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Abstract We prove existence of flips, special termination, the base point
free theorem and, in the case of log general type, the existence of minimal
models for F-dlt foliated pairs of co-rank one on a Q-factorial projective
threefold. As applications, we show the existence of F-dlt modifications and
F-terminalisations for foliated pairs and we show that foliations with canon-
ical or F-dlt singularities admit non-dicritical singularities. Finally, we show
abundance in the case of numerically trivial foliated pairs.
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1 Introduction

The (classical) Minimal Model Program predicts that a complex projective
manifold is either uniruled or it admits a minimal model, i.e. it is birational to
a (possibly singular) projective variety with nef canonical divisor. Although
this is still an open problem, many important cases of the program have been
carried out successfully, e.g. in the case of varieties of dimension at most three
and for varieties of general type. After the work of McQuillan [31] we expect
a similar picture to hold in the theory of birational geometry of foliations (see
also [9,32]).More specifically, assuming that X is a normal complex projective
variety and F is a foliation with mild singularities, it is conjectured that either
F is uniruled, i.e. X is covered by rational curves which are tangent to F ,
or F admits a minimal model, i.e. X is birational to a projective variety Y
such that the transformed foliation on Y (cf. Sect. 2.3) admits a nef canonical
divisor (cf. Sect. 2.1). Many of the main goals of the program were carried out
successfully in the case of rank one foliations (cf. [30,31]) and, in any rank, it
is expected to follow the main steps of Mori’s program.

The goal of this paper is to show the existence of flips (cf. Sect. 2.6) for
foliations of co-rank one on a complex projective threefold and present several
applications, under some natural assumptions on the singularities.

1.1 Statement of main results

In [41] it was shown that given a foliated pair (F, �), with somemild assump-
tion on the singularities, and given a (KF +�)-negative extremal ray R, there
is a morphism φR : X → Y , in the category of algebraic spaces, contracting
only those curves C such that [C] ∈ R. Projectivity of Y and the existence of
flips were shown in some special cases, but not in the generality needed to run
the MMP.

Our first main result is to show in greater generality that if φR is a flipping
contraction then the flip exists:

Theorem 1.1 (= Theorem 6.4 + Theorem 11.3) Let F be a co-rank one foli-
ation on a Q-factorial projective threefold X and let � ≥ 0 such that (F, �)

is F-dlt. Let φ : X → Y be a (KF + �)-flipping contraction.
Then the (KF + �)-flip exists.
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MMP for co-rank one foliations on threefolds 605

Notice that F-dlt foliated pairs play the same role as dlt log pairs in the
classical MMP (see Definition 3.6 for a precise definition).

Next, we turn to the question of constructing a minimal model of a foliated
pair (F, �). As inMori’s program, existence of minimal models would follow
if one could show that any sequence of flips terminates. We are unable to show
termination in complete generality, but we are able to show a weaker version
of termination, i.e., termination of flips with scaling, which suffices to show
that minimal models exist in several cases of interest:

Theorem 1.2 (= Theorem 10.3 + Theorem 11.3) Let F be a co-rank one
foliation on a Q-factorial projective threefold X. Let � = A + B be a Q-
divisor such that (F, �) is a F-dlt pair, A ≥ 0 is an ample Q-divisor and
B ≥ 0. Assume that there exists aQ-divisor D ≥ 0 such that KF + � ∼Q D.
Then (F, �) admits a minimal model.

See Sect. 10 for a precise definition of a minimal model.
It is important to observe that Theorems 1.1 and 1.2 make no assumptions

on the singularities of X other thanQ-factoriality. However, as we will see by
Theorem 11.3, the output of theMMP (and the intermediary steps of theMMP
more generally) will beQ-factorial varieties with klt singularities. Notice also
that we first prove Theorems 1.1 and 1.2 under the assumption that the foliation
has non-dicritical singularities (cf. Definition 2.10) but we later prove that, if
(F, �) is an F-dlt foliated pair then F admits non-dicritical singularities (cf.
Theorem 11.3).

Along the way to proving the termination of flips with scaling, we prove
the following basepoint free theorem for foliations which we expect will be of
interest. Observe that if F is a rank one surface foliation with KF nef and big
then KF is in general not semi-ample, see for instance [31, Corollary IV.2.3].
On the other hand, we prove the following:

Theorem 1.3 (= Theorem 9.4) Let F be a co-rank one foliation on a Q-
factorial projective variety X of dimension at most three. Let� be aQ-divisor
such that (F, �) is a F-dlt pair. Let A ≥ 0 and B ≥ 0 beQ-divisors such that
� = A + B and A is ample. Assume that KF + � is nef.

Then KF + � is semi-ample.

Note that our result is in some sense optimal. Indeed, contrary to the case of
varieties, ifF is a foliation such that KF is big and nef, then we cannot choose
in general a divisor � ≥ 0 such that � ∼Q εKF for some ε > 0 and (F, �)

is F-dlt, as some of the components of � might be F-invariant.

1.2 Application to F-dlt modifications and F-terminalisations

In the study of the birational geometry of varieties, dlt modifications and
terminalisations have proven to be very useful tools. The existence of these
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606 P. Cascini, C. Spicer

modifications follows from theMMPfor varieties.Weprove foliated analogues
of these modifications as a consequence of our results on the foliated MMP
(see Sect. 2.2 for the definition of the number ε and Sect. 2.3 for the notion of
the transform of a foliation under a birational map):

Theorem 1.4 (Existence of F-dlt modifications, = Theorem 8.1) Let F be a
co-rank one foliation on a normal projective variety X of dimension at most
three. Let (F, �) be a foliated pair.

Then there exists a birational morphism π : Y → X such that if G is the
transformed foliation on Y then (G, π−1∗ � + ∑

ε(Ei )Ei ) is F-dlt where the
sum is taken over all the π -exceptional divisors and

(KG + π−1∗ � +
∑

ε(Ei )Ei ) + G = π∗(KF + �),

where G ≥ 0.
In particular, if (F, �) is lc then π only extracts divisors of discrepancy

= −ε(Ei ).
Furthermore, we may choose (Y,G) so that

1. if Z is an lc centre of (G, π−1∗ � + ∑
ε(Ei )Ei ) then Z is contained in a

codimension one lc centre of (G, π−1∗ � + ∑
ε(Ei )Ei ),

2. Y is Q-factorial and
3. Y is klt.

Theorem 1.5 (Existence of F-terminalisations, = Theorem 11.1) Let F be a
co-rank one foliation on a normal projective variety X of dimension at most
three.

Then there exists a birational morphism π : Y → X such that

1. ifG is the transformed foliationonY , thenG is F-dlt, canonical and terminal
along Sing Y ,

2. Y is klt and Q-factorial and
3. KG + E = π∗KF where E ≥ 0.

Using similar ideas we are also able to prove the following:

Theorem 1.6 (= Theorem 11.3) Let (F, �) be a foliated pair on a normal
projective threefold X. Suppose that (F, �) is canonical.

Then F has non-dicritical singularities (cf. Definition 2.10).

Observe that we do not require the smoothness of X . We expect that this
result will be useful in the study of foliation singularities.

1.3 Application to foliation abundance

It is a direct consequence of [29, Theorem 2] that if X is a projective manifold
with F a co-rank one foliation with canonical singularities and c1(KF ) =
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MMP for co-rank one foliations on threefolds 607

0 then KF is torsion. When X is a threefold we extend this result to the
log situation where we consider F together with a boundary �, as well as
weakening the hypotheses on the singularities.

Theorem 1.7 (= Theorem 12.1) Let F be a co-rank one foliation on a pro-
jective threefold X. Let (F, �) be a foliated pair with log canonical foliation
singularities. Suppose that c1(KF + �) = 0.

Then κ(KF + �) = 0.

1.4 Sketch of the proof

We first give a rough outline of our approach to the existence of flips. Let us
focus on a special case first: suppose X is a smooth threefold and F is the
foliation induced by a fibration f : X → B onto a curve B and with simple
normal crossing fibres. It is easy to compute that KF = KX/B − ∑

(ri − 1)Fi
where the sum runs over the components of fibres with multiplicity ri .

Let C ⊂ X be a KF -flipping curve (cf. Sect. 2.6). It was shown in [41] that
C is tangent to F (cf. Definition 2.12). Let T = f ∗( f (C))red and let S be a
component of T containingC . Note that T is the largest connectedF-invariant
divisor containing C (cf. Sect. 2.2). A direct computation shows that KF |S =
(KX + T )|S and, in particular, it follows that (KX + T ) · C = KF · C < 0
and since (X, T ) is log canonical it follows that the KF -flip can be realised as
a log flip in the classical MMP.

In general, if X is a normal threefold and F is a co-rank one foliation on X
with mild singularities and which admits a flipping contraction (cf. Sect. 2.6),
we want to realise the KF -flip as a (KX + ∑

Si )-flip where the Si are all the
F-invariant divisors meeting C . There are two technical challenges here. The
first is that the Si are not necessarily algebraic divisors, and if C ⊂ sing(F),
they might not even be defined analytically locally around C : instead they
might only exist as formal divisors in the formal completion of X along C .
The second challenge is to control the singularities of the pair (X,

∑
Si ).

To handle the first challenge we develop an extension of the classical MMP
to the formal setting. We adapt some approximation results of Artin/Elkik
to show that we can approximate the Si by algebraic divisors S′

i on an étale
neighbourhood U of C in the sense that Si = S′

i on some infinitesimal neigh-
bourhood ofC . By choosing a sufficiently close approximation, it follows that
the (KU +∑

S′
i )-flip coincides with the (KX +∑

Si )-flip. We emphasise that
we are only approximating the Si and we are not approximating the foliation
F , i.e., the S′

i are not necessarily invariant divisors of some other foliation
F ′. Indeed, it is well known that it is not in general possible to approximate a
foliationwith non-convergent separatrices by onewith convergent separatrices
(see Sects. 4, 5).
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608 P. Cascini, C. Spicer

Controlling the singularities of (X,
∑

Si ) is done by way of several results
which provide bounds between the singularities of F and those of (X,

∑
Si ).

There is some additional difficulty arising from the fact that the Si are not nec-
essarilyQ-Cartier (even if X isQ-factorial). This can be handled by somewhat
standard arguments from the classical MMP (see Sect. 6).

The remaining results on the MMP for foliations of co-rank one on a three-
fold (i.e., special termination, basepoint free theorem, termination of flips
with scaling, existence of F-dlt modifications, etc.) are mostly a consequence
of direct translations of standard ideas and strategies from the classical MMP
to the foliated setting. Nevertheless there are some intriguing issues which
arise and which are unique to the foliated setting (e.g., foliations may admit
infinitely many lc centres).

Finally, our abundance type result for foliations with c1(KF ) = 0 is a
consequence of a rather lengthy and delicate case by case analysis. Some
central ingredients are Touzet’s results on foliations with pseudo-effective
conormal bundle and a careful analysis of families of surfaces foliations with
trivial canonical class (see Sect. 12).

2 Preliminary results

Wework over the field of complex numbersC. Throughout the paper, a variety
is a complex analytic space.

Let X be a normal variety and let V ⊂ X be a closed subvariety. Let X̂ be
the formal completion of X along V . A formal divisor D on X̂ is a union of
distinct integral formal subschemes of pure codimension one. Let ID be the
ideal sheaf of D. We say that D isQ-Cartier if (I⊗n

D )∗∗ is locally of the form
f · OX̂ where f is a local section of OX̂ and n is a positive integer. We say
that D does not contain V in its support if f does not vanish along V . Note
that, in this case, if we denote by ν : V ν → V the normalisaton of V , we can
define the pull-back of D to V ν as a Q-Cartier divisor on V ν .

Let X be a smooth variety of dimension n and let D be a reduced divisor,
we say that D is normal crossing, or that (X, D) is a normal crossing pair, if,
for each closed point x ∈ D, there exist local formal coordinates x1, . . . , xn
such that D is defined by {x1 · · · · · xr = 0} for some 1 ≤ r ≤ n. Note that this
definition works equally well even if X̂ is the formal completion of a smooth
variety X along a closed subvariety and D ⊂ X̂ is a formal divisor.We say that
a divisor D on a smooth variety X is simple normal crossing if it is normal
crossing and every irreducible component of D is smooth.

Given a normal variety X , we denote by�1
X its sheaf of Kähler differentials

and, by TX := (�1
X )∗ its tangent sheaf. For any positive integer p, we denote

�
[p]
X := (�

p
X )∗∗.
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MMP for co-rank one foliations on threefolds 609

Given aQ-divisor�on anormal variety X ,wewrite ��� for the round-down
of � and {�} for the fractional part of �, i.e. {�} = � − ���. A Q-factorial
variety is a normal variety X on which every divisor isQ-Cartier. A birational
map f : X ��� Y between normal varieties is a birational contraction if f −1

does not contract any divisor.
We refer to [25, Sect. 2.3] for the classical definitions of singularities (e.g.

klt, log canonical, etc.) appearing in the minimal model program. In particular,
a log pair (X, �) consists of a normal variety X and a Q-divisor � with
coefficients in (0, 1] and such that KX + � is R-Cartier. Note that if the
coefficients of � are rational, then KX + � isQ-Cartier. If S is an irreducible
component of ���, and ν : Sν → S is its normalisation, then we may write

(KX + �)|Sν = KSν + 	,

where 	 is an effective R-divisor on Sν called the different of (X, �) with
respect to S (cf. [28, (4.2.9)]).

Let (X, �) be a log pair, let S ⊂ X be a prime divisor contained in the
support of ��� and let X̂ be the formal completion of X along S. Assume that
T is a Q-Cartier formal divisor on X̂ which does not contain S in its support.
Then we define the different of (X̂ , � + T ) with respect to S, as 	 + ν∗T ,
where 	 is the different of (X, �) with respect to S.

We say that a normal variety X is potentially klt if there exists aQ-divisor
� ≥ 0 such that (X, �) is klt. We say that a normal variety X is étale locally
potentially klt if for all x ∈ X there is an étale neighborhoodU of x such that
U is potentially klt.

2.1 Basic definitions

A foliation on a normal variety X is a coherent subsheaf F ⊂ TX such that

1. F is saturated, i.e. TX/F is torsion free, and
2. F is closed under Lie bracket.

The rank of F is its rank as a sheaf. Its co-rank is its co-rank as a subsheaf
of TX .

Let X be a normal variety and let F be a rank r foliation on X . We can
associate to F a morphism

φ : �
[r ]
X → OX (KF )

defined by taking the double dual of the r -wedge product of the map �
[1]
X →

F∗, induced by the inclusion F ⊂ TX . This yields a map

φ′ : (�
[r ]
X ⊗ OX (−KF ))∗∗ → OX
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610 P. Cascini, C. Spicer

and we define the singular locus of F , denoted by Sing F , to be the cosup-
port of the image of φ′. A canonical divisor of F is a divisor KF such that
OX (−KF ) ∼= det(F). We define the normal sheaf ofF asNF := (TX/F)∗∗.
The conormal sheafN ∗

F of F is the dual ofNF . If F is a foliation of co-rank
one then, by abuse of notation, we denote by N∗

F a divisor associated to N ∗
F .

2.2 Invariant subvarieties

Let X be a normal variety and let F be a rank r foliation on X . Let S ⊂ X be
a subvariety. Then S is said to be F-invariant, or invariant by F , if for any
open subset U ⊂ X and any section ∂ ∈ H0(U,F), we have that

∂(IS∩U ) ⊂ IS∩U ,

where IS∩U denotes the ideal sheaf of S∩U . If D ⊂ X is a prime divisor then
we define ε(D) = 1 if D is not F-invariant and ε(D) = 0 if it is F-invariant.

Let X be a normal variety and let F be a foliation on X . Let X̂ be the
formal completion of X along a proper closed subvariety V ⊂ X . We say that
a formal subvariety S ⊂ X̂ is a formal F-invariant divisor if it is a formal
divisor which is F̂-invariant, where F̂ is the restriction of F to X̂ .

2.3 Transform of a foliation under a rational map

Let X be a normal variety and let F be a foliation on X . Let φ : Y ��� X be
a dominant map and assume that there exist smooth open subsets U ⊂ X and
V ⊂ Y such that the restriction φ|V : V → U is a morphism.

Let FU denote the restriction of F to U . Then the morphism N ∗
FU

→ �1
U

induces a morphism (φ|V )∗NFU → �1
V and, therefore, a foliation GV on V .

We may extend GV to a foliation on all of Y . Indeed, we may take G to be
the saturated subsheaf of TX whose restriction to V is GV . It is easy to see
that G is closed under Lie bracket, since it is closed under Lie bracket over a
dense open subset. We will refer to G as the induced foliation on Y by φ. If
φ : Y → X is a morphism, then the induced foliation is called the pulled back
foliation and we denote it by φ−1G. If f : X ��� X ′ is a birational map, then
the induced foliation on X ′ by f −1 is called the transformed foliation of F
by f and we will denote it by f∗F .
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2.4 Foliation singularities

Frequently, in birational geometry, it is useful to consider pairs (X, �) where
X is a normal variety and� is aQ-Weil divisor such that KX +� isQ-Cartier.
By analogy, we define:

Definition 2.1 Let X be a normal variety.A foliatedpair (F, �) on X consists
of a foliationF on X and aR-divisor divisor� such that KF +� isR-Cartier.

Note that if (F, �) is foliated pair and � is a Q-divisor, then KF + � is
Q-Cartier. Note also that we are typically interested only in the case when
� ≥ 0, although it simplifies some computations to allow � to have negative
coefficients.

Given a birational morphism π : X̃ → X and a foliated pair (F, �) on X ,
let F̃ be the pulled back foliation on X̃ and π−1∗ � be the strict transform of �

in X̃ . We may write

KF̃ + π−1∗ � = π∗(KF + �) +
∑

a(E,F, �)E,

where π∗KF̃ = KF , the sum runs over all the prime π -exceptional divisors
on X̃ and the rational number a(E,F, �) is called the discrepancy of (F, �)

with respect to E . If� = 0, thenwewill simply denotea(E,F, 0) bya(E,F).
Building on the work of McQuillan (e.g. see [31, Definition I.1.5]), we define:

Definition 2.2 Let X be a normal variety and let (F, �) be a foliated pair
on X . We say that (F, �) is terminal (resp. canonical, log terminal, log
canonical) if a(E,F, �) > 0 (resp. ≥ 0, > −ε(E), ≥ −ε(E)), for any
birational morphism π : X̃ → X and for any prime π -exceptional divisor E
on X̃ .

We say that a foliation F is terminal (resp. canonical, log canonical) if the
foliated pair (F, 0) is such.

We say that the foliated pair (F, �) is klt if ��� = 0 and a(E,F, �) >

−ε(E) for any birational morphism π : X̃ → X and for any π -exceptional
prime divisor E on X̃ .

Let P ∈ X be a, not necessarily closed, point of X . We say that the foliated
pair (F, �) is terminal (resp. canonical, log canonical) at P if for any bira-
tional morphism π : X̃ → X and for any π -exceptional divisor E on X̃ whose
centre in X is the Zariski closure P of P , we have that the discrepancy of E
is > 0 (resp. ≥ 0, ≥ −ε(E)).

Notice that these notions are well defined, i.e., ε(E) and a(E,F, �) are
independent of π .
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612 P. Cascini, C. Spicer

Observe that in the case where F = TX , no exceptional divisor is invariant
and so this definition recovers the usual definitions of (log) terminal, (log)
canonical.

Remark 2.3 It follows from Definition 2.2 that if some component of Supp �

isF-invariant, then (F, �) is not log canonical. Indeed, let D be anF-invariant
component of � with coefficient a > 0. Let p ∈ D be a general point so that
X, D and F are all smooth at p. Let b : X ′ → X be the blow up at p and let
F ′ = b−1F . Then b extracts a single F ′-invariant divisor E of discrepancy

a(E,F, �) = n − 1 − a,

where n is the dimension of X . Let D′ be the strict transform of D and observe
that Z := D′ ∩ E is contained in Sing F ′. Let b′ : X ′′ → X ′ be the blow up
of X ′ in Z . Then b′ extracts a divisor E ′ of discrepancy

a(E ′,F, �) = n − 2a − 1.

We may now blow up E ′ ∩ D′′, where D′′ is the strict transform of D′ in X ′′,
and, continuing this way, we produce a sequence of extractions of divisors
with discrepancy n − ka − 1 where k = 1, 2, . . .. Thus, if k is sufficiently
large, then we extract a divisor F such that

a(F,F, �) < 0 = ε(F)

and, in particular, (F, �) is not log canonical.

Definition 2.4 Given a foliated pair (F, �), we say that W ⊂ X is a log
canonical centre (in short, lc centre) of (F, �) provided (F, �) is log canon-
ical at the generic point of W and there is some divisor E of discrepancy
−ε(E) on some model of X dominating W .

Notice that in the case that ε(E) = 0 for all exceptional divisors E over
a centre the notions of log canonical and canonical coincide. In this case, we
will still refer to canonical centres as log canonical centres.

We also remark that any F-invariant divisor is an lc centre of (F, �).
We have the following nice characterisation due to [31, Corollary I.2.2.]:

Proposition 2.5 Let 0 ∈ X be a normal surface germwith a terminal foliation
F of rank one.

Then there exists a cyclic cover σ : Y → X such that Y is a smooth surface
and σ−1F is a smooth foliation.

We also make note of the following easy fact:
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MMP for co-rank one foliations on threefolds 613

Lemma 2.6 Letπ : Y → X be a proper birational morphism between normal
varieties. Let (F, �) be a foliated pair on X and let G be the pulled back
foliation of F on Y . Write π∗(KF + �) = KG + �.

Then a(E,F, �) = a(E,G, �) for all E.

We will make frequent use of the following consequence of the negativity
lemma:

Lemma 2.7 Let φ : X ��� X ′ be a birational map between normal varieties
and let

X X ′

Y
f

φ

f ′

be a commutative diagram, where Y is a normal variety and f and f ′ are
proper birational morphisms. Let (F, �) be a foliated pair on X. Let F ′ =
φ∗F and let �′ be a Q-divisor on X ′ such that f∗� = f ′∗�′. Assume that
−(KF + �) is f -ample and KF ′ + �′ is f ′-ample.

Then, for any valuation E on X, we have

a(E,F, �) ≤ a(E,F ′, �′).

Moreover, the inequality holds if f or f ′ is not an isomorphism above the
generic point of the centre of E in Y .

Proof The proof is the same as [25, Lemma 3.38]. ��
We now recall some facts from [10] on simple singularities. We say that

the numbers λ1, . . . , λl ∈ C∗ satisfy the non-resonant condition if for any
non-negative integers a1, . . . , al such that

∑
aiλi = 0 we have that ai = 0

for all i = 1, . . . , l.

Definition 2.8 Let F be a co-rank one foliation on a smooth variety X of
dimension n. We say that p ∈ X is a simple singularity for F provided that,
in formal coordinates x1, . . . , xn around p, N∗

F is generated by a 1-formwhich
is in one of the following two forms, for some 1 ≤ r ≤ n:

1. There are λ1, . . . , λr ∈ C∗, which satisfy the non-resonant condition and
such that

ω = x1 · · · xr ·
r∑

i=1

λi
dxi
xi

.
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2. There is an integer k ≤ r such that

ω = x1 · · · xr ·
(

k∑

i=1

pi
dxi
xi

+ ψ(x p1
1 · · · x pk

k )

r∑

i=2

λi
dxi
xi

)

,

where p1, . . . , pk are positive integers without a common factor, ψ(s) is a
formal power series which is not a unit, and the numbers λ2, . . . , λr ∈ C∗
satisfy the non-resonant condition.

