of ropelengthhas an isotopic inscribed polygon with
O(¢) edges and bounded angles; this can then be replaced by an isotopic
lattice knot on a sufficiently small scaled copyZt. We omit our detailed
argument along these lines, showihg< 94/, since Diaoet al. [DEJVR]

have recently obtained the better bound 12¢.

The lattice embedding problem for links is similar to the VLSI layout
problem [Leil,Lei2], where a graph whose vertex degrees are at 4nost
must be embedded in two layers of a cubic lattice. Itis known [BL] that any
n-vertex planar graph can be embedded in VLSI layout &éa(log n)?).
Examples of planan-vertex graphs requiring layout area at leasbg n
are given by the so-called trees of meshes. We can constraissing
links analogous to these trees of meshes, and we expect that they have lat-
tice number at least logn, but it seems hard to prove this. Perhaps the
VLSI methods can also be used to show that lattice number (or equiva-
lently, ropelength) is at mos® (n(log n)?).

Here we will give a simple proof that the ropelength ofraicrossing
link is at most24n?, by constructing a lattice embedding of length less
than12n?. This follows from the theorem of Schnyder [dFPP, Sch1] which
says that am-vertex planar graph can be embedded with straight edges
connecting vertices which lie on gm — 1) x (n — 1) square grid. We
double this size, to allow each knot crossing to be built dh:a2 x 2
array of vertices. For an-crossing link diagram, there aPa edges, and
we use2n separate levels for these edges. Thus we embed the link in a
(2n — 2) x (2n — 2) x (2n + 2) piece of the cubic lattice. Each edge has
length less thafin, giving total lattice number less thaan?.
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Note that Johnston has recently given an independent proof [Joh] that an
n-crossing knot can be embedded in the cubic grid with leddth?). Al-
though her constant is worse than @@y her embedding is (like a VLSI lay-
out) contained in just two layers of the cubic lattice. It is tempting to think
that anO(n?) bound on ropelength could be deduced from the Dowker
code for a knot, and in fact such a claim appeared in [Buc]. But we do not
see any way to make such an argument work.

The following theorem summarizes the results of this section:

Theorem 23.Let £ be a link type with minimum crossing numbeiattice
numberk, and minimum ropelength Then

<ﬁn> < (< 2k < 24n°. 0

10. Further Directions

Having concluded our results, we now turn to some open problems and
conjectures.

The many examples of tight links constructed in Section 3 show that the
existence and regularity results of Section 2 are in some sense optimal: we
know that ropelength minimizers always exist, we cannot expect a rope-
length minimizer to have global regularity better thah!, and we have
seen that there exist continuous families of ropelength minimizers with
different shapes. Although we know that each ropelength minimizer has
well-defined curvature almost everywhere (since 'is') it would be in-
teresting to determine the structure of the singular set where the curve is
not C2. We expect this singular set is finite, and in fact:

Conjecture 24Ropelength minimizers are piecewise analytic.

The P,, bound for the ropelength of links in Theorem 10 is sharp, and so
cannot be improved. But there is a certain amount of slack in our other ro-
pelength estimates. The parallel crossing number and asymptotic crossing
number bounds of Section 7 and Section 8 could be immediately improved
by showing:

Conjecture 25If L is any knot or link, AC(L) = PC(L) = Cr(L).

For a nontrivial knot, this would increase our best estimaténtor
2m/3 ~ 23.45, a little better than our current estimateof + 27/2 ~
21.45 (but not good enough to decide whether a knot can be tied in one foot
of one-inch rope). A more serious improvement would come from proving:

Conjecture 26The intersection of the tube around a knot of unit thickness
with somedr cone on the knot contai¥C( K') disjoint unit disks avoiding
the cone point.
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Fig. 12. Pieranski's numerically computed tight trefdd has three-fold symmetry, and
there is a4w cone pointp on the symmetry axis. The cone fromalso has three-fold
symmetry, and a fundamental sector develops inta &3 wedge in the plane, around the
pointp. Here we show the development of that sector. The shaded regions are the intersec-
tion of the cone with the thick tube arourfd. These include a strip (of width at leakt
inwards from the boundark of the cone, together with a disk around the unique pgint
whereK cuts this sector of the cone. Our Conjecture 26 estimates the area of the cone from
below by the area of a unit disk arougglus a unit-width strip aroun&’. The figure shows

that the actual shaded disk and strip are not much bigger than this, and that they almost fill
the sector.

Note that the proof of Theorem 19 shows only that this intersection has
the area of PC(K) disks. This conjecture would improve the ropelength
estimate for a nontrivial knot to abo@6.51, accounting fo93% of Pier-
anski’'s numerically computed value 82.66 for the ropelength of the tre-
foil [Pie]. We can see the tightness of this proposed estimate in Figure 12.

Recently Diao [Dia] has shown that the length of any unit-thickness
knot K satisfies

167 Cr(K) < Len(K)(Len(K) — 17.334).

This improves our bounds in many cases. He also finds that the ropelength
of a trefoil knot is greater tha?u.

Our best current bound for the ropelength of the Borromean rings is
127 = 37.70, from Theorem 10. Proving only the conjecture that(L) =
Cr(L) would give us a fairly sharp bound on the total ropelength: If each
component has asymptotic crossing numpeiheorem 21 tells us that
67(1+ v/2) ~ 45.51 is a bound for ropelength. This bound would account
for at least78% of the optimal ropelength, since we can exhibit a configura-
tion with ropelength aboui8.05, built from three congruent planar curves,
as in Figure 13.

Although it is hard to see how to improve the ropelength of this config-
uration of the Borromean rings, it is not tight. In work in progress with Joe
Fu and Nancy Wrinkle, we define a notion of criticality for ropelength, and
show that this configuration is not even ropelength-critical.
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Fig. 13. This configuration of the Borromean rings has ropelength ab®b. It is built

from three congruent piecewise-circular plane curves, in perpendicular planes. Each one
consists of arcs from four circles of radiigentered at the vertices of a rhombus of side
whose major diagonal i units longer than its minor diagonal.

Finally, we observe that our cone surface methods seem useful in many
areas outside the estimation of ropelength. For example, Lemma 9 provides
the key to a new proof an unfolding theorem for space curvess:

Proposition 27.For any space curvél : S' — R3, parametrized by arc-
length, there is a plane curvE’ of the same length, also parametrized by
arclength, so that for ever), ¢ in S*,

[K(0) — K(¢)] < |K'(0) — K'(9)]-

Proof. By Lemma 9, there exists some cone paqinfior which the cone

of K to p has cone anglér. Unrolling the cone on the plane, an isome-
try, constructs a plane curv€’ of the same arclength. Further, each chord
length of K’ is a distance measured in the instrinsic geometry of the cone,
which is at least the corresponding distanc&in O

This result was proved by Reshetnyak [Resl1,Res3] in a more general
setting: a curve in a metric space of curvature bounded above (in the sense
of Alexandrov) has an unfolding into the model two-dimensional space
of constant curvature. The version for curves in Euclidean space was also
proved independently by Sallee [Sal]. (In [KS], not knowing of this earlier
work, we stated the result as Janse van Rensburg’s unfolding conjecture.)

The unfoldings of Reshetnyak and Sallee are always convex curves in
the plane. Our cone surface method, given in the proof of Proposition 27,
produces an unfolding that need not be convex, as shown in Figure 14.
Ghomi and Howard have recently extended our argument to prove stronger
results about unfoldings [GH].
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