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In this article, analogous to the definition of the exponential stability of ordinary dynamical systems 
and the Mittag-Leffler stability of the fractional dynamical systems, we consider the Mittag-Leffler 
stability for q-fractional nonlinear dynamical systems. The sufficient conditions for Mittag-Leffler 
stability of such dynamical systems within the framework of the q-fractional Caputo derivative are 
studied. 

Key Words: q-calculus, q-fractional integral, q-fractional derivative, Mittag-Leffler function, stability. 

1. INTRODUCTION 

The fractional calculus deals with the generalization of integration and differentiation of integer order 
to those ones of any order.  There has been an increasing interest in this field [1-6], because of its interesting 
applications in many branches of sciences and engineering. Several authors [7]-[12] have been trying to 
combine the time scales [13] and fractional calculus looking for a better description of phenomena having 
both discrete and continuous behaviors. 
        The q-calculus is thought to be initiated in the early years of the twentieth century and it was a subject 
of many articles (see Ref. [14] and the references therein). The q-fractional integrals and derivatives was 
firstly studied by Al-Salam [9,10,15] and then by Agarwal [8]. Their study was improved recently in Refs. 
[11], [12], and [16]. 
       The stability of fractional order linear and nonlinear dynamic systems was attacked in many articles, see 
Refs. [17]-[27]. But the stability of q-fractional dynamical systems remains an open issue to be investigated 
and to the best of our knowledge has not been yet studied. 
        In Ref. [24], in order to show the advantage of using fractional order derivatives in place of integer 
order derivatives, the authors considered two nonlinear dynamical systems. The dynamical system with 
integer order derivative turned out to be unstable. However, the second system, where the integer order 
derivative was replaced by fractional order derivative turned out to be stable. It turned out that the same 
argument still holds for q-fractional difference systems. 
       Being motivated by the above mentioned results we state in this article the Mittag-Leffler stability 
theorem for nonlinear dynamic systems in the sense of Caputo q-fractional derivatives. 
       This manuscript is organized as follows: 
In section 2, basic definitions of q-calculus and q-fractional calculus are given. Section 3 presents our main 
results on sufficient conditions for the Mittag-Leffler stability of q-fractional nonlinear dynamical systems. 
Finally, section 4 is devoted to our conclusions. 

2. PRELIMINARIES 

In this section we summarize the basic definitions and properties of q-calculus and q-fractional 
integrals and derivatives. For more details on q-calculus we refer to Ref. [14] and for q-fractional calculus 
we refer to Refs. [11] and [12].  
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For 0 1q< <  let qT  be the time scale [13] defined by 

{ : } {0}n
qT q n= ∈] ∪ . 

For a function : qf T →\ , the nabla q-derivative of f  is given by 
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The nabla q-integral of f  on the interval [0, ]t  is given by 
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and on the interval [ , ], qa t a T∈  it is given by  
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The fundamental theorem of q-calculus gives 
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The q-factorial function for n∈` is defined by 
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and for 1, 2,3,...≠α , the q-factorial function takes the form  
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The q-gamma function (α)qΓ  for α∈\ \{..., 2, 1, 0}− −  is defined by 
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where (.)qe  is the q-exponential function defined by  
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The left q-fractional integral of order α 0, q aI> α  starting from 0 , qa a T< ∈ is defined  
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When α∈` , we have   

 ( ) ( ) for 0n
q q a qI f t f t a Tα∇ = ≤ ∈ . (11) 

The left (Riemann) q-fractional derivative of order 0α >  starting from 0 , qa a T< ∈ is defined by 

 11( ) ( ) ( ) ( )
( )

t
n n n n

q a q q a q q q
q a

f t I f t t qs f s s
n

α −α −α−∇ ∇ =∇ − ∇
Γ − α ∫� , (12) 

where [ ] 1n = α +  ([ ]α  is the greatest integer less than α ). While the left q-fractional Caputo derivative is 
defined by  
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The relation between the left q-fractional Riemann and Caputo derivatives for 0 1< α <  is given the 
following formula [12] 
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PROPERTY 1. [12] Assume that 0 1< α ≤  and f is defined for in suitable domains then  
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The q-Mittag-Leffler function was defined in [12] as 
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where 0,  and ( ) 0.z z ∈ ℜ α >^  In a more generalized form it is given by [12] 
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Notice that ,1 0 0( , ) ( , )q qE z z E z zα αλ − = λ − . It should be mentioned that the solution of the following IVP 