The integer r is called the dimension-type of the singularity. The r -uple
(λ1, . . . , λr ) in (1) [resp. the (r − 1)-uple (λ2, . . . , λr ) in (2)] is called the
residual spectrum of the singularity (cf. [10, Remark 20]).

If (X, D) is a normal crossing pair and F is a co-rank one foliation on X
then we say that F has simple singularities adapted to D if F has simple
singularities and, for every p ∈ X , we may choose formal coordinates around
p as above and such that the divisor D∪{x1 · · · xr = 0} is also normal crossing
at p (cf. [10, Definitions 3, 13 and 14]).

A stratum of Sing F is a closed subvariety Z ⊂ Sing F such that for all
p ∈ Z and coordinates x1, . . . , xn as above, in the formal neighbourhood of
X at p, we have that Z is a stratum of {x1 · · · xr = 0}.
By Cano [10, Main Theorem], every co-rank one foliation F on a smooth

threefold X admits a resolutionπ : X ′ → X by blowups centred in the singular
locus of the foliation, such that the transformed foliation has simple singular-
ities. By allowing blow ups in centres tangent to the foliation (but perhaps not
contained in Sing F) we may get that the transformed foliation has simple
singularities adapted to Exc π . More generally, we may perform a sequence
of blow ups so that the transform of F has simple singularities adapted to the
transform of any divisor D on X (cf. [10, Theorem 3 and Sect. 4.5]).

We remark that ifF is an algebraic foliation definedon an algebraic threefold
and D is an algebraic divisor thenwe only need to blow up in algebraic centres.
Indeed, for centres contained in Sing F this is obvious. If Z is a centre which
needs to be blown up and which is not contained in Sing F then Z is either
contained in the singular locus of D or is contained in the tangency locus of
F and D. Since F and D are algebraic, these loci are also algebraic. Hence Z
is algebraic.

Lemma 2.9 Let X be a smooth variety and let F be a co-rank one foliation
with simple singularities on X.

Then F is canonical.

Proof Let π : X ′ → X be a birational morphism, let E ⊂ X ′ be a divisor and
let Z = π(E). If Z is not contained in Sing F , then by shrinking about the
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generic point of Z wemay apply [1, Lemma 3.10] to conclude that a(E,F) ≥
0.

Assume now that Z ⊂ Sing F . By shrinking about the generic point
of Z , we may assume that Z is smooth and, by Zariski’s Lemma (cf. [25,
Lemma 2.45]), after possibly replacing X ′ by a higher model, we may assume
that π is a composition of blow-ups of subvarieties centred on Z . By induction
on the number of blow ups, it suffices to show that if b : Y → X is the blow
up of Z then

(i) if E0 is the b-exceptional divisor then a(E0,F) ≥ 0; and
(ii) b−1F has simple singularities in a neighbourhood of b−1(z), where z ∈ Z

is a general point.

To prove (i), observe that if W is a minimal stratum of Sing F containing
Z and ω is a 1-form defining F at a general point of Z , then b∗ω vanishes to
order codim W − 1 at the generic point of E0. Thus,

a(E0,F) = a(E0, X) − (codim W − 1) = codim Z − codim W ≥ 0

and (i) follows.
We now prove (ii). Since we are only concerned about the behaviour at

the general point of Z , we may assume without loss of generality that Z is
contained in a stratum of Sing F which meets no lower dimensional strata.
Thus, If p ∈ Z is a closed point then we may find formal coordinates
x1, . . . , xr , y1, . . . , yn−r around p, where n is the dimension of X , r is the
dimension type of the singularity and if ω is a 1-form defining the foliation
near Z then ω is in one of the two forms in Definition 2.8 and

Z = {x1 = · · · = xr = y1 = · · · = yl = 0}
for some l ≤ n − r . Let ω′ := 1

x1···xr ω.
Fix i = 1, . . . , r . Consider the chart for the blow up given by

x1 = x ′
i x

′
1 . . . xi = x ′

i . . . xr = x ′
i x

′
r y1 = x ′

i y
′
1 . . . ys = x ′

i y
′
s .

If ω has a simple singularity of type (1) then

ω′ =
r∑

j=1

λ j
dx j
x j

and, in this chart,

b∗ω′ =
r∑

j=1

λ′
j

dx ′
j

x ′
j

,
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where λ′
j = λ j for j �= i and λ′

i = ∑
j λ j . In particular, notice that

λ′
1, . . . , λ

′
r ∈ C∗ satisfy the non-resonant condition, since it is a positive inte-

gral linear combination of a non-resonant spectrum, and so b∗ω′ is still a simple
singularity of type (1). A similar computation holds in all other charts. Thus
b∗ω′ defines a simple singularity of type (1).

So suppose that we have a simple singularity of type (2). Then

ω′ =
k∑

j=1

p j
dx j
x j

+ ψ(x p1
1 · · · x pk

k )

r∑

i=2

λ j
dx j
x j

.

Again, using coordinates for the blow up as above we see that if 1 ≤ i ≤ k
then

b∗ω′ =
k∑

j=1

p′
j

dx ′
j

x ′
j

+ ψ((x ′
1)

p′
1 · · · (x ′

k)
p′
k )

r∑

i=2

λ′
j

dx ′
j

x ′
j

and if i > k we have

b∗ω′ =
k∑

j=1

p′
j

dx ′
j

x ′
j

+ p′
i
dx ′

i

x ′
i

+ ψ((x ′
1)

p′
1 · · · (x ′

k)
p′
k (x ′

i )
p′
i )

r∑

i=2

λ′
j

dx ′
j

x ′
j

,

where p′
j = p j if j �= i and p′

i = p1 + · · · + pk and λ′
j is defined as

above. Again, it follows that λ′
2, . . . , λ

′
r satisfy the non-resonant condition

and, similarly as above, b∗ω defines a simple singularity of type (2).
We remark that in both these cases the exceptional divisor of the blow up is

invariant.
Thus, b−1F has simple singularities in a neighbourhood of b−1(z) and (ii)

follows. ��
The converse of this statement is false (e.g. see [41, Example 2.16]).

Definition 2.10 Given a normal variety X and a foliationF on X , we say that
F has non-dicritical singularities if for any closed point q ∈ X and any proper
birational morphism π : X ′ → X such that π−1(q) is a divisor we have that
each component of π−1(q) is invariant by π−1F .

Example 2.11 Let λ ∈ R. Consider the rank one foliationFλ onC2 generated
by x∂x + λy∂y . For λ ∈ Q>0 we can see that Fλ is dicritical, and otherwise is
non-dicrtical. See [9, pg. 7] for an explicit resolution of Fλ when λ ∈ Q>0.

Definition 2.12 Let X be a normal variety and letF be a co-rank one foliation
with non-dicritical singularities.
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MMP for co-rank one foliations on threefolds 617

We say that a subvarietyW ⊂ X (possibly contained in Sing X or Sing F)
is tangent to F if for any birational morphism π : X ′ → X and any divisor E
on X such that E dominates W , we have that E is F ′-invariant, where F ′ is
the pulled back foliation on X ′. Otherwise, we say that W ⊂ X is transverse
to F .

Note that the definitions above differ slightly from the usual ones, but, in
our opinion, they are more flexible when working with singular varieties. In
particular, ifW ⊂ X is a subvarietywhich is not contained in Sing X∪Sing F ,
then our definition of tangency coincides with the classic one. Note also that
for divisors the notions of tangency and invariance coincide.

Assume now that X is a normal variety,F is a co-rank one foliation on X and
W ⊂ X is an irreducible subvariety which is not contained in Sing X∪Sing F
and which is transverse to F . Let ν : W ν → W be its normalisation. Let
U ⊂ X be a proper open subset which intersect W and which is contained in
the smooth locus of X and let V = ν−1(U ∩W ). Then the composition of the
natural maps

N ∗
F |V → �1

X |V → �1
V

induces a co-rank one foliation GV on V which extends naturally to a foliation
G on W ν , called the restricted foliation of F on W ν .

If X is a smooth variety and F is a co-rank one foliation on X then we say
that F is strongly non-dicritical if for any sequence of blow ups

Xn
pn−→ · · · X1

p1−→ X

in smooth centres tangent toFi or smooth centres contained in Sing Fi , where
Fi is the transformed foliation on Xi , we have that the exceptional locus of
Xn → X is Fn-invariant (cf. [12]). We remark that we allow these maps to be
blow ups along analytic subvarieties.

Remark 2.13 Simple singularities are strongly non-dicritical. Indeed, by [12,
Théorème 4] non-dicriticality can be checked by blowing up in permissible
centres (cf. [10, Definition 1]). However, as we saw in the proof of Lemma 2.9
the exceptional divisor for such a blow up is always invariant by the induced
foliation.

In [12, Théorème 4], the following characterisation of strong non-
dicriticality is given. A germ of a co-rank one foliation F on 0 ∈ Cn is
strongly non-dicritical if and only if there does not exists a germ of a surface
0 ∈ Z ⊂ Cn such that Z is transverse toF and such that the restricted foliation
to Z admits infinitely many invariant curves passing through Sing F .
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We now show that, in the case of smooth threefolds, all these notions of
non-dicriticality coincide:

Lemma 2.14 Let X be a smooth threefold and letF be a co-rank one foliation
on X.

Then F is non-dicritical if and only if it is strongly non-dicritical.

Proof Suppose that F is strongly non-dicritical. Let π : X ′ → X be a proper
birational morphism, let q ∈ X be a closed point and suppose that E ⊂
π−1(q) is a prime divisor. Suppose for sake of contradiction that E is not
π−1F-invariant. Let H ⊂ X ′ be a general hypersurface such that if G is the
foliation restricted to H then E∩H is transverse to G. Then, through a general
point P ∈ E ∩ H there is a germ of a G-invariant curve passing through P ,
call it �P . It follows that if Z = π(H) then Z is transverse to F and the
restricted foliation admits infinitely many invariant curves passing through
q = π(E ∩ H), namely, π(�P) as we let P vary over points of E ∩ H , a
contradiction. In particular, q ∈ Sing F . Thus, F is non-dicritical.

Now suppose that F is non-dicritical. Let π : X ′ → X be a resolution of
singularities so that (X ′,Exc π) is log smooth and F ′ := π−1F has sim-
ple singularities adapted to Exc π (cf. Definition 2.8). In particular, if E is
a component of Exc π which is not F ′-invariant then Sing F ′ ∩ E has no
one-dimensional components. We may also take π to be a sequence of blow
ups centred either in Sing F or centres tangent to the foliation. Since, by
Remark 2.13, simple singularities are strongly non-dicritical, it suffices to
show that Exc π is F ′-invariant.

If E is a component of Exc π such that π(E) is zero-dimensional or π(E)

is not contained in Sing F then it follows immediately that E is F ′-invariant.
So suppose that π(E) is a curve contained in Sing F . SinceF is non-dicritical
it follows that the fibres of E → π(E) are tangent to F ′. Suppose for sake of
contradiction that E is not F ′-invariant.

If G is the foliation restricted to E then G is the foliation induced by
E → π(E) and is therefore smooth over the generic point of π(E). Since
Sing F ′ ∩ E has no one-dimensional components, it follows thatF ′ is smooth
in a neighbourhood of a general fibre of E → π(E). Next, we claim that if E ′ is
any other π -exceptional divisor dominating π(E) then E ′ is not F ′-invariant.
Indeed, suppose otherwise. Without loss of generality we may assume that
E ′ ∩ E �= ∅ and E ∩ E ′ dominates π(E). However E ∩ E ′ is G-invariant
since E ′ is F ′-invariant and so E ∩ E ′ is contained in a fibre of E → π(E), a
contradiction.

Shrinking about a neighborhood of the general point of π(E)wemay there-
fore assume that every π -exceptional divisor is transverse to F ′ and that F ′ is
smooth.
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Now, let ω be a 1-form defining F in a neighborhood of a general point
of π(E). Since π(E) is contained in Sing F it follows that π∗ω must vanish
along Exc π and, in particular, it follows that that N∗

F ′ = F where F ≥ 0 is
π -excpetional and F �= 0.

On the other hand, it is easy to verify that KF ′ and KX ′ are numerically
equivalent over X . Indeed, one can check (as in the proof of [41, Lemma 3.11])
that if E ′ is any π -exceptional divisor dominating π(E) and if C is a general
fibre of E ′ → π(E) then (KF ′ + E)· = (KX ′ + E ′) · C = −2 and so
KF ′ ·C = KX ′ ·C . This, together with the equality KX ′ = KF ′ + N∗

F ′ implies
that N∗

F ′ = F is numerically trivial over X . Since F �= 0, the negativity lemma
(e.g. see [25, Lemma 3.39]) gives us a contradiction. ��
Remark 2.15 The above proof shows that if X is a smooth threefold, F is a
non-dicritical co-rank one foliation on X ,π : X ′ → X is a birationalmorphism
andW isF-invariant, thenπ−1(W ) isF ′-invariantwhereF ′ is the transformed
foliation on X ′.

Remark 2.16 Let X be a normal threefold and letF be a co-rank one foliation
with non-dicritical singularities. Let π : X ′ → X be a birational morphism
and letF ′ be the transformed foliation on X ′. Assume that there exists a prime
π -exceptional divisor E , which is F ′-invariant and whose centre in X is W .
Then every π -exceptional divisor E whose centre in X is W is F ′-invariant.
Indeed, the proof of this fact follows exactly as in the proof of Lemma 2.14.

Definition 2.17 Given a normal germ 0 ∈ X (resp. the formal completion
0 ∈ X̂ of a normal variety X at the point 0 ∈ X ) with a co-rank one foliation
F such that 0 is a singular point forF , we call an irreducible hypersurface germ
(resp. a formal hypersurface) 0 ∈ S a separatrix (resp. formal separatrix) if
it is F-invariant.

Let 0 ∈ X be a smooth germ and let F be a co-rank one foliation F on
X defined by a 1-form ω. Sometimes, in the literature, a formal separatrix is
defined to be an irreducible and reduced formal power series f such that f
divides d f ∧ω.We claim that, under this assumption, { f = 0} defines a formal
hypersurface which is F-invariant. Indeed, let v be a vector field such that
v(ω) = 0. On one hand, v(d f ∧ω) is necessarily divisble by f since d f ∧ω is.
On the other hand, we can compute v(d f ∧ω) = v(d f )ω−d f v(ω) = v(d f )ω
which implies that v(d f ) is divisible by f , i.e., the ideal ( f ) is invariant by v,
as required. Conversely, if { f = 0} is F-invariant then d f ∧ ω is divisible by
f . Indeed, after replacing (X, { f = 0}) by its log resolution whose existence
is guaranteed by [42, Theorems 1.1.9 and 1.1.13], we may assume that the
pair (X, { f = 0}) is log smooth. Thus, we may assume that in some formal
coordinates x1, . . . , xn we may write f = x1. Now write ω = ∑

aidxi for
some functions a1, . . . , an and suppose for sake of contradiction that there
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exists j �= 1 such that a j /∈ (x1). In this case ∂ := a j
∂

∂x1
− a1

∂
∂x j

is a local
vector field inF . However, ∂(x1) = a j /∈ (x1) and so {x1 = 0} is not invariant,
a contradiction.

Example 2.18 Let F be a co-rank one foliation on a smooth variety X with
a simple singularity at p ∈ X of dimension type r . Let x1, . . . , xn be formal
coordinates as in Definition 2.8. Then {xi = 0} is a formal separatrix for each
i = 1, . . . , r and moreover these are the only formal separatrices at p, see [10,
Appendix: About simple singularities].

Note that away from the singular locus of F a separatrix is in fact a leaf.
Furthermore being non-dicritical implies that there are only finitely many
separatrices through a singular point. The converse of this statement is false.

Lemma 2.19 Let X be a smooth variety of dimension n and letF be a co-rank
one foliation on X with simple singularities. Suppose that S ⊂ Sing F is a
subvariety such that dim S ≥ 1. Let H ⊂ X be a general element of a base
point free linear system and let G be the restricted foliation.

Then G has simple singularities at a general point of S ∩ H.

Proof Remark 2.13 implies thatF admits non-dicritical singularities. Let P ∈
S be a general closed point and let r ≤ n − 1 be the dimension type of F at
P . Note that this condition is generic in Sing F .
Let D1, . . . , Dr be the separatrices of F at P , including the formal ones.

Let H be a hyperplane passing through P such that (X̂ , D1 + · · · + Dr + H)

is a normal crossings pair where X̂ is the formal completion of X at P . If ω is
a 1-form defining F it is easy to check that ω restricted to H is still a 1-form
which is of one of the types listed inDefinition 2.8. Thus, the restricted foliation
will have simple singularities near P . It follows from [10, Proposition 14] that
having pre-simple singularities is an open condition in Sing F , and the proof
there works just as well to imply that having simple singularities is an open
condition in Sing F . ��

Even for simple foliation singularities it is possible that there are separatrices
which do not converge. However, as the following definition/result shows there
is always at least one convergent separatrix along a simple foliation singularity
of codimension two.

Lemma 2.20 For a simple singularity of type (1), all separatrices are conver-
gent.

For a simple singularity of type (2), around a general point of a codimension
two component of the the singular locus we can write ω = pydx + qxdy +
xψ(x p yq)λdy. The hypersurface {x = 0} is a convergent separatrix, called
the strong separatrix.

Proof This is proven in [11, Part II Sect. 5]. ��
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2.5 Foliation with KF not pseudo-effective

We make note of the following easy consequence of [14].

Lemma 2.21 Let X be a normal variety and let F be a foliation on X such
that KF isQ-Cartier and KF is not pseudo-effective. Then F is uniruled, i.e.,
there exists a family of rational curves covering X and tangent to F .

Proof Let π : X ′ → X be a resolution of singularities and let F ′ be the pulled
back foliation. Then observe that KF ′ is not pseudo-effective and so we may
freely assume that X is smooth.

Let α be a movable class so that KF · α < 0. Let E ⊂ F be a maximal
destabilizing subsheaf of F with respect to α. It follows that E defines a
foliation with μα,min(E) > 0 and so by [14, Theorem 1.1] E is a foliation with
rationally connected leaves, from which our claim follows. ��

2.6 Steps of the minimal model program

We recall some of the main definitions commonly used in the Minimal Model
Program. Let X be a normal projective variety. We denote by N1(X) the R-
vector space spanned by 1-cycles on X modulo numerical equivalence (e.g.
see [25, Definition 1.16]). We denote by NE(X) ⊂ N1(X) the subset of
effective 1-cycles [∑k

i=1 aiCi ] where a1, . . . , ak are positive real numbers
and C1, . . . ,Ck are curves in X , and we denote by NE(X) its closure (e.g.
see [25, Definition 1.17]). A ray is a one-dimensional subcone R of NE(X)

and it is called extremal if for any u, v ∈ NE(X) such that u + v ∈ R, we
have that u, v ∈ R. If D is a Q-Cartier Q-divisor on X then the extremal ray
R is said to be D-negative if D · C < 0 for any curve C such that [C] ∈
R. Given an extremal ray R ⊂ NE(X), we define the locus of R, denoted
loc(R), to be the set of all those points x ∈ X such that there exists a curve
C with x ∈ C and [C] ∈ R. A projective birational morphism f : X → Y
between normal projective varieties is said to be a flipping contraction, or
small contraction, if its exceptional locus has codimension at least two and it
is called adivisorial contraction if its exceptional locus is a divisor.Moreover,
the birational morphism f : X → Y is said to be an extremal contraction if
the relative Picard number ρ(X/Y ) := ρ(X) − ρ(Y ) is equal to one. Given
an extremal ray R ⊂ NE(X), an extremal contraction f : X → Y is said to
be associated to R if the locus of R coincides with the exceptional locus of f .

Let D be a Q-Cartier Q-divisor on a normal projective variety X , let R
be a D-negative extremal ray and let f : X → Y be a flipping contraction
associated to R. Note, in particular, that −D is f -ample. Then the D-flip is a
birational map φ : X ��� X+ such that

1. φ is an isomorphism in codimension one,
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2. there exists an extremal small contraction f + : X+ → Y , and
3. D+ := φ∗D is f +-ample.

Note that the D-flip, if it exists, is unique.
We refer to [7, Definition 3.6.4] for the definition of ample models and we

observe that if φ : X ��� X+ is a D-flip with flipping contraction f : X → Y
then X+ is the ample model of D over Y .

Let φ : X ��� Y be a birational contraction between normal projective
varieties and let D be a Q-Cartier Q-divisor on X . Then φ is said to be a step
of a D-MMP if it is either a D-flip or a divisorial contraction associated to a
D-negative extremal ray. More in general, φ is said to be a sequence of steps
of a D-MMP if we can decompose φ as

X = X0 ��� X1 · · · ��� X� = Y

so that the birational contraction Xi ��� Xi+1 is a step of a Di -MMP where
Di is the strict transform of D on Xi . Note that if X is Q-factorial, then Y is
also Q-factorial.

If we replace the projective variety X by a projective morphism π : X → U
betweennormal varieties, then all the definitions above admit a relative version,
by replacing each variety by one admitting a projective morphism to U , and
each birational map by a birational map over U , in a similar fashion as in the
classical MMP (e.g. see [25, Sect. 3.6]).

2.7 A result from the classical MMP

We will need to make use of some techniques from the classical MMP.

Definition 2.22 Let X be a normal variety. We say that a birational morphism
f : Y → X is a small Q-factorialisation if the following holds:

1. f is an isomorphism in codimension one,
2. f is a projective morphism, and
3. Y is Q-factorial.

Theorem 2.23 [7, Corollary 1.4.3] Let X be a normal algebraic variety of
dimension three and let D ≥ 0 be such that (X, D) is klt.

Then there exists a small Q-factorialisation for X. Moreover, if we write
KY + DY = f ∗(KX + D) then (Y, DY ) is klt.

Remark 2.24 Since flips are known to exist over complex analytic varieties
(cf. [39, Main Theorem]), the same proof as in [7] implies the existence of a
small Q-factorialisation for a klt pair (X, D), where X is a complex analytic
space of dimension three.
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3 F-dlt foliated pairs and basic adjunction type results

The goal of this section is to define a new category of foliated log pair singu-
larities, namely F-dlt pairs. These are analogous of dlt log pairs in the classical
MMP and they seem to be the most suitable singularities to run a foliated
MMP. In particular, we prove several properties satisfied by these pairs, which
we use later on in the paper.

3.1 Foliated log smooth pairs

Definition 3.1 Given a normal variety X , a co-rank one foliation F and a
foliated pair (F, �) we say that (F, �) is foliated log smooth provided the
following hold:

1. (X, �) is log smooth,
2. F has simple singularities, and
3. if S is the support of the non F-invariant components of �, p ∈ S is a

closed point and�1, . . . , �k are the (possibly formal)F-invariant divisors
passing through p, then S ∪ �1 ∪ · · · ∪ �k is a normal crossings divisor at
p.

Given a normal variety X , a co-rank one foliation F and a foliated pair
(F, �), a foliated log resolution, or in short log resolution, is a proper bira-
tional morphism π : Y → X so that Exc π is a divisor and (G, π−1∗ �+∑

E)

is foliated log smooth where G is the pulled back foliation on Y and the sum
runs over all the π -exceptional divisors.

Remark 3.2 • If X is a surface, then the existence of a foliated log resolution
follows from a result of Seidenberg [38]. If X is a threefold, then such a
resolution exists by [10].

• Items (2) and (3) in Definition 3.1 imply that each component of S is gener-
ically transverse to the foliation, no strata of S is tangent to the foliation
and no strata of Sing F is contained in S.

• IfF is log smooth and if D is aF-invariant divisor then it is not necessarily
the case that D is smooth, although it will have at worst normal crossings
singularities.

Lemma 3.3 Let (F, �) be a foliated log smooth pair on a variety X, where
� = ∑

ai Di is a Q-divisor such that 0 ≤ ai ≤ 1 and Di is not F-invariant
for every i .

Then (F, �) is log canonical.

Proof By Lemma 2.9, since F has simple singularities, it follows that F is
canonical.
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Now let π : Y → X be a blow up of subvariety Z ⊂ Supp � where Z has
codimension k. Let E be the exceptional divisor. We compute the discrepancy
of this blow up as follows:

1. If Z is transverse to the foliation then the discrepancy is

(k − 1) −
∑

{i |Z⊂Di }
ai ≥ −1 = −ε(E),

where the inequality holds since k ≥ #{i | Z ⊂ Di } by Item (1) in Defini-
tion 3.1.

2. If Z is tangent to the foliation but not contained in Sing F then the discrep-
ancy is

(k − 1) −
∑

{i |Z⊂Di }
ai ≥ 0 = −ε(E),

where the inequality holds since k ≥ #{i | Z ⊂ Di } + 1 by Item (3) in
Definition 3.1.

3. If Z ⊂ Sing F then let m be the codimension of the minimal strata of
Sing F containing Z . The discrepancy of the blow up is

(k − 1) − (m − 1) −
∑

{i |Z⊂Di }
ai ≥ 0 = −ε(E),

where the inequality holds since k ≥ m + #{i | Z ⊂ Di } by Item (3) in
Definition 3.1.

As in the proof of Lemma 2.9, it follows that ifG is the transformed foliation
on Y and �′ is the strict transform of � in Y , then (G, �′ + E) is foliated log
smooth. Thus, the result then follows by induction. ��

Note that in contrast to the classical situation, if (F, �) is a foliated log
smooth pair then (F, �) may have infinitely many lc centres:

Example 3.4 Let (F, D1+D2) be a foliated log smooth pair on a threefold X ,
for some prime divisors D1 and D2 which are not F-invariant. Suppose that
Z = D1∩D2 is non-empty, disjoint from Sing F and that Z is transverse toF .
Then Z is an lc centre of (F, D1+D2).Moreover, if p ∈ Z and ifπ : Y → X is
the blow up at p with exceptional divisor E then the discrepancy with respect
to E is 0 = ε(E) and so p is an lc centre of (F, D1 + D2). In particular,
(F, D1 + D2) admits infinitely many lc centres.

Note also that if F is a foliation on a smooth projective variety X which
is induced by a fibration onto a curve then any smooth vertical fibre is an lc
centre.
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3.2 Extending separatrices

We provide a general result on the existence of formal separatrices which is a
slight generalisation of the results in [11, Sect. IV].

Lemma 3.5 Let X be a normal quasi-projective threefold. Let F be a co-
rank one foliation on X with non-dicritical singularities. Let V ⊂ X be a
subvariety tangent to F , let q ∈ V be any point and let Ŝq be a, possibly
formal, F-invariant divisor containing q. Let X̂ be the formal completion of
X along V .
Then there exists an F̂-invariant formal subscheme Ŝ on X̂ which contains

Ŝq near q.
Moreover, if Ŝq is in fact convergent, then we may take Ŝ to be convergent.

Proof Let π : W → X be a high enough foliated log resolution so that
π−1(V ) = E is a divisor. By definition, we see that E is π−1F-invariant.
Let Ŵ be the completion of W along E and let π̂ : Ŵ → X̂ be the induced
morphism.

Let X̂/q denote the formal completion of X along q and let Ŵ/π−1(q) denote
the formal completion of W along π−1(q). Note that we have morphisms
X̂/q → X̂ and Ŵ/π−1(q) → Ŵ which commute with the induced morphism
Ŵ/π−1(q) → X̂/q and Ŵ → X̂ . Since Ŝq is a formal subscheme of X̂/q wemay
take its strict transform on Ŵ/π−1(q), call it Ŝ

′
q . Recall that we can construct

the strict transform as follows: let X̂/q = Spf A, Ŝq = Spf B and let π be
given by the blow up along an ideal I . Let W̃ be the blow up of Spec A along
I ⊗ A. If S̃ = Spec B we may define the strict transform S̃′ as the blow up of
S̃ along the ideal I ⊗A B, [23, Corollary II.7.15]. We may take Ŝ′

q to be the

formal completion of S̃′ along S̃′ ∩ π−1(q).
The arguments in [11, Sect. IV] and their slight extension in [41, Lemma5.3]

show that if Ŝ′
q is convergent thenwe can extend Ŝ

′
q to aπ−1F-invariant formal

subscheme Ŝ′ of Ŵ . In fact, the arguments given in [41] work even if Ŝ′
q is not

convergent as in the proof of [11, Theorem IV.2.1].
For the reader’s convenience we briefly indicate some of the important

ideas of the proof of [11, Theorem IV.2.1]. Let ω be a 1-form defining a
simple singularity on 0 ∈ U ⊂ C3 with coordinates (x, y, z). Suppose that the
dimension type ofω is 3 (the casewhere the dimension type is 2 can be handled
in a similar manner). By the work of [11, Sect. 2] we know that two of the
separatrices at 0 are convergent. So, after performing a holomorphic change
of coordinates we may assume that they are given by {x = 0} and {y = 0}. It
follows that the formal separatrix at 0 may be defined by an equation f = z+
φ(x, y) where φ(x, y) ∈ (xy)C[[x, y]]. By [11, Proposition II.5.4] it follows
that there exists a bidisc V ⊂ C2 such that in fact φ(x, y) = ∑

φi (x, y)(xy)i
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where φi (x, y) ∈ OC2(V ). In particular, up to shrinking U , if Û denotes the
formal completion of U along {xy = 0} we see that in fact z + φ(x, y) ∈
H0(Û ,OÛ ). In particular, we have extended the formal separatrix, a priori
only defined on the formal completion of U at 0, to the formal completion of
U along the union of the convergent separatrices. Using this local extension
result we see that the arguments given for extending convergent separatrices
work for extending formal separatrices.

LetIŜ′ ⊂ OŴ be the ideal sheaf corresponding to Ŝ′. By the propermapping
theorem for formal schemes [22, Théorème 3.4.2], π̂∗ IŜ′ is a coherent sheaf,
and since π̂∗OŴ = OX̂ we see that it is in fact an ideal sheaf corresponding
to a formal subscheme Ŝ ⊂ X̂ .

Since being an invariant divisor can be checked locally, it suffices to check
Ŝ is a formal invariant divisor in the case where X is affine.
If X is affine, then let X̃ = Spec OX̂ and let W̃ = W ×X X̃ and let

π̃ : W̃ → X̃ be induced map. By the Grothendieck existence theorem, Ŝ′
corresponds to a closed subscheme of W̃ denoted S̃′ and Ŝ correspond to a
closed subscheme of X̃ denoted S̃. The above construction gives us π̃∗ S̃′ = S̃.
Observe that S̃ is a divisor on X̃ . Let Ũ = X̃\π̃(Exc π̃) and note that Ũ is a
Zariski open subset and S̃∩ Ũ �= ∅. It follows immediately that S̃∩ Ũ isF |Ũ -
invariant (since π̃ is an isomorphism above Ũ ). Since S̃ admits an invariant
Zariski dense subset we see that in fact S̃ is invariant. The theorem on formal
functions tells us that the completion of S̃ along V is exactly Ŝ, and our result
follows. ��

3.3 F-dlt foliated pairs

Definition 3.6 Let X be a normal variety and let F be a co-rank one foliation
on X . Suppose that KF + � is Q-Cartier.

We say (F, �) is foliated divisorial log terminal (F-dlt) if

1. each irreducible component of � is generically transverse to F and has
coefficient at most one, and

2. there exists a foliated log resolution π : Y → X of (F, �) which only
extracts divisors E of discrepancy > −ε(E).

Remark 3.7 As we show in Remark 3.15, canonical singularities are not in
general F-dlt.On the other hand, if (F, �) is a F-dlt pair, then it is log canonical.
Indeed, by assumption, there exists a foliated log resolution π : Y → X which
only extract divisors E of discrepancy> −ε(E). Thus, if G is the transformed
foliation on Y and � is the strict transform of � in Y , then we may write

KG + � + F = π∗(KF + �) + G,
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where F,G ≥ 0 are π -exceptional Q-divisors without any common com-
ponent. Note, in particular, that no component of � + F is G-invariant and,
therefore, Lemma 3.3 implies that (G, � + F) is log canonical. Thus, for any
valuation S, we have

a(S,F, �) ≥ a(S,G, � + F) ≥ −ε(S)

and our claim follows.

Lemma 3.8 Let X be a normal variety and letF be a co-rank one foliation on
X. Suppose that (F, �) is a F-dlt pair on X and let π : Y → X be a foliated
log resolution such that a(E,F, �) > −ε(E) for any π -exceptional divisor
E.
Then π is an isomorphism at the general point of π−1(W ) for any lc centre

W ⊂ X. In particular, (F, �) is foliated log smooth at the generic point of
W .

Proof Suppose by contradiction that π is not an isomorphism at the general
point of π−1(W ). We may write

KG + � = π∗(KF + �) + F,

where �, F ≥ 0 are Q-divisors without any common component and G is the
pulled back foliation on Y . Note that (G, �) is log smooth.

By assumption, there exists a valuation T , whose centre in X isW and such
that a(T,F, �) = −ε(T ). Since π is not an isomorphism at the general point
of π−1(W ) and since Exc π is a divisor, there exists a π -exceptional prime
divisor E which contains the centre of T in Y .

If E is G-invariant, then E is contained in the support of F and we have

a(T,G, �) < a(T,F, �) = −ε(T ),

which contradicts Lemma 3.3.
Similarly, if E is not G-invariant, then E is not contained in the support of

��� and there exists δ > 0 such that if �′ := � + δE then, (G, �′) is log
smooth, the coefficients of �′ are not greater than one and

a(T,G, �′) < a(T,G, �) ≤ a(T,F, �) = −ε(T ),

which contradicts again Lemma 3.3. ��
Proposition 3.9 Let X be a normal variety and letF be a co-rank one foliation
on X. Let (F, �) be a F-dlt pair on X.

Then (F, �) has only finitely many lc centres of codimension at least two,
which are not contained in the support of ���.
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Proof ByLemma 3.8, we have that (F, �) is foliated log smooth at the generic
point of every lc centre. Let Z ⊂ X be a subvariety of codimension at least
two which is not contained in the support of ��� and such that (F, �) is
foliated log smooth at the generic point of Z . Let π : Y → X be the blow up
at Z with exceptional divisor E and suppose that Z ⊂ Supp �. Computing
as in Lemma 3.3, we see that the discrepancy of this blow up is > −ε(E).
Computing inductivelywe see that every divisor dominating Z has discrepancy
> −ε(E).

Thus, every lc centre of (F, �) not contained in Supp ��� must also be
an lc centre of (F, 0). Keeping in mind that F has simple singularities at the
general point of Z , a straightforward computation shows that the lc centres
of (F, 0) are strata of Sing F and therefore there are only finitely many such
centres. ��

Remark 3.10 As in the proof of Proposition 3.9, it follows that ifF is a co-rank
one foliation on a normal variety X and (F, �) is a F-dlt pair, then there are
only finitely many lc centres which are transverse toF . Indeed, as in the proof
of Lemma 3.3, these centres are strata of ���.

Lemma 3.11 Let X be a normal threefold and letF be a co-rank one foliation
on X. Suppose that (F, �) is a F-dlt pair on X and that φ : X ��� X ′ is a
sequence of steps of a (KF+�)-MMP. Let (F ′, �′) be the transformed foliated
pair on X ′.

Then (F ′, �′) is also F-dlt.

Proof We may assume that φ : X ��� X ′ is either a (KF + �)-flip or a
divisorial contraction. We denote by � the flipped locus if φ is a flip and
� := φ(Exc φ) if φ is a divisorial contraction.

By assumption, there exists a foliated log resolution π : Y → X of (F, �)

which only extracts divisors E of discrepancy > −ε(E). It is enough to show
that (F ′, �′) also admits such a foliated log resolution. Let Y ⊂ Y × X ′ be
the closure of the graph of φ ◦ π and let p : Y → Y be the induced proper
birational morphism. Let G be the pulled back foliation on Y and let � be the
strict transform of � in Y . Let f = π ◦ p : Y → X be the induced morphism
and let F := ∑

Fi where the sum runs over all the f -exceptional divisors.
Let g : Y ′ → Y be a foliated log resolution of (G, � + F). We may assume
that g is an isomorphism in the locus where (G, � + F) is log smooth.

Letπ ′ : Y ′ → X ′ be the inducedmorphism, let E ′ be a primeπ ′-exceptional
divisor and let W be the centre of E ′ in X ′. We claim that a(E ′,F ′, �′) >

−ε(E ′). If W is contained in �, then Lemma 2.7 and Remark 3.7 imply that

−ε(E ′) ≤ a(E ′,F, �) < a(E ′,F ′, �′),
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as claimed. If W is not contained in � then, by construction, the morphism
Y ′ → Y is an isomorphism at the general point of E ′ and the strict transform
of E ′ in Y is π -exceptional. Thus,

−ε(E ′) < a(E ′,F, �) = a(E ′,F ′, �′),

and, again, our claim follows. ��
Lemma 3.12 Let X be a normal threefold and letF be a co-rank one foliation
on X with non-dicritical singularities. Let C ⊂ X be a curve tangent toF and
suppose that (F, �) is a F-dlt pair on X.

Then

1. (F, �) is canonical at the generic point of C.
2. If in addition C ⊂ Sing X then (F, �) is terminal at the generic point of

C.

Proof Item (1) follows from the observation that every divisor E dominating
C on some log resolution must be foliation invariant.

If (F, �) is not terminal along C then C is an lc centre. Thus, Lemma 3.8
implies that X is smooth at the generic point of C , i.e. C is not contained in
Sing X , and (2) follows. ��
Remark 3.13 In fact, in Case (1) above there is an open setU ⊂ X intersecting
C on which (F, �) has canonical singularities. Indeed, let π : X ′ → X be
a foliated log resolution and let E1, . . . , Ek be the π -exceptional divisors of
discrepancy < 0 with respect to (F, �). Let W = π(

∑
Ei ). By assumption

C is not contained in W and observe that (F, �) has canonical singularities
on U := X\W .

Lemma 3.14 Let X be a normal quasi-projective threefold and let F be a co-
rank one foliation with non-dicritical singularities on X. Suppose that (F, �)

is F-dlt and let C ⊂ X be a curve tangent to F .
Let X̂ denote the formal completion of X along C.

1. If (F, �) is terminal at the generic point of C there exists a single F-
invariant divisor S ⊂ X̂ , and we may take S to be convergent.

2. If (F, �) is not terminal at the generic point of C then X is smooth at
the generic point of C and at a general point P ∈ C there are 2 (formal)
separatrices at P containing C, each of which may be extended to a divisor
S ⊂ X̂ . Moreover, at least one of these separatrices may be extended to a
convergent one.

Proof Note that Lemma 3.12 implies that (F, �) is canonical at the generic
point of C . Suppose that (F, �) is terminal at the generic point of C . We
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first show the existence of a unique separatrix containing C at a general point
P ∈ C , and so we are free to shrink to an analytic neighborhood of P . Let
H be a germ of a general hypersurface at P and let FH be the restricted
foliation. We claim that KFH is Q-Cartier and FH has terminal singularities
(cf. [41, Lemma 8.7]). Indeed, let π : X ′ → X be a log resolution of F and
setF ′ := π−1F and�′ = π−1∗ �. Perhaps shrinking about P we may assume
that Exc π is F ′-invariant and the following hold:

(i) For a general choice of H set H ′ := π∗H . Then the log pair (X ′, �′ +
Exc π +H ′) is simple normal crossing and so π is in fact a log resolution
of (F, � + H).

(ii) We may write KF ′ + �′ + H ′ = π∗(KF + � + H) + ∑k
i=1 ai Ei where

E1, . . . , Ek are the π -exceptional divisors and ai > 0 for each i .
(iii) (KF ′ + H ′)|H ′ = KFH ′ where FH ′ is the restricted foliation, see [41,

Lemma 3.1 and Corollary 3.3] (note that we will prove a more general
adjunction statement in Lemma 3.18). Moreover, since (F ′, �′ + H ′) is
foliated log smooth it follows that (FH ′, �′|H ) is log smooth (c.f. the
proof of Lemma 2.19).

Set Di = Ei ∩ H . By items (ii) and (iii) we see that KFH ′ + �′|H ′ ∼Q
∑k

i=1 ai Di . Let r : H ′ → H ′′/H be a run of the KFH ′ +�′|H ′-MMP over H ,
see [41, Corollary 2.26]. We know that H ′′ has at worst quotient singularities
and (FH ′′, r∗�′|H ′), and hence FH ′′ , has terminal singularities where FH ′′ is
the transform ofFH . By the negativity lemmawe see that r∗(

∑k
i=1 bi Di ) = 0,

i.e., H ′′ ∼= H . Thus FH has terminal singularities.
By [31, Corollary I.2.2] there is a unique germ of a convergent curve P ∈ γ

which isFH -invariant. In turn, γ is contained in a unique convergent separatrix
of F at P . Indeed, the unicity follows from the fact that γ is the unique FH -
invariant curve through P . The existence of this separatrix is guaranteed by
[11, Main Theorem] when F has non-dicritical singularities and X is smooth,
the case where F has non-dicritical singularities and X is singular follows by
essentially the samearguments, see [41,Corollary 5.4] (note that the hypothesis
on the compactness of the curveC is not needed here). By Lemma 3.5 we may
extend this separatrix to a convergent invariant divisor on X̂ .

If (F, �) is not terminal at the generic point of C , then C is an lc centre
and Lemma 3.8 implies that (F, �) is log smooth at the general point of C .
This implies then that F has simple singularities at a general point P ∈ C ,
and hence has two (possibly formal) separatrices at P . By Lemma 3.5 we may
extend each of them to formalF-invariant divisors on X̂ . By Lemma 2.20 one
of these separatrices is convergent and so may be extended to a convergent
invariant divisor. ��
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Remark 3.15 1. Even if at a general point P ∈ C there are two distinct sepa-
ratrices, the invariant divisor we produce by extending them might be the
same for each separatrix.

2. In general, a canonical non-terminal singularity may only admit a single
separatrix formal or otherwise. Thus, canonical does not imply F-dlt.

3. However, log terminal does imply F-dlt (keeping in mind that in general
canonical does not imply log terminal for foliations).

4. Recall that, by Remark 3.7, F-dlt implies log canonical.

3.4 Adjunction

Recall the following result:

Lemma 3.16 Let X be a normal threefold, let F be a co-rank one foliation
with non-dicritical singularities and let (F, �) be a foliated pair on X. Let
D = ∑

Di be an F-invariant divisor on X and suppose that D is Q-Cartier.
Suppose that (F, �) is log terminal (resp. log canonical). Then (X, �+D)

is log terminal (resp. log canonical).
Suppose that (F, �) is F-dlt and ��� = 0. Then (X, � + (1 − ε)D) is klt

for all ε > 0.
Suppose that (F, �) is F-dlt and each Di is smooth in codimension one

(but perhaps ��� �= 0). Then (X, � + D) is dlt.

Proof The first claim is [41, Lemma 8.14], see also [29, Proposition 3.11].
The second claim is a direct consequence of Lemma 3.8.
The final claim follows by recalling the third point in Remark 3.2 and

thereby noting that if each Di is smooth in codimension one then a foliated
log resolution of (F, �) is also a log resolution of (X, � + D). ��

In fact, Lemma 3.16 remains true even in the following slightlymore general
set up. Let X be a normal threefold with a foliated pair (F, �) and let V ⊂ X
be a closed subvariety and let X̂ be the formal completion of X along V and
let F̂ be the restriction of F to X̂ . Then under the hypotheses of Lemma 3.16
the conclusions of the Lemma still hold even if D ⊂ X̂ is a formal divisor
which is F̂-invariant. We remark that the third point of Remark 3.2 implies
that a log resolution of (F, �), perhaps followed by some further blow ups
in Sing F , is a log resolution of (X̂ , � + D), and in particular (X̂ , � + D)

admits a resolution by blow ups in algebraic centres.

Remark 3.17 Let X be a normal threefold, let F be a co-rank one foliation
on X , and let P ∈ X be a point. Let U be an analytic neighbourhood of P
and let FU be the foliation restricted to U . Then, thanks to the existence of a
log resolution and since simple singularities are canonical by Lemma 2.9, we
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know that if F is (log) canonical then FU is (log) canonical. Conversely, if
FU is (log) canonical at P then the same is true for F .

Lemma 3.18 (Adjunction) Let X be a normal threefold, let F be a co-rank
one foliation on X. Let (F, ε(S)S + �) be a foliated pair where S is a prime
divisor and� ≥ 0 is aQ-divisor on X which does not contain S in its support.
Let ν : Sν → S be the normalisation and let G be the restricted foliation to Sν

if S is not F-invariant and let G = TSν if S is F-invariant.
Then, there exists 	 ≥ 0 such that

(KF + ε(S)S + �)|Sν = KG + 	.

Now suppose that KX , KX + � and S are Q-Cartier and that F admits
non-dicritical singularities. Then the following hold:

1. Suppose ε(S) = 1. Suppose moreover that (F, S + �) is lc (resp. lt, resp.
F-dlt). Then (G, 	) is lc (resp. lt, resp. F-dlt).

2. Suppose ε(S) = 0. Suppose thatF is F-dlt. Then (Sν, 	′ := �	�red+{	})
is log canonical and if, in addition, S and Sing F ∩ S are normal then
(S, 	′) is dlt. Moreover, if (F, �) is log terminal, then (Sν, 	′) is log
terminal.

Proof The first claim follows from [41, Proposition 3.4] if S is notF-invariant
and [2, Definition 3.11] if S is F-invariant. Note that [2, Definition 3.11]
assumes that F has algebraic leaves, however the arguments work equally
well in this situation.

We now prove the second claim. Let π : Y → X be a foliated log resolution
of (F, ε(S)S + �), let FY be the pulled back foliation on Y and let T be the
strict transform of S in Y . If (F, ε(S)S+�) is F-dlt, then we choose π so that
a(E,F + ε(S)S, �) > −ε(E) for any π -exceptional divisor E .

We may write

KFY + ε(T )T + �′ +
∑

ai Ei = π∗(KF + ε(S)S + �),

where �′ is the strict transform of � in Y , ai ∈ Q and the sum is taken over
all the π -exceptional divisors. Suppose first that ε(S) = 1 and note that, by
the second point of Remark 3.2 we have that T is generically transverse to FY
and is not tangent toFY along any curves contained in T and contains no one-
dimensional components of Sing FY . Let ν′ : T ν → T be the normalisation.
By [41, Corollary 3.3] we get (KFY + T )|T ν = KGT + 	 where GT is the
restricted foliation to T ν and 	 ≥ 0 is a Q-divisor. Note that the image of
the support of 	 in T is contained in curves where T is tangent to FY and on
one-dimensional components Sing FY ∩ T . By our previous observation, we
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see that 	 = 0. Thus, we get

KGT + �′|T ν +
∑

ai Ei |T ν = φ∗(KG + 	),

where φ : T ν → Sν is the induced morphism. By assumption ai ≤ ε(Ei )

(resp. ai < ε(Ei )). To prove our result we need to show that ai ≤ ε(Ei |T ν )

(resp. ai < ε(Ei |T ν )).
Suppose for sake of contradiction that for some i , we have ε(Ei ) = 1,

ε(Ei |T ν ) = 0 and ai > 0 (resp. ai ≥ 0). In this case, consider the blow up of
Y at Ei∩T and let F be the exceptional divisor.Notice that ε(F) = 0.However,
this is a blow up of discrepancy ≤ −ai < ε(F) (resp. ≤ −ai ≤ ε(F), resp.
≤ −ai < ε(F)), and so we see that (FY , T + �′ + ∑

ai Ei ) is not lc (resp. lt,
resp. F-dlt), hence (F, S+�) is not lc (resp. lt, resp. F-dlt). Thus, (1) follows.