 . 0 0 0( ) ( ) ( ),    ( ) ,   ,C
q a qx t x t f t x t x t t Tα∇ = λ + = ∈  (18) 

is given by 
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3. MITTAG-LEFFLER STABILITY FOR Q-FRACTIONAL DIFFERENCE SYSTEMS 

Consider the following q-fractional dynamical system 

 . 0 0( ) ( , ( )),    ( ) ,  C
q a x t f t x t x t xα∇ = =  (20) 

where 0 0,   , ,  0 1 and : n n
q qt t t t T f T≥ ∈ < < × →\ \α  is continuous in x . Let ( , 0) 0f t = , so that (20) admits 

the trivial solution. Analogous of the definition of Mittag-Leffler stability of fractional dynamical systems 
defined in [24], we define the Mittag-Leffler stability of solutions of (20) as follows: 
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Definition 1. The trivial solution ( )x t  of (20) is said to be Mittag-Leffler stable if  

 . ( )0 0|| ( ) || ( ) ( , ) ,
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q
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where 0,  0,  (0) 0,  ( ) 0b M M xλ ≥ > = >  and ( )M x  is locally Lipschitz for { :nx S x∈ = ∈\ρ  || || } nx < ρ ⊂ \ . 

We notice that the condition (21) extends the definition of the classical exponential stability. 

THEOREM 1.  If there exist a scalar function ( , ) [ , ]qV t x C T Sρ +∈ × \ and positive constants 1 2,  c c  
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stable. 
We remark that this theorem can be applied to some complex systems considered in q-calculus together 

with fractional operators. 
 

THEOREM 2. If there exist a scalar function ( , ) [ , ]n
qV t x C T +∈ ×\ \ and positive constants 1 2,  c c  

and 3c such that  

 . 2 2
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and  
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for all ( , ) n
qt x T∈ ×\ 0 t t≥ , then the trivial solution of (20) is globally  Mittag-Leffler stable. 

Proof. Similarly as in the proof of Theorem 1, we still have the estimate 
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stable. We stress on the fact that (26) is formulated taking into account the definition mentioned in (13).  

LEMMA 1. If 0 0( , ( )) 0V t x t ≥ , then for 0 1< α ≤  we have  
0 0 0( , ) ( , ) for C

q t q tV t x V t x t tα α∇ ≤ ∇ ≥ . 

Proof. The result can be easily noticed from equation (14). We notice that is similar with the one from 
the classical case. 

Taking into account (14) we present below the corresponding theorems for the left (Riemann)  
q-fractional derivative.  
 

THEOREM 3.  If there exist a scalar function ( , ) [ , ]qV t x C T Sρ +∈ × \ and positive constants 1 2,  c c  

and 3c  such that  
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and  
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for all ( , ) ,  qt x T Sρ∈ × 0t t≥ , then the trivial solution of (20) is Mittag-Leffler stable. 

Proof. From (27), we have 0 0( , ) 0.V t x ≥ Consequently, from Lemma 1 we have 

0 0 0( , ) ( , ) for C
q t q tV t x V t x t tα∇ ≤ ∇ ≥α . Thus we have from (28), 
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hypotheses of Theorem 1 are satisfied and thus the trivial solution of the q-fractional dynamical system (20) 
is Mittag-Leffler stable. 
 

THEOREM 4.  If there exist a scalar function ( , ) [ , ]n
qV t x C T +∈ ×\ \  and positive constants 1 2,  c c , 

and 3c  such that  

 2 2
1 2|| || ( , ) || ||c x V t x c x≤ ≤  (29) 

and  

 . 
0

2
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for all ( , ) ,  n
qt x T∈ ×\ 0t t≥ , then the trivial solution of the the q-fractional dynamical system (20) is 

globally  Mittag-Leffler stable. 

Proof. The proof is analogous to the proof of Theorem 3. 

4. CONCLUSIONS 

The exponential stability of systems of differential equations is used in many areas of science and 
engineering. The Mittag-Leffler stability of fractional systems is a new concept introduced recently and 
analogously defined. In this paper, we defined the Mittag-Leffler stability for q-fractional dynamical systems 
and stated the sufficient conditions for such kind of stability. We believe that this kind of stability will have 
applications in control theory and other branches of physics, mathematics and engineering when q-fractional 
nonlinear dynamical systems are considered. 
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