Suppose now that ε(S) = 0 and let X̂ be the formal completion of X along
S. Let T be the sum of all the (formal) invariant divisors meeting S, and which
are not equal to S. Suppose for the moment that T isQ-Cartier. Observe that if
Sing F∩S is normal then each component of T is smooth in codimension one.
Then by Lemma 3.16we know that (X̂ , S+T +�) is dlt, furthermore, as in the
proof of [41, Lemma 8.9], it follows that the different of (X̂ , S+ T +�) with
respect to S is exactly 	′. We then apply adjunction for varieties to conclude.

We now handle the case where T is not necessarily Q-Cartier. By
Lemma 3.16 and since (F, �) is F-dlt, it follows that X is klt. Suppose for sake
of contradiction that there exists a point P ∈ X̂ such that T is not Q-Cartier
at P . Then, since X is klt, if U is a small analytic neighbourhood of P ∈ X
we may find a small Q-factorialisation f : Y → U such that Y is analytically
Q-factorial by Remark 2.24. Let � = f −1(P), let Û be the formal comple-
tion of U at P and let Ŷ be the formal completion along � so that we have a
morphism f̂ : Ŷ → Û .

Observe that KY = f ∗KU and if we let S′ = f ∗S then � ⊂ S′. Let Ŝ′
denote the restriction of S′ to Ŷ . Let �0 be a component of � which meets
f̂ −1∗ T . Note that KY · �0 = 0 and that, after possibly shrinking U , we may
assume that �0 spans an extremal ray in NE(Y/U ). Thus, there exists a flop
of�0 overU , call itψ : Y ��� Y ′/U and let�′

0 be the flopped curve. Observe
that �0 ⊂ f̂ −1∗ T or �′

0 ⊂ ψ∗ f̂ −1∗ T . So up to replacing Y by Y ′, we may
assume that�0 ⊂ f̂ −1∗ T . Next, note that�0 ⊂ Ŝ′ ∩ f̂ −1∗ (T ) ⊂ Sing Hwhere
H := f −1F and the latter inclusion holds because S′ and f̂ −1∗ (T ) are both
H-invariant.

By Remark 3.7, the foliation F has log canonical singularities. Thus, since
f is small, H has also log canonical singularities. Note also by Lemma 3.14
thatH has canonical, and not terminal, singularities at the generic point of�0,
since �0 is contained in the intersection of two (formal) invariant divisors.
Thus we may find a birational morphism b : Y ′ → Y which extracts a divisor
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E dominating �0 such that 0 = a(E,H) = a(E,F). Next, observe that
a(E,F) ≥ a(E,F, �) ≥ −ε(E) = 0 and so all these inequalities must be
equalities and it follows that P is a lc centre of (F, �). By Lemma 3.8, X is
smooth at P , and so T is necessarily Cartier at P , a contradiction. Thus, (2)
follows. ��
Remark 3.19 Note that, using the same proof, the first part of Lemma 3.18
can be generalised to the formal setting. More specifically, let X be a normal
threefold and let F be a co-rank one foliation with non-dicritical singularities
on X . Suppose that (F, �) is a F-dlt pair on X , let S be anF-invariant divisor,
let X̂ be the formal completion of X along S and let ν : Sν → S be the
normalisation. Then, we may write

(KF + �)|Sν = KSν + 	,

where 	 ≥ 0 is a Q-divisor on Sν .

Corollary 3.20 Let X be a normal threefold and let F be a co-rank one
foliation with non-dicritical singularities on X. Suppose that (F, �) is a F-
dlt pair on X, let S be an F-invariant divisor such that (X, � + S) is a log
pair, let X̂ be the formal completion of X along S and let ν : Sν → S be the
normalisation. Let T1, . . . , Tk be the collection of F-invariant divisors on X̂
not equal to S and suppose that T = ∑

Ti is Q-Cartier. Write

(KF + �)|Sν = KSν + 	

and let 	′ be the different of (X̂ , � + S + T ) with respect to S.
Then	′ ≤ 	with equality along the curves contained inSing X.Moreover,

for any irreducible curve C in S, at the general point of which F has simple
singularities and along which S is a strong separatrix, the coefficients of 	

and 	′ coincide.

Proof If C is a curve contained in the singular locus of S, then C ⊂
Sing F ∪ Sing X . Since T1, . . . , Tk are F-invariant, it follows that 	 and
	′ are supported on ν−1(Sing F ∪ Sing X).

Let C be an irreducible curve in Sν . By Lemma 3.12, we see that if ν(C) ⊂
Sing X ∩ S then F is terminal at the generic point of ν(C). In this case, by
[41, Lemma 8.9], it follows that the coefficient of C in 	 and 	′ is the same.

So we may assume that X is smooth at the generic point of C . If ν(C) ⊂
Sing F ∩ S then C is an lc center of F and so by Lemma 3.8, F has simple
singularities at a general point ofC . It follows that S+T is a normal crossings
divisor at the generic point of C and so the coefficient of C in 	′ is equal to 1.

Let ω be a 1-form defining F at a general point of C and let ωS be the
restriction of ω to S. The coefficient of C in 	 is the order of the zero of ωS
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along C , in particular, it is an integer ≥ 1. When S is the strong separatrix
along C then the order of the zero of ωS along C is equal to 1. ��
Remark 3.21 We emphasise that in Corollary 3.20 we are not assuming that X
is quasi-projective or that S is an algebraic variety. Later on we will apply this
Lemma in the case where S is an analytic divisor on an analytic neighborhood
of a proper curve C contained in a quasi-projective threefold.

Lemma 3.22 Let X be aQ-factorial quasi-projective threefold and letF be a
co-rank 1 foliation with non-dicritical singularities on X. Suppose that (F, �)

is F-dlt. Let C be a one-dimensional lc centre of (F, �) tangent to F .
Then there exists 	 ≥ 0 such that

(KF + �)|Cν = KCν + 	,

where ν : Cν → C is the normalisation. Moreover, if P is contained in the
support of �	� then ν(P) is an lc centre of (F, �).

Proof By Lemma 3.8, it follows that (F, �) is log smooth at the general point
of C . By Lemma 3.14, there exists a germ of an invariant divisor S containing
C and if C ⊂ Sing F , then we may choose S so that it is the strong separatrix
at a general point of C . Let ν′ : Sν → S be the normalisation of S and set
C ′ = ν′−1(C). Then it is easy to check that

(KF + �)|Sν = KSν + C ′ + �Sν

for some Q-divisor �Sν ≥ 0, whose support does not contain C .
Note that we have a morphism Cν → C ′ and so we may write (KSν +

C ′ + �Sν )|Cν = KCν + 	. Thus, by adjunction for varieties, the image of the
non-klt locus of (Cν, 	) is supported on the non-klt locus of (Sν,C ′ + �Sν ).
We claim these centres are contained in lc centres of (F, �). Let P ∈ S, by
Lemma 3.18 we see that if (F, �) is log terminal at P then (Sν,C ′ + �Sν )

must also be log terminal at P , and so every point in the non-klt locus of
(Sν,C ′ + �Sν ) is an lc centre of (F, �). ��
Lemma 3.23 Let X be a normal threefold and letF be a corank one foliation
with non-dicritical singularities. Let S be an irreducible divisor transverse to
F and suppose that KX +�+ S and KF +�+ S areQ-Cartier where� ≥ 0
and S is not contained in the support of�. Write n∗(KX +�+ S) = KSn +	

and n∗(KF + � + S) = KFS + 	′ where n : Sn → S is the normalisation.
Let C ⊂ S be a curve such that n(C) is transverse to F .

Then the coefficient of C in 	 is equal to the coefficient of C in 	′.

Proof By [41, Lemma 3.11] we have that the usual discrepancy of any divisor
dominating n(C) is equal to the foliated discrepancy. By construction, the
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coefficient of the different along C is only a function of the discrepancies of
divisors dominating C with respect to the pairs (X, � + S) and (F, � + S)

and our claimed equality follows. ��

3.5 Bertini type results

Lemma 3.24 Let X be a normal projective threefold and let F be a co-rank
one foliation on X with non-dicritical singularities. Let (F, �) be a F-dlt pair
such that ��� = 0 and let A be an ample Q-divisor on X.

Then there exists an effective Q-divisor A′ ∼Q A such that

1. (F, � + A′) is also F-dlt;
2. �� + A′� = 0; and
3. the support of A′ does not contain any lc centre of (F, �).

Proof Lemma3.8 implies that (F, �) admits a foliated log resolutionπ : Y →
X which only extracts divisors E of discrepancy > −ε(E) and which is an
isomorphism at the general point of π−1(W ) for any W ⊂ X which is a lc
centre of (F, �). We claim that there exists a sufficiently divisible positive
integer m such that if H ∈ |mA| is a general element and A′ := 1

m H then

(i) the support of A′ does not contain any lc centre of (F, �);
(ii) each irreducible component of A′ is generically transverse toF and ��+

A′� = 0;
(iii) if x ∈ X is the general point of a log canonical centre of (F, �) then,

(F, � + A′) is log smooth in a neighbourhood of x ; and
(iv) if (F, �) is klt in a neighbourhood of x ∈ X then (F, � + A′) is also klt

in a neighbourhood of x .

Assuming the claim, let G := π−1F . We may write

KG + � = π∗(KF + �)

for someQ-divisor� onY . Then there exists a foliated log resolutionπ ′ : Y ′ →
Y of (G, � + π∗A′) such that if p : Y ′ → X is the induced morphism, then
π ′ is an isomorphism at the general point of p−1(W ) for any lc centre W of
(F, �). Thus, a(F,F, �+ A′) > −ε(F) for any prime divisor F on Y ′ which
is p-exceptional and the Lemma follows.

We now prove the claim. Since ��� = 0, Proposition 3.9 implies that if m
is sufficiently divisible then H does not contain any lc centre of (F, �). Thus,
(i) holds. It is easy to check that (ii) holds.

Now we check (iii). Let W be a log canonical centre of (F, �). By
Lemma 3.8, (F, �) is foliated log smooth at the generic point ofW . In partic-
ular, F admits simple singularities at the general point ofW . If x ∈ Sing F is
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an isolated point, then we may choose m sufficiently divisible so that x is not
contained in the support of H . Similarly, we may assume that x is the general
point of a one-dimensional component C of Sing F . Thus, we may choose m
so that H is transverse to C and, in particular, if �1, �2 are, possibly formal,
F-invariant divisors passing through x , then C is contained in �1 ∩ �2 and
(X, �1 + �2 + H) is a normal crossing pair at x . It follows that (F, � + A′)
is log smooth at x . Therefore (iii) holds.

Finally, we check (iv). First, let U := X\Sing X and let x ∈ U be a point
such that (F, �) is klt in a neighborhood of x . If x /∈ H then there is nothing to
prove, and if x ∈ H and H is general wemay also assume that x ∈ U\Sing F .
Moreover, if H is sufficiently general then by [3, Lemma 2.9] it follows that
(F, H) is log smooth on U\Sing F , except perhaps at finitely many points,
P1, . . . , Pm . In fact a dimension count as in [3, Lemma 2.9] shows that a
general choice of H will have at worst an order 2 tangency with F at Pi , i.e.,
in some local analytic coordinates (x, y, z) we have F is defined by dz and
H = {z + x2 + y2 = 0}. In particular, at the Pi we know that (F, 1

4H) is
klt. Note that π is a foliated log resolution of (F, � + H) along U except at
P1, . . . , Pm . It then follows that for m sufficiently divisible and H sufficiently
general, we have that (F, � + A′) is klt on U\Sing F .

Next, write Sing X = Z0 ∪ Z1 where Z0 are the components of Sing X
which are tangent to F and Z1 are the components which are transverse.
Suppose that x ∈ Z0. Observe that π−1(Z0) is by definition G-invariant and
so for a general choice of H , we know that (G, �+π∗H) is foliated log smooth
in a neighbourhood of π−1(x). It therefore follows immediately that, for m
sufficiently divisible, (F, � + A′) is klt in a neighbourhood of x .

Finally suppose that x ∈ Z1. Without loss of generality we may assume
that x is a general point of Z1. By non-dicriticality we know that π−1(x) is
tangent to G. In fact, arguing as in the proof of Lemma 2.14 we see that G is
smooth on a neighbourhood of π−1(x) and so by Lemma 3.5 it follows that
there exists a G-invariant divisor S defined on an analytic neighbourhood of
π−1(x) such that π−1(x) ⊂ S.

We claim that (G, �+π∗A′) is klt in a neighbourhood of π−1(x) if and only
if (Y, �+ S+π∗A′) is log terminal in a neighbourhood of π−1(x). Supposing
the claim, then we are done by observing that if (X, � + π∗S) is log terminal
at x then (X, � + π∗S + A′) is log terminal at x for sufficiently divisible m
and sufficiently general H .

We now prove the above claim. After possibly shrinking x , wemay consider
a log resolution μ : Ỹ → Y of (Y, � + S + π∗A′) which is an isomorphism
away from (π ◦ μ)−1(x). Let E be the support of Exc μ. Then Kμ−1G and
KỸ + μ−1∗ S + E are numerically equivalent over Y . Indeed, if E0 is any
component of E then, since μ−1∗ S ∩ E0, E ′ ∩ E0 ⊂ Sing μ−1G where E ′ is
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any other component of E , Corollary 3.20 implies that

Kμ−1G |E0 = KE0 + (E − E0 + μ−1∗ S)|E0 .

We also have

(KỸ + E + μ−1∗ S)|E0 = KE0 + (E − E0 + μ−1∗ S)|E0 .

It follows that the log discrepancies of (Y, � + S + π∗A′) are equal to the
discrepancies of (G, � + π∗A′) as required. Therefore (iv) holds. ��
Corollary 3.25 Set up as in Lemma 3.24. Suppose in addition that (F, �) is
log smooth and has canonical singularities.

Then there exists an effective Q-divisor A′ ∼Q A such that (F, � + A′)
has canonical singularities.

Proof By Lemma 3.24 we may find an effective Q-divisor A′ ∼Q A so that
(F, � + A′) is F-dlt, hence log canonical by Remark 3.7. It suffices to show
that for any divisor E on some model of X that a(E,F, �+ A′) ≥ 0. Clearly
this holds for all foliation invariant divisors, so let E be one such divisor which
is not foliation invariant and let W be the centre of E on X .

SinceF has non-dicritical singularities, by Remark 2.13 we know thatW is
necessarily transverse toF . In particular, by [41, Lemma 3.11], we see that the
foliation discrepancies for divisors centred over W are equal to the classical
discrepancies.

If A′ is sufficiently general with sufficiently small coefficients thenwe know
that (X, � + A′) has canonical singularities at the generic point of W , and so
(F, �+A′) has canonical singularities at the generic point ofW , which implies
our claim. ��
Lemma 3.26 Let X be a Q-factorial projective threefold and let F be a co-
rank one foliation on X with non-dicritical singularities. Let � = A + B be
aQ-divisor such that (F, �) is a F-dlt pair, A ≥ 0 is an ampleQ-divisor and
B ≥ 0.
Then there exist Q-divisors A′, B ′ ≥ 0 such that A′ is ample and if �′ =

A′ + B ′ then

1. �′ ∼Q �,
2. ��′� = 0,
3. (F, �′) is F-dlt and
4. if E is a valuation such that a(E,F, �′) = −ε(E) then ε(E) = 0 and

a(E,F) = 0.
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Proof Let δ > 0 be sufficiently small rational number, so that A+δB is ample
and let B ′ := (1 − δ)B. By Lemma 3.24, there exists a Q-divisor

0 ≤ A′ ∼Q A + δB

such that, if �′ := (1− δ)B + A′ then (1), (2) and (3) hold and the support of
A′ does not contain any lc centre of (F, (1 − δ)B). Thus, if E is a valuation
such that a(E,F, �′) = −ε(E) then a(E,F, (1 − δ)B) = −ε(E). Since

a(E,F, B) ≥ a(E,F, �) ≥ −ε(E),

it follows that the centreW of E in X is not contained in the support of B and,
in particular, a(E,F) = −ε(E). By Lemma 3.8, we have that F has simple
singularities along the generic point of W . As in the proof of Lemma 2.9, it
follows that ε(E) = 0. Thus, (4) follows. ��

Lemma 3.27 Let X be a Q-factorial projective threefold and let F be a co-
rank one foliation on X with non-dicritical singularities. Let � = A + B be
aQ-divisor such that (F, �) is a F-dlt pair, A ≥ 0 is an ampleQ-divisor and
B ≥ 0. Let ϕ : X ��� X ′ be a sequence of steps of the (KF + �)-MMP and
let F ′ be the transformed foliation on X ′.

Then, there exist Q-divisors A′ ≥ 0 and C ′ ≥ 0 on X ′ such that

1. ϕ∗A ∼Q A′ + C ′,
2. A′ is ample, and
3. if �′ := A′ + C ′ + ϕ∗B then �′ ∼Q ϕ∗� and (F ′, �′) is F-dlt.

Proof By Lemma 3.26, we may assume that ��� = 0. We may also assume
that ϕ : X ��� X ′ is a (KF + �)-flip (resp. (KF + �)-divisorial contraction).
Let H ≥ 0 be a general ample Q-divisor on X ′. After possibly replacing H
by a smaller multiple, we may assume that if HX is the strict transform of
H in X then A − HX is ample. In particular, by Lemma 3.24, there exists
an effective Q-divisor C ∼Q A − HX and ε > 0 sufficiently small such that
(F, �+εC) is F-dlt and ϕ is still a (KF +�+εC)-flip (resp. (KF +�+εC)-
divisorial contraction). Thus, if F ′ is the transformed foliation on X ′, then
Lemma 3.11 implies that (F ′, ϕ∗(�+ εC)) is F-dlt. By Remark 3.7, we have
that (F ′, ϕ∗(� + εC)) is log canonical and, therefore, ϕ∗C does not contain
any lc centre of (F ′, ϕ∗�).

Moreover, ϕ∗A ∼Q ϕ∗C+H . Thus, for a sufficiently small rational number
δ > 0, we may choose A′ = δH and C ′ = (1− δ)ϕ∗A + δϕ∗C and the claim
follows. ��

123



640 P. Cascini, C. Spicer

3.6 F-dlt modification

Definition 3.28 LetF be a co-rank one foliation on a normal projective variety
X . Let (F, �) be a foliated pair. A F-dlt modification for the foliated pair
(F, �) is a birational projective morphism π : Y → X such that if G is the
pulled back foliation on Y then (G, π−1∗ � + ∑

ε(Ei )Ei ) is F-dlt where we
sum over all π -exceptional divisors and

KG + π−1∗ � +
∑

ε(Ei )Ei + F = π∗(KF + �)

for some π -exceptional Q-divisor F ≥ 0 on Y .
In particular, if (F, �) is lc then π only extracts divisors Ei of discrepancy

−ε(Ei ).

Theorem 8.1 below implies the existence of a F-dlt modification for any
foliated pair (F, �) on a normal projective variety of dimension at most three.

3.7 F-dlt cone and contraction theorem

In [41] the cone theorem is proved under the hypotheses that X is aQ-factorial
threefold, F is non-dicritical, (F, �) has canonical singularities and the con-
traction theorem is proved under the additional hypothesis that (F, �) is
terminal at the generic points of Sing X .

In fact, it is possible to prove the cone and contraction theorem under the
hypothesis that (F, �) is F-dlt (rather than canonical). Evenbetter, it is possible
to prove the cone theorem in the case that X is not necessarilyQ-factorial but
X is potentially klt. We still require that F has non-dicritical singularities. We
explain the required modifications to the cone theorem first.

Since X is potentially klt, Theorem 2.23 implies that there exists a small
Q-factorialisation π : Y → X . Write KG + � = π∗(KF + �), where G is the
pulled back foliation on Y .

Lemma 3.29 Set up as above. Then (G, �) is F-dlt.

Proof By Lemma 3.8, it follows that (F, �) is foliated log smooth at the
generic point of every lc centre of (F, �). In particular, π(Exc π) does not
contain any lc centre of (F, �). Let ρ : X ′ → X be a foliated log resolution of
(F, �) such that a(E,F, �) > −ε(E) for any ρ-exceptional divisor E . Let
p : Y → Y and q : Y → X ′ be proper birational morphisms which resolve
the indeterminacy locus of the induced birational contraction X ′ ��� Y . Let
F be the transformed foliation on Y and let � be the strict transform of
� in Y . Let Y ′ → Y be a foliated log resolution of (F, � + G), where
G is the support of the exceptional divisor of q, and let ρ′ : Y ′ → Y be
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the induced morphism. We may assume that the morphism Y ′ → X ′ is an
isomorphism away from φ−1(Exc π). Suppose by contradiction that there
exists a ρ′-exceptional divisor F such that a(F,G, �) = −ε(F). Then the
centre of F in Y does not intersect Exc π and therefore the image of F in X ′ is
a divisor which is ρ-exceptional. Since a(F,F, �) = a(F,G, �) = −ε(F),
we get a contradiction and our claim follows. ��

Notice that (KG + �) · C = 0 for every π -exceptional curve C so if R
is a (KF + �)-negative extremal ray then there exists a (KG + �)-negative
extremal ray R′ such that π∗R′ = R. Thus, by replacing (F, �) by (G, �) we
may freely assume that X is Q-factorial.

Let R be a (KF + �)-negative extremal ray and let HR be a supporting
hyperlane to R.Wemay assume that HR−(KF+�) is ample and, in particular,
H3

R > (KF + �) · H2
R .

If H3
R = 0 then [41, Corollary 2.28] implies that X is covered by rational

curves tangent to F which span R. Otherwise, if H3
R = 0 then HR is big and

there exists an effective divisor S such that S is negative on R. As in the proof
of [41, Lemma 4.7], it follows that if (F, �) is log canonical then R is spanned
by a curveC . In either case, every (KF +�)-negative extremal ray is spanned
by a curve.

Lemma 3.30 Let X be a normal threefold and letF be a co-rank one foliation
with non-dicritical singularities on X. Suppose that (F, �) is a log canonical
foliated pair and that X is potentially klt. Let R be a (KF + �)-negative
extremal ray and suppose that loc(R) �= X. Suppose that [C] ∈ R.

Then C is tangent to F .

Proof This is proven in [41, Lemma 8.10] under the assumption that X is
Q-factorial and klt. However, one can observe that the proof does not rely on
either of these hypotheses.

For the reader’s convenience, we briefly sketch the relevant ideas. Let HR
be the supporting hyperplane to R and suppose for sake of contradiction that
C is transverse to F . Since loc(R) �= X , it follows that HR is big. Let A be
an ample Q-Cartier divisor so that HR − A is still big. We may then find a
Q-divisor 0 ≤ G ∼Q HR − A and notice that G · C < 0.

Let λ ≥ 0 be the largest real number so that (F, � + λG) is log canonical
at the generic point ofC . On one hand, we know that (KF +�+λG) ·C < 0.
On the other hand, by replacing X by a small Q-factorialisation (which is
necessarily an isomorphism at the generic point of C) we may apply sub-
adjunction (cf. [41, Theorem 4.5]) to see that since C is transverse to F then
(KF + � + λG) · C ≥ 0, a contradiction. ��

By Lemma 3.12, ifC is tangent toF then (F, �) is canonical at the generic
point of C and we have reduced to the cone theorem in [41, Theorem 7.1].
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Thus, we have:

Theorem 3.31 Let X be a normal projective threefold and let F be a co-rank
one foliation with non-dicritical singularities. Suppose that X is potentially
klt. Let (F, �) be a F-dlt pair and let H be an ample Q-divisor.

Then there exist countably many curves ξ1, ξ2, . . . such that

N E(X) = NE(X)KF+�≥0 +
∑

R+[ξi ].

Furthermore, for each i , ξi is a rational curve tangent to F such that
(KF + �) · ξi ≥ −6, and if C ⊂ X is a curve such that [C] ∈ R+[ξi ]
and loc(R+[ξi ]) �= X then C is tangent to F . If we assume in addition that X
is Q-factorial then if [C] ∈ R+[ξi ] then C is tangent to F .

In particular, there exist only finitely many (KF +�+H)-negative extremal
rays.

Remark 3.32 Wewill return to the problem of constructing contractions in the
Q-factorial case in Theorem 6.7 and in the non-Q-factorial case in Sect. 8.1.

We now show that the MMP preserves non-dicritical singularities.

Lemma 3.33 Let X be a normal threefold and let F be a non-dicritical co-
rank one foliation on X. Suppose that (F, �) is log canonical and that X is
potentially klt.

Let R be a (KF + �)-negative extremal ray and let c : X → Y be the
contraction associated to R. Suppose that c is a birational morphism and let
G := c∗F . Then G is non-dicritical. In particular, if c is a flipping contraction
and assuming that its flip φ : X ��� X+ exists, then F+ := φ∗F is non-
dicritical.

Proof To prove our first claim let q ∈ Y be a point and let π : Y ′ → Y
be any sequence of blow ups such that π−1(q) is a divisor. Perhaps passing

to a higher model we may assume we have a factorisation Y ′ g−→ X
c−→ Y .

Let G′ := π−1∗ G. Lemma 3.30 implies that c−1(q) is tangent to F . Since
g−1(c−1(q)) is a divisor and since F is non-dicritical it follows by definition
of tangency that g−1(c−1(q)) is an invariant divisor, as required.

We now prove our second claim. Let c+ : X+ → Y be the induced mor-
phism. We have that c+∗ F = G and, by our first claim, it is non-dicritical. This
implies that F+ is non-dicritical, as claimed. ��

Note that, in Sect. 6, we prove the existence of flips for non-dicritical F-dlt
pairs defined on a Q-factorial projective theefold.
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4 Approximating formal divisors

One of the main difficulties to prove the existence of flips for foliated pairs
(F, �), as in Theorem 6.4, is due to the fact that in the singular setting, some
of the separatrices through a curveC which is tangent toF , are defined only in
a formal neighbourhood of the curveC . To this end, since theMMP for formal
schemes is still unknown, we study some application of Artin and Elkik’s
approximation theorems.

We begin by recalling some definitions. The following definition is [37,
Chapter XI, Définition 2].

Definition 4.1 Let A be a ring, J ⊂ A an ideal and B an étale A-algebra. We
say that B is an étale neighborhood of J in A if the morphism

A/JA → B/JB

is an isomorphism.

The following definition is [37, Chapter XI, Définition 3].

Definition 4.2 Apair (A, J) of a ring and an ideal is called a henselian couple
if J is contained in the Jacobson radical of A and for all étale neighborhoods
B of J in A, there exists an A-morphism B → A.

Given a pair (A, J) of a ring A and an ideal J contained in the Jacobson
radical of A, it is possible to define the henselization of (A, J) as in [37,
Chapitre XI, Théorème 2].

The next result is [17, Theorem3 (see also the paragraph belowTheorem3)]:

Theorem 4.3 (Elkik approximation) Let (A, J) be a henselian couple where
A is Noetherian and let Â be the J-adic completion. Let M be a finite type
Â-module, locally free on Spec Â\V (J).
Then there exists an A-module M such that M ⊗A Â is isomorphic to M.
Furthermore, for any positive integer k, we may choose M so that if

Â p L−→ Âq → M → 0

is a presentation of M, then we have a presentation of M

Ap L−→ Aq → M → 0

such that L = L mod Jk and such that the isomorphism between M and
M ⊗ Â is induced by automorphisms of Âp and Âq congruent to the identity
modulo Jk .
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Remark 4.4 Note that, in the Theorem above, after possibly replacing M by
M∗∗, we may assume that M is reflexive. Indeed, by [24, Proposition 1.8] it
follows that M∗∗ ⊗A Â is reflexive and, therefore, it coincides with M .

Corollary 4.5 Let (A, J) be a henselian couple where A is Noetherian and let
Â be the J-adic completion. Suppose moreover that A is excellent and normal.
Fix any positive integer k. Let V ⊂ Spec Â be an effective integral divisor

and let m be a positive integer such that mV is Cartier away from W = V (J).
Then there exists a divisor V on Spec A such that

1. O(mV ) ⊗ Â ∼= O(mV ),
2. V = V mod Jk .

Proof We first assume that M := O(V ) is locally free away from W . Note
that this case follows from [17, Corollaire p. 574], but we include a proof for
the reader’s convenience.

By Theorem 4.3 and Remark 4.4, there exists a reflexive sheafM on Spec A
such thatM⊗ Â = O(V ). Let s ∈ O(V ) be a section whose associated divisor
is V . We may assume that there is a presentation

Â p L−→ Âq → M → 0

such that s is the image of (1, 0, . . . , 0) in M . Approximating this presentation
by

Ap L−→ Aq → M → 0

we define s to be the image of (1, 0, . . . , 0) in M . In particular, we see that
s = s mod Jk considered as sections of M . Let V be the divisor associated
to s. Then M = O(V ) and V = V mod Jk .

Now, suppose that m > 1 is the Cartier index of O(V ) away from W . By
Lemma 4.6, we may find a Galois possibly ramified cover σ : Spec B →
Spec A such that (σ ∗O(V ))∗∗ is a line bundle away from σ−1(W ).

Note that J′ = B ⊗ J is the ideal corresponding to σ−1(W ). Let B̂ be
the J′-adic completion of B. Observe that by [37, Chapter XI, Proposition 2]
(B, J′) is a henselian couple. We may find a reflexive sheaf M ′ on Spec B
such that M ′ ⊗ B̂ ∼= (σ ∗O(V ))∗∗. Let s be as above and let t = σ ∗s.

As before, for any positive integer �, we can approximate t by a section t
of M ′ such that t = t mod J′�. Observe that for � sufficiently large we have
that

∑
g∈G g · t �= 0. So replacing t by 1

#G

∑
g∈G g · t we may assume that t

is also G-invariant. Let V ′ be the divisor associated to t and so M ′ = O(V ′).
By Theorem 4.3 let L be a reflexive sheaf on Spec A such that L ⊗ Â =

O(mV ). Then we have (σ ∗L)∗∗ ∼= O(mV ′). Thus (σ ∗L)∗∗ has a G-invariant
section t⊗m which descends to a section η of L .
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If we set V = σ(V ′), then notice that (η = 0) = mV and soO(mV )⊗ Â ∼=
O(mV ). Next, we know that mV = mV mod J� which implies that V = V
mod J��/m�. Choosing � ≥ km gives our result. ��
Lemma 4.6 Let (A, J) be a henselian couple where A is Noetherian and let
Â be the J-adic completion. Suppose moreover that A is excellent.
Let V ⊂ Spec Â be a divisor such thatOSpec Â(V ) isQ-Cartier away from

W = V (J).
Then there exists a finite Galois morphism σ : Spec B → Spec A such

that if σ̂ : Spec B̂ → Spec Â is the completion of this map we have that
(̂σ ∗O(V ))∗∗ is locally free away from σ̂−1(W ).

Proof Let X = Spec A and let m be the Cartier index of O(V ) away from
W . Let L be a reflexive sheaf on X such that L ⊗ Â ∼= O(mV ) and whose
existence is guaranteed by Theorem 4.3.

Let {Ui }i=1,...,n be an open cover of Spec A\W and let si be a global section
of L such that si |Ui generates L|Ui . Choose a rational function ϕi such that
(ϕi ) = (si |Ui ). Let Vi → Ui be a cover extracting a m-th root of ϕi . If we let
Ûi = Ui ×X Spec Â and V̂i = Vi ×X Spec Â then we see that O(V )|∗∗̂

Vi
is

locally free.
Let V = V1×X V2×X . . .×X Vn and let K (V ) be the field of functions of V

and notice that K (V ) is a finite extension of K (A). Let B be the integral closure
of A in K (V ). Note that B is finite over A (e.g. see [4, Proposition 5.17]).
Thus, the natural map σ : Spec B → Spec A gives a cover with the desired
properties. ��
Definition 4.7 Let (A, J) be a pair of a normal ring and an ideal. Let �′ be
a Q-divisor on Spec A. We say that a Q-divisor � on Spec A approximates
�′ mod Jn if we can write � = ∑

ai Di and �′ = ∑
ai D′

i where Di = D′
i

mod Jn .

Lemma 4.8 Let (A, J) be a pair of a ring and an ideal, where A is excellent.
Suppose that (Spec A, �) is a klt (resp. lc) pair.

Then there exists a positive integer n0 such that if n ≥ n0 and if �′ is
an approximation of � mod Jn such that KSpec A + �′ is Q-Cartier then
(Spec A, �′) is klt (resp. lc).

Proof Let π : Y → Spec A be a log resolution of (Spec A, �) and let E =
π−1(V (J))whose existence is guaranteed by [42, Theorems 1.1.9 and 1.1.13].
Note thatπ is projective. Perhaps passing to a higher resolutionwemay assume
that E is a divisor.

Let D̂ be a component of �. We may write

π−1 ID̂ · OY = OY (−D̂′ −
∑

ai Ei ),
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where D̂′ is the strict transform of D̂ and Ei are π -exceptional and ai ≥ 0.
Choose r larger than ai for all i and for all the components D̂ of �.

Next, pick n0 so that Jn0 ⊂ π∗OY (−2r E). Note that in this case π−1Jn0 ⊂
OY (−2r E) and so if s = t mod Jn0 then

π∗s = π∗t mod OY (−2r E).

This choice of r, n0 guarantees that if D̂ is a component of Supp � and D
is an approximation of D̂ mod Jn where n ≥ n0 that if we write

π−1 ID̂ · OY = OY (−D̂′ −
∑

ai Ei )

and

π−1 ID · OY = OY (−D′ −
∑

bi Ei )

then ai = bi and so D′ = D̂′ in some infinitessimal neighborhood of E .
Thus, if �′ is an approximation of � mod Jn for n ≥ n0 then π is also a log
resolution of (Spec A, �′).

Furthermore, if we let π−1∗ � (respectively π−1∗ �′) be the strict transform
of� (respectively�′) we see that π−1∗ �|E = π−1∗ �′|E which implies that the
two are π -numerically equivalent and hence the discrepancies of (Spec A, �)

and (Spec A, �′) are the same and the result follows. ��

5 Approximating formal separatrices

In this section we work in the following set up:
Let X be aQ-factorial and klt quasi-projective threefold. LetF be a co-rank

one foliation on X with non-dicritical singularities and let (F, �) be a F-dlt
foliated pair. Let f : X → Z be a birational contraction and p ∈ f (Exc f )
be a closed point. We assume that D := f −1(p) is tangent to F . Suppose
moreover that Z is klt away from finitely many points. As we will see, this
will always be the case for birational contractions arising in the course of the
MMP.

Let f̂ : X̂ → Ẑ be the completion of f along the fibre f −1(p), and let F̂
be the formal foliation.

Remark 5.1 Observe that by Lemmas 3.12 and 3.14 if D is a curve and Di
is component of D then Di is contained in a (possibly formal) F̂-invariant
divisor.

Lemma 5.2 Let Ŝ ⊂ X̂ be any irreducible formal divisor not contained in
Exc f . Fix an integer n > 0.
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Then there exists an étale morphism σ : Z ′ → Z and a divisor S′ on X ′ =
X ×Z Z ′ such that if τ : X ′ → X is the projection, f ′ : X ′ → Z ′ the induced
morphism, D′ = f ′−1(σ−1(p)) and τ̂ : X̂ ′ → X̂ is the completion of τ along
D′, then Ŝ′ = τ̂ ∗ Ŝ mod I nD′ , where Ŝ′ is the restriction of S′ to X̂ ′.

Proof We may assume that Z = Spec B is affine. Let (A,m) be the henseli-
sation of B at p, and let Â be the formal completion of B at p. Let
X̃ = X ×Spec B Spec Â. By the Grothendieck existence theorem there exists
a divisor S̃ on X̃ such that S̃|X̂ = Ŝ.

Let f̃ : X̃ → Spec Â be the induced morphism. By the proper mapping
theorem,we have that V := f̃∗ S̃ is a divisor on Spec Â.We claim that V is aQ-
Cartier divisor on Spec Â\p. Indeed, by assumption Z is klt away fromfinitely
many points. By [21, Proposition 9.4] a klt variety has quotient singularities in
codimension two, and so it follows that, away from finitely many points, Z has
quotient singularities. In particular, it follows that Spec Â\{p} is Q-factorial
and so V is Q-Cartier.

Let D̃ = f̃ −1(p). Pick a positive integer k large enough so that mk ⊂
f̃∗ I n+n′

D̃
where n′ is a sufficiently large positive integer so that O(−V ) is not

contained in f̃∗ I n
′

D̃
. By Corollary 4.5, there exists a divisor V on Spec Awhich

agrees with V mod mk . Recall

A = lim−→
(Spec B′,q)→(Spec B,p)

B ′

where we run over étale morphisms (Spec B ′, q) → (Spec B, p) sending q
to p. Thus, we see that there exists some étale cover Spec B ′ → Spec B and
a divisor V ′ on Spec B ′ which agrees with V when pulled back to Spec A.

Let S′ be the strict transform of V ′ on X ′ and let Ŝ′ be the restriction of S′
to X̂ ′. Then we have that Ŝ′ = τ̂ ∗ Ŝ mod I nD′ , as required. ��
Lemma 5.3 Notation as above. Let Ŝ1, . . . , Ŝk be any collection of distinct
irreducible F̂-invariant divisors and suppose that Ŝ1, . . . , Ŝk are Q-Cartier
and such that Ŝi is not contained in Exc f for any i . Let X ′ and S′

1, . . . , S
′
k be

as in Lemma 5.2, where S′
i is an approximation of Ŝi mod I nD′ .

Then for n large enough and perhaps shrinking X ′ to a smaller neighbor-
hood of D′ we have (X ′,

∑
S′
i ) is log canonical.

Proof We first claim that S′
i is Q-Cartier. Indeed, by construction we have an

isomorphism f̂∗OX̂ (Ŝi ) ∼= f̂∗OX̂ (S′
i ) of reflexive sheaves on Ẑ . SinceOX̂ (Ŝi )

and OX̂ (S′
i ) are reflexive and Ŝi and S′

i do not contain any f -exceptional
divisors in their support it follows that this isomorphism on Z gives an iso-
morphism OX̂ (Ŝi ) ∼= OX̂ (S′

i ) on X̂ . In particular, S′
i is Q-Cartier because Ŝi

is.
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The result then follows by combining Lemmas 4.8 and 3.16. ��

6 Constructing the flip

6.1 Set up

Through out this section, we assume that X is aQ-factorial klt quasi-projective
threefold, F is a co-rank one foliation on X with non-dicritical singularities
and (F, �) is F-dlt foliated pair.

The goal of this section is to show that if f : X → Z is a flipping contraction
associated to a (KF+�)-negative extremal ray R, then the (KF+�)-flip exists
(cf. Sect. 2.6). The basic idea is to reduce the (KF +�)-flip to a (KX +�̃)-flip
for some klt pair (X, �̃).

Recall that in [41, Lemma 8.21] it was proven that the flipping contraction
exists in the category of algebraic spaces. Observe that the proof given there
only requires that (F, �) has non-dicritical and log canonical singularities and
so works for F-dlt foliated pairs with non-dicritical singularities.

Our goal here is to show that

(a) if X is projective then also Z is projective and ρ(X/Y ) = 1.
(b) the flip exists.

By Remark 3.7 and Lemma 3.30, it follows that Exc f is tangent to the folia-
tion.

The following result will be needed to address (a) and (b) above:

Lemma 6.1 Without loss of generality, we may assume that ��� = 0.

Proof The (KF + �)-flip is the (KF + (1 − ε)�)-flip for ε > 0 sufficiently
small. ��

The following result will be needed to address (b) above:

Lemma 6.2 Let f : X → Y be a small contraction between algebraic spaces.
Let D be aQ-Cartier divisor on X such that−D is f -ample. Let {Ui → Y }i∈I
be an étale cover of Y . Suppose that, for each Xi = X ×Y Ui → Ui , the D|Xi -
flip exists.

Then the D-flip exists.

Proof The existence of the flip is equivalent to the OY -algebra

⊕

m≥0

f∗OX (mD)

being finitely generated, where m is taken to be sufficiently divisble. Finite
generation of an algebra can be checked étale locally and the result follows. ��
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We briefly sketch the remainder of the goals for this subsection. First, we
show that, after possibly replacing X by an appropriate small modification, we
may find a formal divisor F̂ on X̂ , the formal completion of X along Exc f ,
such that KX̂ + F̂ is numerically equivalent to KF̂ and such that (X̂ , F̂) has
log canonical singularities. Indeed, we will show that if Ŝ is the sum of all
the F-invariant divisors meeting Exc f then KF̂ − (KX̂ + Ŝ) is f -nef. Since
Exc f is a curve, it is then easy to find an effective divisor D on some analytic
neighborhood of Exc f such that D restricted to X̂ is numerically equivalent
to KF̂ − (KX̂ + Ŝ). Then F̂ = Ŝ + D will be our desired divisor. Second,
we will apply our version of Elkik approximation theorem to show that we
may approximate F̂ on some étale neighborhood X ′ → X of Exc f by a
divisor F ′. We will then, in the next subsection, construct the foliated flip as a
(KX ′ + F ′)-flip.

We now proceed with the construction outlined above. Let S1, . . . , S� be the
collection of all the F-invariant divisors (formal or otherwise) on X meeting
at least one of the curves contracted by f , whose existence is guaranteed by
Remark 5.1. We remark that by Lemma 3.5 we may extend each Si to a formal
divisor on X̂ . We emphasise that each f -exceptional curve is contained in one
such divisor. By Lemma 5.2, we may find a diagram

X ′ X

Z ′ Z

f ′

τ

f

σ

where σ : Z ′ → Z is étale and divisors S′
k on X ′ which approximate the Sk to

some arbitrarily high (but fixed) order. Let F ′ be the transformed foliation on
X ′.
Note that X ′ is klt since X is. Let g : Y → X ′ be a small Q-factorialisation

of X ′ and let FY the pulled back foliation on Y . Then g∗KF ′ = KFY and
g∗KX ′ = KY . Let h = f ′ ◦g : Y → Z ′ be the composition and write Exc h =
C = ∪Ci .

LetU be a small analytic neighbourhood around C . We claim that, for each
i , we can findQ-divisors Di1, . . . , Dimi ≥ 0 onU such that Dik ·C j = δi j for
each k = 1, . . . ,mi , where mi ≥ 0 is an integer whose precise value will be
determined later. Indeed, let A be a general sufficiently ample Cartier divisor
on Y so that A ∩C = {Pi j } is a finite collection of points where Pi j ∈ Ci and
Pi j /∈ Ck for k �= i . Then, on a sufficiently small analytic neighborhood U of
C we may write A ∩ U = ∑

Ai j where Ai j ∩ C = Pi j and Ai j ∩ Ai ′ j ′ = ∅
for (i, j) �= (i ′, j ′). Taking Di1, . . . , Dimi to be some of the Ai j as A varies
across ample divisors will then have our desired properties
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We remark that if wewrite g∗(KF ′ +�′) = KFY +�Y then by Lemma 3.29,
we have that (FY , �Y ) is F-dlt. Moreover, since F ′ has non-dicritical singu-
larities it follows that each g-exceptional curve is tangent to FY .

Let S̃k be the strict transform of S′
k on Y and note that S̃k is a Q-Cartier

divisor. Let Ŷ be the formal completion of Y along Exc h, and notice that we
have a morphism ĝ : Ŷ → X̂ . Let Tk be the strict transform of Sk on Ŷ . We
claim that Tk is a Q-Cartier divisor. Observe that we have an isomorphism of
sheavesOŶ (Tk) ∼= OŶ (S̃k): indeed, by item (1) of Corollary 4.5 we know that
if ĥ is the restriction of h to Ŷ then ĥ∗OŶ (Tk) ∼= ĥ∗OŶ (S̃k) and since Exc h
is of codimension ≥ 2 this gives an isomorphism of reflexive sheaves on Ŷ .
Since S̃k is Q-Cartier this implies that Tk is Q-Cartier as well.

For any Tj which is convergent and contains one of theCi by Corollary 3.20
we may write (KŶ + ∑

Tk)|Tj = KTj + 	 j and KFY |Tj = KTj + � j where
	 j ≥ � j .

Now fix i and consider Ci . We consider two possibilities as in Lemma 3.14.
First, suppose that FY is terminal at the generic point of Ci . In this case there
exists a single ki such that Ci ⊂ Tki and moreover Tki is convergent. Again,
by Corollary 3.20 we know that 	ki and �ki have the same coefficient along
Ci .

Now suppose that FY is canonical (but not terminal) at the generic point of
Ci . In particular, Lemma 3.8 implies thatFY has simple singularities at a gen-
eral point ofCi . Let q ∈ Ci be a general point and let S be the strong separatrix
ofFY at q, recall that S is convergent. Then by Lemma 3.5 this separatrix may
be extended to a convergent divisor containing Ci , which is therefore one of
the Tk . Let Tki be this divisor. Again, we may apply Corollary 3.20 to see that
	ki and �ki have the same coefficient along Ci .

It follows that

(KŶ +
∑

Tk) · Ci ≤ KFY · Ci ,

and so

(KY +
∑

S̃k) · Ci ≤ KFY · Ci .

By Lemma 5.2, we may find a diagram

Y ′ Y

Z ′′ Z ′
h′

τ ′

h

σ ′

where σ ′ : Z ′′ → Z ′ is étale and divisors D′
ik on Y

′ such that D′
ik approximate

Dik to some arbitrarily high (but fixed) order. Notice that, as in the proof of
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the fact that Tk is Q-Cartier, we have that D′
ik is Q-Cartier. Observe also that

if C ′
i ⊂ Y ′ is an h′-exceptional curve such that τ ′(C ′

i ) = Ci then we still have
C ′
i · D′

jk = δi j .

Notice that if S̃′
k is a surface on Y

′ such that τ ′(S̃′
k) = S̃k , then we still have

the inequality

(KY ′ +
∑

S̃′
k) · C ′ ≤ KFY ′ · C ′

for any h′-exceptional curve C ′. Thus, if we take

ai = (KFY ′ − (KY ′ +
∑

S̃′
k)) · C ′

i ≥ 0,

where C ′
i is a curve such that τ

′(C ′
i ) = Ci , then we have that

KY ′ +
∑

S̃′
k +

∑ ai
mi

D′
ik ≡h′ KFY ′ .

Let �′ = τ ′∗g∗τ ∗�. Notice that (FY ′, �′) is F-dlt and the S̃′
k are smooth in

codimension one, and so Lemmas 3.16 and 4.8 imply that (perhaps replacing
Z ′′ be an open neighborhood of h′((τ ′)−1(C))) (Y ′, �′ + ∑

S′
k) is lc and

(Y ′, �′ + (1 − ε)
∑

S′
k) is klt for 0 < ε ≤ 1. So by choosing the Dik general

enough and mi large enough so that ai ≤ mi we may assume that if A =∑
S̃′
k + ∑ ai

mi
D′
ik , then (Y ′, �′ + A) is lc and (Y ′, � + (1 − ε)A) is klt.

Since X → Z contracts only a single extremal ray and −(KF + �) is
relatively ample, there exists λ ∈ Q such that λ(KF +�) ≡ f (KX +�). Since
g is small and τ and τ ′ are étale, it follows that λ(KFY ′ +�′) ≡h′ (KY ′ +�′),
where FY ′ is the transformed foliation on Y ′. Since A ≡h′ (KFY ′ + �′) −
(KY ′ + �′), we have

A ≡h′ μ(KFY ′ + �′)

for μ = 1 − λ.

6.2 Existence of the flip

Below, we use the same notation as in the previous subsection.

Lemma 6.3 Set up as above.
Then the following hold:

1. ρ(X/Z) = 1; and
2. if, in addition, X is projective, then also Z is projective.
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Proof Let D be a Q-Cartier divisor on X which is f -numerically trivial. In
order to show that ρ(X/Z) = 1, it is enough to show that there exists a Q-
Cartier divisor M on Z such that f ∗M = D. Indeed, since f : X → Z is a
flipping contraction associated to an extremal ray R, the claim implies that the
sequence

0 −→ Pic(Z) ⊗ Q
f ∗

−→ Pic(X) ⊗ Q −→ Q −→ 0

is exact, where the second to last arrow is given by D �→ D · ξ where ξ is a
fixed curve such that [ξ ] ∈ R.

Let D′ = τ ′∗g∗τ ∗D. Since the descent problem above is étale local, it
suffices to show that D′ = (h′)∗M ′ for some Q-Cartier divisor on Z ′. The
existence of M ′ follows by applying the classical relative base point free theo-
rem to the pair (Y ′, �′ + (1− ε)A), for some 0 < ε � 1. Indeed, recall from
Sect. 6.1 we have that (Y ′, �′ + (1 − ε)A) is klt. Thus, since

D′ − (KY ′ + �′ + (1 − ε)A) ≡h′ −(1 − εμ)(KFY ′ + �′)

is h′-big and nef for small ε, we have that D′ is h′-semi-ample. Thus, by
definition, there is some n � 0 and aCartier divisor L on Z ′ such that (h′)∗L =
nD′. Thus, we may choose M ′ = 1

n L and (1) follows.
Assume now that X is projective and that D = HR is a nefQ-Cartier divisor

on X which defines a supporting hyperplane for R in NE(X) and let M be the
induced Q-Cartier divisor on Z . The existence of HR is a direct consequence
of the Cone theorem, [41] or Theorem 3.31. Projectivity then follows by noting
that, for any subvariety V of Z we have Mdim V · V > 0. Indeed, M is ample
by the Nakai–Moishezon criterion for algebraic spaces, [26, Theorem 3.11],
and so Z is projective. Thus, (2) follows. ��
Theorem 6.4 Let X be a Q-factorial projective threefold and let F be a co-
rank one foliation on X with non-dicritical singularities. Suppose that (F, �)

is a F-dlt foliated pair. Let f : X → Z be a (KF + �)-negative flipping
contraction.

Then the (KF + �)-flip X ��� X+ exists. Moreover,

1. X+ is projective and Q-factorial,
2. (F+, �+) has F-dlt singularities,
3. If, in addition, the foliated pair (F, �) admits terminal (resp. canoni-

cal, resp. log terminal, resp. log canonical) singularities then so does
(F+, �+),

4. F+ has non-dicritical singularities and
5. X+ is klt.
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Proof By Lemma 6.2 it suffices to construct the flip étale locally on the base.
Thus, taking Z ′′ as in Sect. 6.1, we see that to construct the flip it suffices to
produce an ample model for KFY ′ + �′ over Z ′′, see Sect. 2.6.

However, we know that for ε > 0 sufficiently small KY ′ + �′ + A, KY ′ +
� + (1 − ε)A and KFY ′ + �′ all have the same ample model over Z ′′. As
above, we have that (Y ′, �′ + (1 − ε)A) is klt and so the ample model over
Z ′′ exists by [7, Theorem 1.2]. Call this model

c : Y ′ ��� Y ′+.

Since h′ : Y ′ → Z ′′ is small, we know that c is small and so (Y ′+, c∗(�′ +
(1 − ε)A)) is in fact klt. Projectivity and Q-factoriality follow easily.

Our claims on the singularities of (F+, �+) are a direct consequence of
Lemma 2.7.

Non-dicriticality of F+ follows from the fact that X is klt by Lemmas 3.16
and 3.33. ��
Remark 6.5 If one is so inclined this can all be done in the analytic topology
around the flipping curves. The relevant classical log MMP is known to exist
by [34].

Remark 6.6 Since the construction of the flip is local on the base, if f : X → Z
is a flipping contraction between quasi-projective varieties then the arguments
above show that the flip φ : X ��� X+ still exists and enjoys all the properties
of the flip listed in Theorem 6.4, with the exception of projectivity of X+.

6.3 (KF + �)-negative contractions are extremal

Theorem 6.7 Let X be a normal Q-factorial projective threefold and let F
be a co-rank one foliation on X with non-dicritical singularities. Let (F, �)

be a F-dlt pair and let R be a (KF + �)-negative extremal ray.
Then the contraction associated to R

φR : X → Y

exists in the category of projective varieties and ρ(X/Y ) = 1. In particular,
φR is extremal.Moreover, ifφR is a divisorial contraction then Y isQ-factorial
and klt.

Proof First, observe that, by Lemma 3.16, X is klt.
If loc(R) = X , then, as in [41, Theorem 8.13], it follows that R is in fact

KX -negative and so the contraction exists.
If loc(R) = D a divisor and D is transverse to the foliation, then as in [41,

Lemma 8.15], it follows that R is (KX +�)-negative. If D is invariant then we
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claim that that R is (KX + � + D)-negative. Indeed, D is covered by curves
Ct which span R and if Dν → D is the normalisation of D and we write

(KF + �)|Dν = KDν + 	 and (KX + � + D)|Dν = KDν + 	′

thenCorollary 3.20 implies that (	−	′)·Ct ≥ 0 and so since (KDν +	)·Ct <

0 we see that (KDν + 	′) · Ct < 0 as required. In either case, the contraction
exists by Lemma 3.16 and the existence of (KX + D)-negative divisorial
contractions.

If loc(R) = C is a curve then the result follows by Lemma 6.3. ��

7 Special termination

The goal of this section is to show the following:

Theorem 7.1 (Special termination) Let X be a Q-factorial quasi-projective
threefold and letF be a co-rank one foliation with non-dicritical singularities
on X. Let (F, �) be an F-dlt pair. Let

X = X0 ��� X1 ��� X2 ��� · · ·

be an infinite sequence of (KF + �)-flips and let (Fi , �i ) be the transformed
foliated pair on Xi .

Then after finitely many flips, the flipping and flipped locus are disjoint from
any lc centres of (Fi , �i ).

Note that the result and the some of the proofs below were inspired by
Shokurov’s special termination in the classical setting [40] (see also [13,
Sect. 4.2]).

We begin with the following:

Lemma 7.2 Let X be a Q-factorial quasi-projective threefold and let F be a
co-rank one foliation with non-dicritical singularities on X. Let (F, �) be an
F-dlt pair. Suppose that there exist infinitely many F-invariant divisors.

Then any sequence of (KF + �)-flips terminates.

Proof Since the intersection of two invariant divisors is contained in Sing F
and sinceF has non-dicritical singularities, it follows that there exist infinitely
many pairwise disjoint F-invariant divisors. By [35, Theorem 2], there exists
a morphism f : X → C onto a smooth curve C such that F is induced by f
and, in particular,

KF = KX/C +
∑

(1 − �D)D,
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where the sum is taken over all the vertical irreducible divisors and �D denotes
the multiplicity of the fibre f −1( f (D)) along D. Thus

KF ∼Q, f KX + �,

where � is the sum of all the vertical prime divisors which are contained in
a non-reduced fibre. Since (F, �) is F-dlt and since any component of � is
F-invariant, Lemma 3.16 implies that (X, � + �) is log canonical.

Note that if X ��� X ′ is a (KF + �)-flip and the flipping curve ξ is
horizontal, then F · ξ > 0 for any general fibre F of f and, in particular,
the strict transform F ′ of F on X ′ contains the flipped curve ξ ′, contradicting
the fact that the transformed foliation F ′ on X ′ has non-dicritical singularities
(cf. Lemma 3.33). Thus, we may assume that any sequence of (KF + �)-
flips preserves the fibration onto the curve C . In particular, any sequence of
(KF + �)-flips is also a sequence of (KX + � + �)-flips. Thus, termination
follows from termination of three-dimensional log canonical flips (cf. [40,
Theorem 2.3]). ��

Thus, from now on, we assume thatF admits at most finitelymany invariant
divisors. Theproof proceeds in two steps.Wefirst consider the case of lc centres
transverse to the foliation. We then handle the case of lc centres tangent to
the foliation by induction on dimension: supposing the statement is true for
all (d − 1)-dimensional lc centres, we then prove it for all d-dimensional lc
centres.

7.1 Log canonical centres transverse to the foliation

Proposition 7.3 Let X be a Q-factorial quasi-projective threefold and let F
be a co-rank one foliation with non-dicritical singularities on X. Suppose
that (F, �) is F-dlt and let W ⊂ X be an lc centre transverse to F . Let
φ : X ��� X+ be a flip and let �+ = φ∗�. Suppose that W is not contained
in the flipping locus Z. Let W+ be the strict transform of W and Z+ be the
flipped locus.

Then W+ ∩ Z+ ⊂ W+ is not a divisor.

Proof Suppose for sake of contradiction that W+ ∩ Z+ =: D ⊂ W+ is a
divisor.

By Remark 3.10 it follows that W is contained in the support of ���, and
in fact is a stratum of ���. Hence W+ is a stratum of ��+�.

Let F+ be the transformed foliation on X+ and let G+ be the foliation
restricted to W+,ν where ν : W+,ν → W+ is the normalisation. Thus, since
W+ is a stratum of ��+�, we may apply Lemma 3.18 and by induction on the
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codimension of W+, we may write

(KF+ + �+)|W+,ν = KG+ + 	+,

where (G+, 	+) is log canonical. Likewise we may write (KF + �)|W ν =
KG + 	.
We now claim that D is G+ invariant.
If dim(W ) = 2 then D is a curve and it must be tangent to F+ by

Lemma 3.33, and hence it is invariant by G+. Indeed, by Lemma 2.7 we
know that F+ is terminal at the generic point of D and so by Lemma 3.14
there exists a unique germ S of an invariant surface containing D. It follows
that ν−1(S ∩ W+) is G+-invariant and so D is also G+-invariant.

If dim(W ) = 1 then D is a finite collection of points and G+ is the foliation
by points on W+ and so D is automatically G+-invariant.

By Lemma 2.7, applied to the map W ν ��� W+,ν , we know that
a(D,G, 	) < a(D,G+, 	+). However, since (G+, 	+) is log canonical and
since D is invariant it follows that a(D,G+, 	+) = 0, i.e., the coefficient of
D in	+ is zero, see Remark 2.3. On the other hand, since (G, 	) is log canon-
ical, we have a(D,G, 	) ≥ −ε(D) = 0. This, however, is an impossibility.

��
Corollary 7.4 Let X be aQ-factorial quasi-projective threefold and let F be
a co-rank one foliation with non-dicritical singularities on X. Suppose that
(F, �) is F-dlt.

Then, after finitely many flips, the flipping locus is disjoint from all the lc
centres transverse to the foliation.

Proof Remark 3.10 implies that there are only finitely many lc centres trans-
verse to F and these are strata of ���. Thus, by Lemma 2.7, we may assume
that no lc centre transverse to the foliation is contained in the flipping locus.
Let φ : X ��� X+ be a flip. Suppose that the flipping locus meets some lc
centre of (F, �) transverse to the foliation. Then, since these are strata of
���, it follows that the flipping locus meets some divisorial component W of
���. Thus, to prove our result it suffices to show that, for any component W
of ���, after finitely many flips the flipping locus is disjoint from W .

So suppose that W meets the flipping locus. Note that by Lemma 3.16 we
see that (X, �) is dlt and so by [25, Corollary 5.52] it follows thatW is normal.
Let ψ : W ��� W+ be the induced map. Let G denote the restricted foliation
and write

(KF + �)|W = KG + 	,

where by Lemma 3.18, (G, 	) is F-dlt. In particular, W is klt.
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By Proposition 7.3, none of the curves in the flipped locus is contained in
W+. Thus, ψ is a birational contraction. If ψ does not contract any divisors,
then there exists a curve Z contained in the flipping locus, such that Z∩W �= ∅
but Z is not contained in W . Then Z · W > 0 and so if Z+ is a flipped curve
we must have Z+ · W+ < 0 implying that Z+ ⊂ W+, a contradiction.

Thus,ψ contracts a divisor at each flip. In particular, each flip reduces ρ(W )

by 1 and we can only have finitely many such flips. ��
By Corollary 7.4, it suffices to show that the flipping locus is eventually

disjoint from lc centres which are tangent to the foliation.

Lemma 7.5 After a finite sequence of flips, if Z is an lc centre and C is a
flipping curve then Z is not contained in C.

Proof By Corollary 7.4, after finitely many flips we may assume that the flip-
ping locus is disjoint from all lc centres transverse to the foliation, in particular,
it is disjoint from ���.

By Proposition 3.9, there are only finitely many lc centres of (F, �) not
contained in ��� and so the claim follows from Lemma 2.7. ��
Definition 7.6 (Hyperstandard set) Let I ⊂ [0, 1] be a subset. We define:

I+ = {
m∑

j=1

a j i j | i j ∈ I, a j ∈ N for j = 1, . . . ,m} ∩ [0, 1],

and

D(I ) = {m − 1 + f

m
| m ∈ N, f ∈ I+} ∩ [0, 1].

Note that D(D(I )) = D(I ) [33, Lemma 4.4]. Moreover, if I ⊂ [0, 1] is a
finite set, then the only accumulation point of D(I ) is 1 and, in particular, it
satisfies DCC.

Lemma 7.7 Let (X, �) be a log canonical pair such that the coefficients of�
belong to a subset I ⊂ [0, 1], and let S be an irreducible component of ���.
Let ν : Sν → S be the normalisation and let 	 be the divisor on Sν defined by
adjunction:

(KX + �)|Sν = KSν + 	.

Then, the coefficients of 	 belong to D(I ).

Proof Let π : X ′ → X be a dlt blow up (X, �), see [20, Theorem 10.4],
and write KX ′ + �′ = π∗(KX + �). Note that, after possibly replacing I by
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I ∪{1}, the coefficients of�′ belong to I and that every irreducible component
of ��� is normal. We may freely replace (X, �) by (X ′, �′) and so we may
assume without loss of generality that S is normal. The result is then a direct
consequence of [33, Lemma 4.3]. ��

Given a F-dlt pair (F, �) on aQ-factorial quasi-projective threefold X , we
denote by d the minimal dimension of an lc centre of (F, �) which is tangent
to F and intersects the flipping locus of a (KF + �)-flip. Our goal is to show
that there can be only finitely many flips with d = 0, 1 or 2.

7.2 Special termination in dimension d = 0

This follows directly from Lemma 7.5

7.3 Special termination in dimension d = 1

Lemma 7.8 Set up as above. Then after finitely many flips the flipping locus
is disjoint from all one-dimensional lc centres.

Proof Let I be the set of coefficients of�. Recall that D(I ) satisfies DCC. Let
C be a one-dimensional lc centre which is tangent to F and let ν : Cν → C
be its normalisation. Let 	 ≥ 0 be the Q-divisor on Cν whose existence is
guaranteed by Lemma 3.22. Since D(D(I )) = D(I ), it follows by Lemma 7.7
and the proof of Lemma 3.22 that the coefficients of {	} take values in D(I ).

It follows byLemma2.7 that, after a flip, {	} strictly decreases.However, by
Lemma 3.22 and since we are assuming that there are no zero-dimensional lc
centre intersecting the flipping locus, it follows that the flip is an isomorphism
near �	� and the result follows. ��

7.4 Special termination in dimension d = 2

Lemma 7.9 Set up as above. Then after finitely many flips the flipping locus
is disjoint from all two-dimensional lc centres.

Proof Let I ⊂ [0, 1] be a finite set containing the coefficients of �. Let S be
a two-dimensional lc centre intersecting the flipping locus. By Corollary 7.4,
we may assume that S is F-invariant and, by Lemma 3.18, we may write
(KF + �)|W = KW + 	 for some Q-divisor 	 ≥ 0 where W → S is the
normalisation and such that (W, 	′ := �	�red +{	}) is lc and (W, (1−ε)	′)
is klt for 0 < ε < 1. Note that the coefficients of 	′ belong to D(I ).
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We define

dI (W, 	) =
∑

a∈D(I )

#{E | a(E,W, 	) < −a and cX (E) �⊂ �	′�}.

Then dI (W, 	) < ∞.
Let φ : X ��� X+ be a flip, and let ψ : S ��� S+ be the induced birational

map. We denote by (F+, �+) be the transformed foliated pair and we write
(KF+ + �+)|W+ = KW+ + 	+ where W+ → S+ is the normalisation. Note
that dI (W, 	) ≥ dI (W+, 	+).

Suppose first thatψ−1 contracts a divisor D ⊂ S+. Let Z ⊂ S be the centre
of D on S. By induction we know that Z is not contained in �	′�. It follows
that dI (W+, 	+) < dI (W, 	).

Thus, after finitely many flips, we may assume that ψ is a birational con-
traction. As in the proof of Corollary 7.4, the claim follows. ��

The Lemma above concludes the proof of Theorem 7.1.

Corollary 7.10 Let X be aQ-factorial quasi-projective threefold and letF be
a co-rank 1 foliation with non-dicritical singularities on X. Let π : X → Z be
a birational morphism. Let (F, �) be an F-dlt pair on X. Assume that every
component of exc(π) is an lc centre for (F, �).

Then any sequence of (KF + �)-flips over Z

X = X0 ��� X1 ��� X2 ��� · · ·
terminates.

Proof By Theorem 7.1, any sequence of flips is eventually disjoint from the
lc centres of (F, �) and so is eventually disjoint from exc(π), in which case
the MMP terminates. ��

8 Existence of F-dlt modifications

We now show the existence of an F-dlt modification as in Definition 3.28. The
result is a consequence of the existence of flips and special termination and it
will be used to prove the base point free theorem in Sect. 9.

Theorem 8.1 (Existence of F-dlt modifications) Let F be a co-rank one foli-
ation on a normal projective variety X of dimension at most three. Let (F, �)

be a foliated pair.
Then (F, �) admits a F-dlt modification π : Y → X (cf. Definition 3.28)

such that if G is the pulled back foliation on Y then

1. Y is Q-factorial,
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2. Y is klt and
3. G is non-dicritical.

Suppose in addition that (F, �) is lc and let � := π−1∗ � + ∑
ε(Ei )Ei

where the sum is over all the π -exceptional divisors. Then we may choose
π : Y → X so that if Z is an lc centre of (G, �) then Z is contained in a
codimension one lc centre of (G, �).

Proof We assume that dim X = 3. The case where dim X = 2 is similar. Let
φ : W → X be a foliated log resolution. LetH be the pulled back foliation on
W .

We may write

KH +
∑

biGi +
∑

a j Fj + φ−1∗ � = φ∗(KF + �),

where Gi , Fj are φ-exceptional prime divisors such that bi ≥ ε(Gi ) and
a j < ε(Fj ). Let

�̃ =
∑

biGi +
∑

a j Fj + φ−1∗ �

and

	 =
∑

ε(Gi )Gi +
∑

ε(Fj )Fj + φ−1∗ �.

Note that (H, 	) is F-dlt. By Proposition 3.9, after possibly replacing W by a
sufficiently high log resolution,wemay assume that every lc centre is contained
in a codimension one lc centre.

We run a (KH + 	)-MMP over X . Recall that, by Remark 2.13, simple
singularities are non-dicritical. By Theorem 6.7 all the required divisorial con-
tractions exists and by Theorem 6.4 all the flips exist. By construction each
Gi , Fj is an lc centre of (H, 	) and so Corollary 7.10 implies that this MMP
terminates. Call this MMP f : W ��� Y and let G be the transformed foliation
on Y . Note that Lemma 3.11 implies that (G, f∗	) is F-dlt.

The MMP preservesQ-factoriality, klt singularities (cf. Theorems 6.4, 6.7)
and non-dicriticality (cf. Lemma 3.33), and so we have that Y is Q-factorial
and klt and G is non-dicritical.

Denote by π : Y → X the induced morphism. We have KG + f∗�̃ =
π∗(KF + �) and so D := f∗	 − f∗�̃ is π -nef and π -exceptional. The
negativity lemma then implies that f∗�̃ − f∗	 = −D ≥ 0. Thus, setting
F = −D and noting that f∗	 = π−1∗ � + ∑

ε(Ei )Ei where we sum over the
π -exceptional divisors, we have

KG + π−1∗ � +
∑

ε(Ei )Ei + F = π∗(KF + �).
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We now show the last claim. To this end, we may freely replace (F, �) by
(G, f∗	) and so we may assume that (F, �) is F-dlt. Arguing as above we
see that it suffices to show that the (KH + 	)-MMP does not contract any
component in the support of

∑
Gi . By assumption, bi = ε(Gi ) and so

(KH + 	) − (KH + �̃) =
∑

(ε(Fj ) − a j )Fj ≥ 0.

Since KH+�̃ is trivial over X , each step of the (KH+	)-MMP is
∑

(ε(Fj )−
a j )Fj -negative and so only components in the support of

∑
(ε(Fj )−a j )Fj are

contracted. In particular, no component in the support of
∑

Ei is contracted
by the MMP and our result follows. ��
Theorem 8.2 (Cone theorem for lc pairs) Let X be a normal projective three-
fold and letF be a co-rank one foliation on X with non-dicritical singularities.
Suppose that X is potentially klt. Let (F, �) be an lc pair where � ≥ 0 and
let H be an ample Q-divisor.

Then there exist countable many curves ξ1, ξ2, . . . such that

N E(X) = NE(X)KF+�≥0 +
∑

R+[ξi ].

Furthermore, for each i , ξi is a rational curve tangent toF such that (KF +
�)·ξ ≥ −6, and ifC ⊂ X is a curve such that [C] ∈ R+[ξi ]and loc(R+[ξi ]) �=
X then C is tangent to F .
In particular, there exist only finitely many (KF +�+H)-negative extremal

rays.

Proof By Theorem 8.1, there exists a F-dlt modification π : Y → X for the
foliated pair (F, �). We may write KG + � = π∗(KF + �) where G is the
transformed foliation on Y and � ≥ 0.

Observe that if R ⊂ NE(X) is an extremal ray then there exists an extremal
ray R′ ⊂ NE(Y ) such that π∗R′ = R. Moreover, if R is (KF + �)-negative
then R′ is (KG + �)-negative and so by Theorem 3.31 R′ is spanned by a
rational curve ξ tangent to G with (KG +�) · ξ ≥ −6. Then π(ξ) spans R and
has all the desired properties.

If C ⊂ X and [C] ∈ R+[ξi ] for some i then we may apply Lemma 3.30 to
conclude that C is tangent to F . ��

8.1 Contraction in the non-Q-factorial case

Through out this subsection, we assume that (X, �) is klt for some � ≥ 0 but
that X is not necessarily Q-factorial.
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Lemma 8.3 Let X be a normal projective threefold and letF be a co-rank one
foliation on X with non-dicritical singularities. Suppose that X is potentially
klt. Let � ≥ 0 be a Q-divisor such that (F, �) is a log canonical pair, and
suppose there exists a smallQ-factorialisationπ : X → X (cf.Definition 2.22)
such that if we write KF + � = π∗(KF + �), where F is the pulled back
foliation on X, then for any choice of ε > 0wemay find	 such that (1−ε)� ≤
	 ≤ � and (F, 	) is F-dlt.

Let R be a (KF + �)-negative extremal ray. Assume that loc(R) �= X.
Then there exists a contraction

φR : X → Y

of R in the category of algebraic spaces.

Proof By Theorem 8.2, there exists a nef Q-Cartier divisor HR on X which
defines a supporting hyperplane for R in NE(X). Let π : X → X be a small
Q-factorialisation of X as in the hypotheses of the Lemma.

First, suppose that loc(R) = D is a divisor. By Theorem 8.2, we may
find ε > 0 sufficiently small and a Q-divisor 	 as in the hypotheses of the
Lemma so that KF + 	 is negative on any extremal ray R′ in NE(X) such
that π∗R′ = R.

Suppose that D contains an irreducible component D0 transverse to the
foliation. Let D0 be the strict transform of D0 under π and let ν : D0

ν → D0
the normalisation map. We may write

ν∗(KF + � + D0) = KG + �,

where G is the restricted foliation and � ≥ 0. It follows that D0
ν
is covered by

(KG+�)-negative curves and, therefore, KG+� is not pseudo-effective. Thus,
[41, Corollary 2.28] implies that D0

ν
is covered by rational curves which are

tangent to G and, in particular, G is algebraically integrable. Thus, since F is
non-dicritical, there exists a morphism D0

ν → B onto a curve B such that
the general fibre is P1. In particular, if F is a general fibre in this P1-fibration
structure, then we claim that

(KF + � + D0) · F = (KX + � + D0) · F.

Indeed, if we write ν∗(KX +�+D0) = KDν
0
+�′ then by Lemma 3.23 we see

that the coefficient in � and �′ of a curve � which is not a fibre of Dν
0 → B

is the same. In particular, it follows that � · F = �′ · F . Finally, observe that
KD0

ν · F = KG · F = −2 and our stated equality follows.
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We run a (KF +	)-MMP contracting/flipping only π∗HR-trivial extremal
rays R′ such that loc(R′)meets the strict transform of D. Theorem 6.4 implies
that all the required flips exist.

By our above observationwe know that if the strict transformof D contains a
non-invariant componentwemay choose this extremal ray to also be (KX+	)-
negative. Thus, by classical termination of logflipswe see that there can only be
finitely many flips before the strict transform of each non-invariant component
of D is contracted. By Special Termination (cf. Theorem 7.1), there are only
finitelymany such flips before the strict transform of each invariant component
of D is contracted.

Denote byY the step in thisMMPafter the last component of D is contracted,
and let f : X ��� Y denote the induced rational map. Observe that each step
of this MMP is π∗HR-trivial and so π∗HR descends to aQ-Cartier divisor M
on Y

We know that Y isQ-factorial and, as in the proof of [41, Lemma 8.20], we
know that if S is a divisor on Y then M2 · S > 0. Moreover, if B is a curve we
see that M · B = 0 if and only if B is the strict transform of a π -exceptional
curve, B is the strict transform of a flipped curve or B is the strict transform
of a curve C with [C] ∈ R. Notice that there are finitely many such curves
and let � be the union of all such curves. By [41, Lemma 8.21] there exists
a contraction of � in the category of algebraic spaces, call it c : Y → Y .
Since c contracts every π -exceptional curve and every flipped curve it gives a
contraction

φR : X → Y.

Now suppose that loc(R) is a curve. In this case we see that if S is a divisor
on X then, as in the proof of [41, Lemma 8.20], we have that (π∗HR)2 · S > 0
and that (π∗HR) ·C = 0 if and only if C ⊂ π−1(loc(R)) ∪Exc π . As above,
we apply [41, Lemma 8.21] to produce a contraction of π−1(loc(R)) in the
category of algebraic spaces, which factors through π . ��
Theorem 8.4 Let (X, �) be a projective three-dimensional klt pair and let F
be a co-rank one foliation on X with non-dicritical singularities. Let � ≥ 0
be a Q-divisor such that (F, �) is a log canonical pair and suppose there
exists a small Q-factorialisation π : X → X such that if we write KF + � =
π∗(KF + �), where F is the pulled back foliation on X, then for any choice
of ε > 0 we may find 	 such that (1 − ε)� ≤ 	 ≤ � and (F, 	) is F-dlt.
Let R be a (KF + �)-negative extremal ray. Assume that loc(R) �= X.

Then the contraction associated to R

φR : X → Y
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exists in the category of projective varieties and ρ(X/Y ) = 1. In particular,
φR is extremal.

Note that, by Lemma 3.29, the assumption of the Theorem are verified if
(F, �) is F-dlt.

Proof Let φR : X → Y be the contraction onto an algebraic space Y , whose
existence is guaranteed by Lemma 8.3. We first show that if M is a Q-Cartier
divisor with M · R = 0 then M = φ∗

RN for some Q-Cartier divisor on Y .
Observe that this problem is étale local on Y , so we may freely replace Y by
a sufficiently small étale neighborhood of some point y ∈ Y .

Let π : X → X be a small Q-factorialisation of X as in the hypotheses of
the Lemma and let g : X → Y be the composition of π with φR . We may
write

KF + � = π∗(KF + �) and KX + � = π∗(KX + �).

By Lemma 5.2, we may replace Y by another étale neighborhood of y ∈ Y ,
so that we may approximate every invariant divisor (formal or otherwise) of
F meeting g−1(y) by global divisors on X . Let Sk be the collection of all such
divisors. As in Sect. 6.1 we see that

(KF + �) − (KX + � +
∑

Sk)

is g-nef.
For some ε > 0 sufficiently small, we may run a (KX +� +ε(�+∑

Sk))-

MMP over X , and we obtain a map X ��� X
′
. Let π ′ : X ′ → X be the induced

morphism. Each step of this MMP is (KX + �)-trivial and so if we let Tk be

the strict transform of Sk and�
′
be the strict transform of� on X

′
, we see that

�
′ + ∑

Tk is nef over X . Observe that
∑

Tk still approximates the divisors
which are invariant with respect to the transformed foliation F ′

on X
′
.

Thus, replacing X by X
′
we may freely assume that (� + ∑

Sk) · C ≥ 0
for any π -exceptional curve C . Since KF + � is strictly negative on any
φR-exceptional curve, we see that for 0 < δ � 1 we have

−(KX + (1 − δ)(� +
∑

Sk))

is nef over Y . By Lemma 3.16 and the fact that (F, �) is log canonical we
see that (X , � + ∑

Sk) is log canonical and since X is klt we have that
(X , (1 − δ)(� + ∑

Sk)) is klt for δ > 0 and so we may apply the base point
free theorem to π∗M to conclude that there exists aQ-Cartier divisor N on Y
with φ∗

RN = M .
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Let HR be a nef Q-Cartier divisor on X which defines a supporting hyper-
plane for R in NE(X). Taking M = HR we see that by applying the
Nakai–Moishezon criterion for algebraic spaces (cf. [26, Theorem 3.11]) to N
that N is ample and hence Y = Y is projective. ��

Observe that, by Lemma 3.29, the hypotheses of Theorem 8.4 are satisfied
if we suppose that (F, �) is F-dlt.

8.2 Potentially klt varieties

Lemma 8.5 Let X be a normal projective variety. Suppose that X is étale
locally potentially klt. Then X is potentially klt.

In particular, let φR : X → Y be the contraction associated to an extremal
ray as in Theorem 8.4. Then Y is potentially klt.

Proof Choose a finite étale cover

{gi : Ui → X}i=1,...,N

such that Ui is affine and there exists �i ≥ 0 such that (Ui , �i ) is klt.
Without loss of generality we may assume each gi is Galois, with Galois

group Gi . Perhaps replacing �i by 1
#Gi

∑
g∈Gi

g · �i we may assume that
there exists a Zariski open set Vi ⊂ X and aQ-divisor 	i ≥ 0 on Vi such that
gi factors through Vi , KVi + 	i is Q-Cartier and g∗

i (KVi + 	i ) = KUi + �i .
Observe that (Vi , 	i ) is klt and so we may freely assume that gi : Ui → X is
an open immersion.

There exists m > 0 such that m�i ∈ |−mKUi | for all i . Let H be a divisor
on X such thatO(−mKX +mH) is globally generated. We may assume that,
for all i , there exists Di ∈ |−mKX + mH | such that (Ui ,

1
m Di |Ui ) is klt. It

follows that, for a general element D ∈ |−mKX +mH |, we have that (X, 1
m D)

is klt. Thus, X is potentially klt.
To prove our final claim it suffices to check that Y is étale locally potentially

klt. So let y ∈ Y and let U be a sufficiently small étale neighborhood of y,
and let XU = X ×Y U . By the construction given in proof of Theorem 8.4,
there exists a small morphism π : XU → XU and a divisor D ≥ 0 such that
(XU , D) is klt and −(KXU

+ D) is φR-nef. By the basepoint free theorem,

we may find a 0 ≤ A ∼Q −(KXU
+ D) such that (XU , D + A) is klt and

KXU
+ D + A is φR-trivial. Thus, (U, (φR)∗(D + A)) is klt and so X is étale

locally potentially klt. ��
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9 Base point free theorem

The goal of this section is to prove the base point free theorem. We begin with
the following version of the canonical bundle formula:

Lemma 9.1 Let X be a normal projective variety of dimension at most three
and let (F, �) be an lc pair on X such that � ≥ 0. Suppose that there is a
fibration f : X → Y onto a variety Y with klt singularities and such that the
general fibre of f is tangent to F . Assume that KF + � ∼Q, f 0.

Then there is a foliation G on Y such that f −1G = F , and a Q-divisor
	 ≥ 0 and a semi-ample divisor D such that KF + � ∼Q f ∗(KG + 	 + D)

and (G, 	) is lc.

Proof First, notice that since the fibres of f are tangent to F there exists a
foliation G on Y so that F = f −1G. We also have that there exists M on Y so
that KF + � ∼Q f ∗M .

Consider a commutative diagram as follows:

X ′ X

Y ′ Y

g

ν

f
μ

where μ, ν are resolutions of singularities. Let F ′ and G′ be the transformed
foliations on X ′ and Y ′ respectively.

Write

KF ′ + �′ = ν∗(KF + �).

and so we have KF ′ + �′ ∼Q g∗(μ∗M).
We claim that there exists an open subset U ⊂ Y ′ such that Y ′\U has

codimension at least two and such that, overU wehave that KF ′/G′ = KX ′/Y ′−
R where R isF ′-invariant and KF ′/G ′ := KF ′ −g∗KG′ . Indeed, R is supported
in the zero locus of a 1-form obtained as the pull-back of a 1-form on Y ′ which
defines G′. Thus, the claim follows. By [27, Theorem 8.3.7] we may find
a nef Q-divisor J and an effective Q-divisor B such that μ∗M ∼Q KG′ +
B + J . Furthermore, by [5, Theorem 0.1] in the case dim(Y ) = 1 and [36,
Theorem 8.1] when dim(Y ) = 2 we know that J is in fact semi-ample.

If B = ∑
ai Bi , then

ai = 1 − sup{t | (X ′, �′ − R + tg∗Bi ) is lc above the generic point of Bi }.
An explicit calculation shows that

ai = ε(Bi ) − sup{t | (F ′, �′ + tg∗Bi ) is lc above the generic point of Bi }.

123
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Thus, since (F ′, �′) is lc, it follows that ai ≤ ε(Bi ) and μ∗B ≥ 0.
Since Y is klt of dimension at most two, it follows that Y is Q-factorial.

Since J is semi-ample the base locus of μ∗ J consists of isolated points. Thus,
Fujita Theorem [19, Theorem 1.10] implies that μ∗ J is semi-ample. Letting
	 = μ∗B and D = μ∗ J gives our result. ��
Lemma 9.2 Let X be a normal projective threefold and let F be a co-rank
one foliation with non-dicritical singularities. Suppose that (X, D) is klt for
some D ≥ 0. Let � = A + B be a Q-divisor such that (F, �) is an lc pair,
A ≥ 0 is an ample Q-divisor and B ≥ 0. Assume that KF + � is not nef, but
there exists a Q-divisor H such that KF + � + H is nef. Let

λ = inf{t > 0 | KF + � + t H is nef }.
Then there exists a (KF + �)-negative extremal ray R such that (KF +

� + λH) · ξ = 0, for any ξ ∈ R.

Proof By Theorem 8.2, there exist only finitely many curves ξ1, . . . , ξm such
that if Ri = R+[ξi ] for i = 1, . . . ,m, then R1, . . . , Rm are (KF +�)-negative
extremal rays.

Let C := KF + � + H and let

μ = min
i

C · ξi

−(KF + �) · ξi
.

It follows easily that μ = 1−λ
λ

. By construction, there exists j such that

1

λ
(KF + � + λH) · ξ j = (μ(KF + �) + C) · ξ j = 0.

Thus, the claim follows by taking R = R j . ��
Lemma 9.3 Let X be a normal projective threefold and let F be a co-rank
one foliation with non-dicritical singularities. Suppose that X is potentially
klt. Let � ≥ 0 be a Q-divisor such that (F, �) is a log canonical pair, and
suppose there exists a small Q-factorialisation π : X → X such that if we
write KF + � = π∗(KF + �), where F is the pulled back foliation on X,
then for any choice of ε > 0 we may find 	 such that (1− ε)� ≤ 	 ≤ � and
(F, 	) is F-dlt. Let A ≥ 0 and B ≥ 0 be Q-divisors such that � = A + B
and A is ample. Assume that KF + � is nef.

Then KF + � is semi-ample.

Proof Let � = 1
2 A + B and let

λ = min{t ≥ 0 | KF + � + t A is nef }.
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If λ < 1/2 then KF + � is ample and there is nothing to prove. Thus, we
may assume that λ = 1/2. By Lemma 9.2, there exists a (KF + �)-negative
extremal ray R such that (KF + �) · ξ = 0 for all ξ ∈ R.

Suppose that loc(R) �= X . By Theorem 8.4, there exists a morphism
f : X → X ′ which contracts exactly all the curves in R. Let F ′ be the trans-
formed foliation on X ′ and let A′ be an ample Q-divisor on X ′ such that
A− f ∗A′ is also ample. Then there exists aQ-divisor A′′ ≥ 0 on X ′ and aQ-
divisor B ≥ 0 on X such that A′ ∼Q A′′ and if�′ := f ∗A′′+B ′, then (F, �′)
is log canonical. Let �′′ be the image of �′ in X ′. Then �′′ = A′′ + B ′′ where
B ′′ ≥ 0 and (F ′, �′′) is lc. Note that ρ(X ′) < ρ(X). Lemma 8.5 implies that
X ′ is potentially klt.
If f is a flipping contraction then the existence of a smallQ-factorialisation

π : X ′ → X ′ satisfying the hypotheses of the lemma is an immediate con-
sequence of the existence by such a small Q-factorialisation for X . By
Lemma 3.33, it follows that F ′ has non-dicritical singularities. Thus we may
replace (F, �) by (F ′, �′′) and continue.

Now suppose f is a divisorial contraction. Consider a diagram as in the
proof of Lemma 8.3

X X ′

X X ′
π

f

π ′
f

where π : X → X is a small Q-factorialisation satisfying the hypotheses of
the lemma, f is a (KF + �)-MMP where KF + � = π∗(KF + �) and π ′ is
the induced morphism. We claim that π ′ : X ′ → X ′ satisfies the hypotheses
of the lemma. It is immediate that X ′ is projective and Q-factorial since X
is and π ′ is small. We may choose ε, δ > 0 sufficiently small and 	 on X
such that (F, 	) is F-dlt as guaranteed by our hypotheses and such that f
is (KF + 	 − δπ∗A)-MMP. Thus, if we let 	′ = f ∗(	 − επ∗A) we see
that (F ′, 	′) is F-dlt. Observe again, that Lemma 3.33 implies that F ′ has
non-dicritical singularities. We may therefore replace (F, �) by (F ′, �′′) and
continue. After finitely many steps we obtain the claim.

Now assume that loc(R) = X . Let HR = KF + � + A be a supporting
hyperplane to R where A is an ample divisor and let ν = ν(HR) < 3. Observe
that H3

R = 0 and (KF + �) · D1 · D2 < 0 where Di = HR for 1 ≤ i ≤ ν and
Di = A otherwise. Then we may apply [41, Corollary 2.28] to see that X is
covered by rational curves tangent to F and spanning R.

Let C be a general curve spanning R tangent to F and let C ′ be the strict
transform of C on X . Notice that KF · C < 0 and KX · C < 0. We may
run a KX -MMP where each step of the MMP is KF + �-trivial. Call this
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MMP ψ : X ��� W and set H = ψ∗F and � = ψ∗�. Notice that (H, �)

has canonical singularities. Observe that it suffices to show that KH + � is
semi-ample.

Notice that our MMP will terminate with a Mori fibre space f : W → Y
whosefibres are tangent toH.Notice that, as in the proof of [41,Theorem8.13],
it follows that f is KX -negative. Thus, Y is klt. By Lemma 9.1, there is a
foliation G on Y , a semi-ample divisor D and 	 ≥ 0 such that (G, 	) is lc
and

KH + � ∼Q f ∗(KG + 	 + D).

Let G be an ample divisor on Y and choose 0 < δ � 1 such that � −
δ f ∗G ∼Q �′ ≥ 0 and (F, �′) is lc. Since KF + �′ ∼Q, f 0, we may apply
Lemma 9.1 again to find D′ and 	′ ≥ 0 such that 	 + D ∼Q 	′ + D +
D′ + δG ∼Q 	′′ ≥ 0 where (G, 	′′) is lc. Replacing X and (F, �) by Y and
(G, 	′′) respectively and proceeding as above, we obtain the claim. ��
Theorem 9.4 Let X be a normal projective threefold and let F be a co-rank
one foliation with non-dicritical singularities. Suppose that X is potentially
klt. Let� be aQ-divisor such that (F, �) is a F-dlt pair. Let A ≥ 0 and B ≥ 0
be Q-divisors such that � = A + B and A is ample. Assume that KF + � is
nef.

Then KF + � is semi-ample.

Proof The Theorem follows immediately from Lemmas 3.29 and 9.3. ��

10 Minimal model program with scaling

The goal of this section is to show the existence of a minimal model for a F-dlt
pair (F, A + B) where A ≥ 0 is an ample Q-divisor, B ≥ 0 and such that
KF + A + B has non-negative Kodaira dimension. To this end, we are not
able to show termination of flips in general, but we can show that a special
sequence of flips terminates. This process is called MMP with scaling. Below,
we adopt many of the techniques used in [7].

Let f : X ��� Y be a proper birational map of normal varieties and let D
be a Q-divisor on X such that both D and D′ := f∗D are Q-Cartier. We say
that f is D-non-positive if for any resolution of indeterminacy p : W → X
and q : W → Y , we may write

p∗D = q∗D′ + E,

where E ≥ 0 is q-exceptional.
In particular, if (F, �) is a F-dlt foliation on a normal projective variety

X , then a sequence of (KF + �)-flips and divisorial contractions is a (KF +
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�)-non-positive birational map. Aminimal model of (F, �) is a (KF + �)-
non-positive birational map f : X ��� X ′ such that if F ′ is the transformed
foliation on X ′ and �′ = f∗�, then

1. X ′ is Q-factorial and klt and F ′ is non-dicritical,
2. (F ′, �′) is F-dlt and KF ′ + �′ is nef, and
3. if E is a f −1-exceptional divisor on X ′ then E is F ′-invariant and

a(E,F) = 0.

Lemma 10.1 LetF be a co-rank one foliationwith non-dicritical singularities
on a normal Q-factorial projective threefold X. Let � be a Q-divisor such
that (F, �) is a F-dlt pair. Let A ≥ 0 and B ≥ 0 be Q-divisors such that
� ∼Q A + B, A is ample and (F, A + B) is F-dlt. Assume that H ≥ 0 is a
Q-divisor such that KF + � + H is nef and

KF + � ∼R D + αH,

where α ≥ 0, and D ≥ 0 is a R-divisor whose support is a union of lc centres
of (F, �).

Then there exists a birational contraction f : X ��� Y which is a minimal
model for (F, �).

Proof Note that, by Lemma 3.16, X is klt. Let

λ = inf{t > 0 | KF + � + t H is nef}.
If λ = 0, then KF + � is nef and there is nothing to prove. Otherwise, by
Lemma 9.2, there exists a curve ξ in X such that R = R+[ξ ] is an extremal
ray of NE(X) satisfying:

(KF + �) · ξ < 0 and (KF + � + λH) · ξ = 0.

Note that, since (D + αH) · ξ < 0, α ≥ 0 and H · ξ > 0, it follows that ξ

is contained in the support of D and, in particular, ξ intersects an lc centre of
(F, �).

By Theorems 6.4 and 6.7, R defines a divisorial contraction or a flip
φ : X ��� X ′ and X ′ is klt andQ-factorial. LetF ′ be the transformed foliation
on X ′ and let �′, H ′ and D′ be the image in X ′ of �, H and D respectively.
It follows that KF ′ + �′ + λH ′ is nef. By Lemma 3.11, (F ′, �′) is F-dlt and
by Lemma 3.33, F ′ is non-dicritical.

By Lemma 3.27, there exist Q-divisors A′ ≥ 0 and B ′ ≥ 0 such that
�′ ∼Q A′ + B ′, A′ is ample and (F ′, A′ + B ′) is F-dlt.

Thus, we may replace X, �,F, D, H and α by X ′,F ′, �′, D′, λH ′ and
α/λ respectively and we proceed as above. Theorem 7.1 implies that, after
finitely many steps, we obtain a minimal model of (F, �). ��
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Lemma 10.2 Let F be a non-dicritical co-rank one foliation on a smooth
projective threefold X. Let � = A + B be a Q-divisor such that (F, �) is a
F-dlt pair, A ≥ 0 is an ample Q-divisor and B ≥ 0. Assume that there exists
a Q-divisor D ≥ 0 such that

1. KF + � ∼Q D,
2. (F, � + D) is log smooth, and
3. any component of D is either semi-ample or it is contained in the stable

base locus of D.

Then there exists a birational contraction f : X ��� Y which is a minimal
model for (F, �).

Proof We may write D = D1 + D2 where D1, D2 ≥ 0 and the components
of D1 are exactly the components of D which are lc centres of (F, �). Note
that, in particular, D1 contains all the components of D which areF-invariant.
Let k be the number of components of D2. We proceed by induction on k.

If k = 0, then D2 = 0 and the support of D is a union of lc centres of
(F, �). Let H be a sufficiently ample Q-divisor such that KF + � + H is
ample. Then Lemma 10.1 implies that there exists a birational contraction
f : X ��� Y which is a minimal model for (F, �).
We now assume that k > 0. Let

λ = sup{t ≥ 0 | (F, � + t D2) is F-dlt}.

By Item (2), it follows that λ > 0 and (F, �+λD2) is F-dlt. Note that λ ∈ Q.
Moreover, we have

KF + � + λD2 ∼Q D + λD2.

By induction, it follows that (F, �+λD2) admits a minimal model X ��� X ′,
which is a birational contraction. LetF ′ be the transformed foliation on X ′ and
let �′, D′, D′

1 and D′
2 be the image of �, D, D1 and D2 on X ′ respectively.

Let H ′ = λD′
2. Then KF ′ + �′ + H ′ is nef and

KF ′ + �′ ∼Q D′
1 + 1

λ
H ′.

Thus, Lemma 10.1 implies that there exists a birational contraction X ′ ��� Y
which is a minimal model for (F ′, �′).

Let f : X ��� Y be the induced map. Note that f is a birational contraction.
In order to show that f : X ��� Y is a minimal model for (F, �), it is enough
to show that f is (KF + �)-non-positive. Let G be the transformed foliation
on Y and let � = f∗�. By Lemma 3.27, there exists Q-divisors A′ ≥ 0 and
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B ′ ≥ 0 such that � ∼Q A′ + B ′, A′ is ample and (F ′, A′ + B ′) is F-dlt. Thus,
Theorem 9.4 implies that KG + � is semi-ample.

Let p : W → X and q : W → Y be a resolution of indeterminacy of f .
Then, we may write

p∗(KF + �) + F = q∗(KG + �) + E,

where E, F ≥ 0 are q-exceptional Q-divisors without any common compo-
nent. Since KG + � is semi-ample, it follows that the stable base locus of
q∗(KG + �) + E coincides with the support of E . Let us assume that F �= 0.
Then, we claim that there exists a component S of F which is contained in the
stable base locus of p∗D + F . Indeed either there exists a component S of F
which is p-exceptional and the claim follows immediately or the image T of
a component S of F in X is f -exceptional. In particular, T is contained in the
support of D and, by Item 3, T is contained in the stable base locus of D. It
follows that S is contained in the stable base locus of p∗D + F . Thus, S is a
component of E , a contradiction. It follows that F = 0 and, in particular, f is
(KF + �)-non-positive. Thus, f : X ��� Y is a minimal model for (F, �). ��
Theorem 10.3 Let F be a co-rank one foliation with non-dicritical singular-
ities on a Q-factorial projective threefold X. Let � = A + B be a Q-divisor
such that (F, �) is a F-dlt pair, A ≥ 0 is an ample Q-divisor and B ≥ 0.
Assume that there exists a Q-divisor D ≥ 0 such that KF + � ∼Q D.

Then (F, �) admits a minimal model.

Proof By Lemma 3.26, after possibly replacing A by a Q-equivalent divisor,
we may assume that ��� = 0 and that, for any exceptional divisor E over X ,
if a(E,F, �) = −ε(E) then E is invariant and a(E,F) = a(E,F, �) = 0.

By [7, Proposition 3.5.4], we may find a positive integer m and Q-divisors
P ≥ 0 and N ≥ 0 such that P + N ∼Q D and any component of N is
contained in the stable base locus of P + N , whilst every component � of
P is such that m� is mobile. Let π : Z → X be a foliated log resolution of
(F, �+P+N )which also resolves the base locus of |m�| for any component
� of P . Let G be the transformed foliation on Z . We may write

KG + �Z = π∗(KF + �) + F

for some Q-divisors �Z , F ≥ 0 without common components. Let C ≥ 0
be a π -exceptional Q-divisor on Z such that π∗A − C is ample. Notice that
π∗A − tC is ample for any 0 < t < 1.

Thus, there exist δ, ε > 0 and aQ-divisor � ∼Q �Z − δC + ε
∑

Ei where
the sum is taken over all the non-invariant π -exceptional divisors and such
that
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1. � = A′ + B ′ where A′ ≥ 0 is an ample Q-divsor and B ′ ≥ 0,
2. (G, �) is F-dlt,
3. we may write

KG + � ∼Q π∗(KF + �) + F ′,

where F ′ ≥ 0 is a π -exceptional Q-divisor, whose support contains every
exceptional divisor E of π such that a(E,F) > −ε(E),

4. there exists an effective divisor D′ ∼Q KG + � such that any component
of D′ is either semi-ample or it is contained in the stable base locus of D′,
and

5. (G, � + D′) is a log smooth foliation.

Lemma10.2 implies that (G, �) admits aminimalmodel g : Z ��� Y , which
is a birational contraction. We want to show that the induced map f : X ��� Y
is a minimal model of (F, �). Let p : W → Z and q : W → Y be proper
birationalmorphisms that resolve the indeterminacy locus of g. Let r : W → X
be the induced morphism. Since g is (KG + �)-non-positive, we may write

p∗(KG + �) = q∗(KF ′ + �′) + G

where F ′ is the transformed foliation on Y , �′ = g∗� and G ≥ 0 is q-
exceptional. On the other hand, we also have

p∗(KG + �) ∼Q r∗(KF + �) + p∗F ′.

Since KF ′ + �′ is nef, the negativity lemma implies that G ≥ p∗F ′. In
particular, the support of G contains every exceptional divisor E of π such
that a(E,F) > −ε(E). Thus, if E ′ is a f −1-exceptional divisor on Y then
E ′ is invariant and a(E ′,F) = −ε(E) = 0. Moreover, it follows that f is
(KF + �)-non-positive. Thus, the claim follows. ��

11 Existence of F-terminalisations

Theorem 11.1 (Existence of F-terminalisations) Let F be a co-rank one foli-
ation on a normal variety X of dimension ≤ 3. Let (F, �) be a foliated pair
with � ≥ 0.

Then there exists a birational morphism π : Y → X such that

1. if G is the transformed foliation and �Y = π−1∗ �, then (G, �Y ) is F-dlt,
canonical and terminal along Sing Y ,

2. Y is klt and Q-factorial and
3. KG + �Y + E = π∗(KF + �) where E ≥ 0.
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Proof We assume that dim X = 3. The case where dim X = 2 is similar. Let
μ : W → X be a foliated log resolution ofF , letH be the pulled back foliation
on W and let �′ = μ−1∗ �. Let A be an ample Cartier divisor on X and let
C ≥ 0 be a μ-exceptional Q-divisor on W such that μ∗A − C is ample. Let
0 < δ � 1 such that if � = μ∗A − δC then

KH + �′ + � + G1 = μ∗(KF + � + A) + G2,

where G1,G2 ≥ 0 are μ-exceptional Q-divisors without any common com-
ponent and the support of G2 contains all the μ-exceptional divisors with
discrepancy greater than zero with respect to (F, �).

For 0 < ε � 1 we have that μ∗A − δC + ε��′� is ample. Thus, by
Lemma 3.24 and Remark 2.13 we may find 0 ≤ A′ ∼Q � + ε��′� such that
(H, �′′ + A′) is F-dlt where �′′ := �′ − ε��′�. We claim that if n ≥ 6 then
any (KH + �′′ + A′ + nμ∗A)-negative extremal ray is generated by a curve
which is contracted byμ. Indeed letC be a curve spanning a (KH+�′′ + A′)-
negative extremal ray and suppose that μ∗C �= 0. On one hand, Theorem 3.31
implies that −(KH + �′′ + A′) ·C ≤ 6, on the other hand nμ∗A ·C ≥ 6 and
so (KH + �′′ + A′ + nμ∗A) · C ≥ 0, proving our claim.

By choosing n sufficiently large, we may also assume that there exists aQ-
divisor D ≥ 0 onW such that D ∼Q KH+�′′+ A′+nμ∗A. By Lemma 3.24,
Remark 2.13 and Corollary 3.25 we may find 0 ≤ A′′ ∼Q A′ + nμ∗A such
that (H, �′′ + A′′) is F-dlt and canonical. By Theorem 10.3, KH + �′′ + A′′
admits a minimal model f : W ��� Y .

We claim that each step in this MMP will be an MMP over X . Indeed, as
observed above, the first step of this MMP must contract only μ-exceptional
curves, and so this first step is a step over X . LetW ′ ��� W ′′ be an intermediate
step of this MMP. By induction, we have a morphism μ′ : W ′ → X and, as
observed earlier, Theorem 3.31 implies that if f ′ : W ��� W ′ is the induced
map then every (K f ′∗H + f ′∗�′′ + f ′∗A′′)-negative extremal ray is spanned by
a curve C such that (μ′)∗A · C = 0, and so this step of the MMP will again
be a step over X . Let π : Y → X be the induced morphism.

Note that, Lemma 2.7 implies that if G is the transformed foliation and
�Y = f∗�′ = π−1∗ �, then G is F-dlt and canonical and, moreover it is
terminal along Sing Y . Moreover, by definition of minimal model, we have
that Y is klt and Q-factorial. Finally, f∗(G2 − G1) is nef over X and π -
exceptional and so the negativity lemma applies to show that f∗G2 = 0. Thus,
if E := π∗(KF + �) − (KG + �Y ) then E ≥ 0. ��
Definition 11.2 We call a modification π : Y → X as in Theorem 11.1 an
F-terminalisation for the foliated pair (F, �).

Theorem 11.3 Let (F, �) be a foliated pair on a projective threefold X.
Assume that F is a co-rank one foliation and either
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1. (F, �) is F-dlt or
2. (F, �) is canonical.

Then F has non-dicritical singularities.
Furthermore, if (F, �) is F-dlt and KX is Q-Cartier then X is klt.

Proof We will only prove the case where (F, �) is F-dlt. The other one may
be handled in a similar manner. Let μ : W → X be a foliated log resolution
of (F, �) which only extracts divisors E of discrepancy −ε(E) and letH be
the pulled back foliation on W . Our result follows if we can show μ−1(P) is
tangent to H for all P ∈ X . So suppose for sake of contradiction that there
is some P such that μ−1(P) is not tangent to H and let C ⊂ μ−1(P) be a
general curve transverse to the foliation.

Write KH + � = μ∗(KF + �) + E where E ≥ 0 is μ-exceptional, � ≥ 0
and μ∗� = �, so that E and � do not have any common component. Observe
that �� −μ−1∗ �� = 0. Let A ≥ 0 be an ample divisor on X and let G ≥ 0 be a
μ-exceptionalQ-divisor onW such that μ∗A−G is ample. Let F be the sum
of all the μ-exceptional non-invariant divisors. There exist sufficiently small
ε, δ > 0 such that if 	 = μ∗A − δG + � + εF , then we may write

KH + 	 + E1 = μ∗(KF + � + A) + E2,

where E1, E2 ≥ 0 areμ-exceptionalQ-divisors without common components
and such that the support of E2 contains all the μ-exceptional non-invariant
divisors.

As in the proof of Theorem 11.1, by Theorem 10.3, wemay run a (KH+	+
nμ∗A)-MMP φ : W ��� Y , where n is sufficiently large so that the induced
map ν : Y → X is a proper morphism. Let G be the transformed foliation on
Y . Notice that, the negativity lemma implies that φ∗E2 = 0 and, in particular,
φ contracts all the non-invariant μ-exceptional divisors. Moreover, we have

E2 − E1 = E − δG + εF.

Thus, if δ is sufficiently small, then the support of E is contained in the support
of E2 and therefore φ∗E = 0. It follows that

KG + φ∗� = KG + ν−1∗ � = ν∗(KF + �)

and that every ν-exceptional divisor is G-invariant. Since C is transverse to
the foliation we have 0 �= φ∗C =: C ′ is also transverse to the foliation and so
is not contained in any ν-exceptional divisor. Let A1 and A2 be two distinct
effective Cartier divisors containing ν(C ′) = P and write ν∗Ai = ν−1∗ Ai +Bi
where Bi ≥ 0 is ν-exceptional. On one hand we know that Bi · C ′ > 0, on
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the other hand we know that ν∗Ai · C ′ = 0 and so ν−1∗ Ai · C ′ < 0. Let
D = ν−1∗ A1 + ν−1∗ A2 and let

λ = sup{t ≥ 0|(G, ν−1∗ � + t D) is log canonical at the generic point of C ′}.

We claim that λ > 0. Indeed, suppose that λ = 0. In this caseC ′ is an lc centre
of (G, ν−1∗ �), which in turn implies that ν(C ′) = P is an lc centre of (F, �).
By Lemma 3.8, it follows that F has simple singularities near P , and so, by
Remark 2.13, we have that F is non-dicritical near P , a contradiction.

Thus, by the definition of λ, it follows that C ′ is an lc centre of (G, ν−1∗ � +
λD). Moreover, we have (KG + ν−1∗ � + λD) · C ′ < 0. This however is a
contradiction of foliation subadjunction, [41, Theorem 4.5] which implies that
(KG + ν−1∗ � + λD) · C ′ ≥ 0.

To see our final claim, since (F, �) is F-dlt, we may find a log resolution
μ : W → X only extracting divisors E of discrepancy > −ε(E). We run a
(KH +μ−1∗ �+ F)-MMP over X , where F is the sum of all the μ-exceptional
non-invariant divisors. Note that this MMP terminates by Corollary 7.10. Let
φ : W ��� Y be the output of this MMP, with induced morphism ν : Y → X .
Observe that Y is klt. By the negativity lemma, we know that ν is small and
so KY = ν∗KX which implies that X is klt. ��
Remark 11.4 Theorem 11.3 shows that the hypothesis of non-dicriticality in
the cone theorem (and in the above results) is superfluous. When X is smooth
this result follows from [29, Proposition 3.11].

Proof of Theorems 1.1 and 1.2 Note that Theorem 1.1 (resp. Theorem 1.2)
follows directly from Theorems 11.3 and 6.4 (resp. Theorem 10.3). ��

12 Abundance for c1(KF + �) = 0

The goal of this section is to prove the following:

Theorem 12.1 Let X be a projective threefold and F be a co-rank one foli-
ation. Let (F, �) be a foliated pair with log canonical singularities where
� ≥ 0 is a Q-divisor such that c1(KF + �) = 0.

Then κ(KF + �) = 0.

As we mentioned in the Introduction, the result above is a consequence of
[29, Theorem2] in the case of foliationswith canonical singularities defined on
a smooth projective variety. See also [16, Theorem 1.3] for results in this direc-
tion on singular varieties, as well as the recent preprint [15], which achieves
the main result of Sect. 12.2 in all dimensions.
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12.1 � �= 0 or F is log canonical but not canonical

Lemma 12.2 Suppose X is a klt projective surface and F is a rank one
foliation on X. Suppose that (F, �) is lc where � ≥ 0 is a Q-divisor and
c1(KF + �) = 0.

Then κ(KF + �) = 0.

Proof Without loss of generality we may replace (F, �) by an F-dlt modifi-
cation. In particular, we may assume that F has canonical singularities.

If � = 0, then our claim follows from [31, Lemma IV.3.1].
If � �= 0, then KF is not pseudo-effective. Running an MMP for KF with

scaling of some ample divisor, and replacingF by this output we may assume
that we have a P1-fibration f : X → C such thatF is induced by the fibration.

By Lemma 9.1 we see that KF + � ∼Q f ∗	 where 	 ≥ 0 and our result
is proven. ��
Lemma 12.3 Let X be a normal projective threefold and F be a co-rank
one foliation on X. Suppose that F is algebraically integrable, (F, �) is log
canonical where � ≥ 0 is a Q-divisor and c1(KF + �) = 0.

Then κ(KF + �) = 0.

Proof By Theorem 8.1 we may replace (F, �) by an F-dlt modification and
so we may assume without loss of generality that X is Q-factorial and klt.

By assumptionF admits a meromorphic first integral f : X ��� C whereC
is a smooth proper curve. Letμ : X ′ → X be a resolution of indeterminacies of
f and let f ′ : X ′ → C be the resolved map. Observe that f ′ is a holomorphic
first integral of F ′, the pull back of F on X ′.

As (F, �) is F-dlt it follows that F has non-dicritical singularities by The-
orem 11.3, and so if p ∈ X then μ−1(p) is tangent to F ′. Since f ′ is a
holomorphic first integral of F ′ this implies that f ′(μ−1(p)) is a single point
and so f ′ contracts every fibre of μ. The rigidity lemma then implies that in
fact f : X → C is a morphism.

We apply Lemma 9.1 to write KF +� ∼Q f ∗	 for someQ-divisor	 ≥ 0
and we can conclude. ��
Proposition 12.4 Let X be a normal projective threefold and F be a co-rank
one foliation. Let (F, �) be a foliated pair with log canonical singularities
and � ≥ 0 is a Q-divisor. Suppose that c1(KF + �) = 0 and that either
� �= 0 or F is log canonical but not canonical.

Then κ(KF + �) = 0.

Proof By Theorem 11.1, we may replace (F, �) with a F-terminalisation, so
we may assume without loss of generality that (F, �) is F-dlt and canonical
with � �= 0 and that X is Q-factorial and klt.
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In this case, KF is not pseudo-effective and hence it is uniruled by
Lemma 2.21. So there exists a diagram

W X

B

p

q

where q : W → B parametrizes a dominant family of rational curves tangent
to F .

We may obviously assume that dim(B) = 2. Let G be an ample divisor on
B. Let b ∈ B be general and let Wb be the fibre over b. There are two cases,
either

1. p(Wb) ∩ p(Wb′) �= ∅ for infinitely many b′ or
2. p(Wb) ∩ p(Wb′) = ∅ for b �= b′.
Suppose that we are in case (1), and let Zb ⊂ B be the closed subset of B

parametrizing those points b′ with p(Wb′)∩ p(Wb) �= ∅. Set S = p(q−1(Zb)).
Observe that F has non-dicritical singularities by Theorem 11.3. We claim
that S is F-invariant. Supposing the claim we see that a general leaf of F is
algebraic and wemay conclude by Lemma 12.3. To see the claim, without loss
of generality wemay assume that p(Wb) and p(Wb′) all pass through the same
point x ∈ X . Let m : X ′ → X be a resolution of singularities of X such that
m−1(x) is a divisor, let S′ = m−1∗ S and let �b and �b′ be the strict transforms
of p(Wb) and p(Wb′) respectively. Observe that �b′ ∩ m−1(x) ⊂ Sing F ′
where F ′ is the pulled back foliation. Thus, S′ is covered by curves tangent to
F ′ which pass through Sing F ′ which by [12, Théorème 4] and the fact that
F ′ is non-dicritical implies that S′ must be F ′-invariant, as required.

So suppose we are in case (2). Note that the rational map q ◦ p−1 : X ��� B
is almost proper, and in particular, we see that

p(Wb) · p∗q∗G = 0,

where G is an ample Cartier divsior on B. Let A be an ample divisor on
X . Given a sufficiently large positive integer m, we may run a KX -MMP
with scaling of A + p∗q∗(mG) Denote this MMP by φ : X ��� X ′, and let
(F ′, �′) be the transformed foliated pair on X ′. Each step of this MMP is
(KF + �)-trivial and so we see that (F ′, �′) is lc, c1(KF ′ + �′) = 0 and that
κ(KF ′ + �′) = 0 implies that κ(KF + �) = 0.

Observe that KX · p(Wb) < 0. If we choose m larger than 6m′ where m′ is
the Cartier index of p∗q∗G then, arguing as in the proof of Theorem 11.1, each
step of this MMP will be p∗q∗mG trivial and so this MMP must terminate in
a Mori fibre space f : X ′ → S such that S is a klt surface and f contracts the
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strict transformof p(Wb). Thus, the fibration f is tangent toF ′. ByLemma9.1,
there is a foliation G on S so that F ′ = f −1G, a pseudo-effective divisor D
and divisor 	 ≥ 0 such that KF ′ +�′ ∼Q f ∗(KG +	+ D) and (G, 	) is lc.

Suppose for sake of contradiction that D �= 0. Since c1(KG + 	) = −D
it follows that G is uniruled by Lemma 2.21, in particular, G is algebraically
integrable which implies the same holds for F . Since f is KX ′-negative, we
see that, in addition, S is klt. Thus, we can apply Lemma 12.2 to conclude that
KG + 	, and hence KF ′ + �′, is torsion. ��

12.2 � = 0 and F is canonical

In this section F is a co-rank one foliation on a normal projective threefold
with c1(KF ) = 0. Suppose that F has canonical singularities.

Lemma 12.5 We may freely replace F by an F-terminalisation. Thus we may
assume that X is klt and Q-factorial and F is terminal along Sing X. In
particular, Sing X is tangent to F .

Proof Let π : Y → X be an F-terminalisation, whose existence is guaranteed
by Theorem 11.1 and let G be the pulled back foliation on Y . By definition,
KG + F = π∗KF where F ≥ 0. On the other hand, since F is canonical,
KG = π∗KF + E where E ≥ 0. Thus E = F = 0 and so c1(KG) = 0.
Furthermore, if KG is torsion then so is KF . The last claim follows from [41,
Lemma 8.6] together with Theorem 11.3. ��
Lemma 12.6 Let φ : X ��� X ′ be a sequence of steps of a KX-MMP such
that φ is birational and let F ′ be the transformed foliation on X ′. Then

1. c1(KF ′) = 0;
2. X ′ has klt and Q-factorial singularities,
3. F ′ has canonical singularities, and
4. Sing X ′ is tangent to F ′.

Moreover, if KF ′ is torsion then so is KF .

Proof Each step of the MMP is KF -trivial so we see that F ′ has canonical
singularities and c1(KF ′) = 0. Furthermore, we see that KF = φ∗KF ′ and so
if KF ′ is torsion then so is KF .

Since X has klt and Q-factorial singularities it follows that X ′ has klt and
Q-factorial singularities.

By Theorem 11.3 at each step of the MMP the transformed foliation has
non-dicritical singularities and so we see that only curves tangent to F are
contracted by the MMP. In particular, we see that the flipping and flipped loci
are all tangent to the foliation.
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To prove Item (4), consider a step in the KX -MMP, call it f : Y ��� W and
letFY andFW be the transformed foliations onY andW respectively.We claim
that if f is a divisorial contraction, then exc( f ) is foliation invariant. Indeed
suppose not. By our above observation, f contracts a divisor E transverse to
the foliation to a curve C and such that the foliation restricted to E must be
tangent to the fibration E → C . Let F be a general fibre of E → C . By
Lemma 3.16 we know that

0 = KFY · F = (KY + E) · F
a contradiction of the fact that f is a KY -negative contraction.

Thus, all divisorial contractions in theMMP only contract invariant divisors
and so by Lemma 12.5 we may conclude that Sing X ′ is indeed tangent to F ′.

��
Lemma 12.7 F is not uniruled.

Proof The proof of [29, Theorem 3.7] works equally well in the case where
X is singular. ��
Lemma 12.8 Suppose we have a morphism f : X → S where S is a surface
with klt singularities. Suppose furthermore that KF ∼Q, f 0 and the fibres of
f are tangent to F .
Then κ(KF ) = 0.

Proof By Lemma 9.1, there is a foliation G on S so thatF = f −1G, a pseudo-
effective divisor D and divisor 	 ≥ 0 such that KF ∼Q f ∗(KG + 	 + D)

and (G, 	) is lc. It suffices to show that KG + 	 is torsion.
Suppose for sake of contradiction that D �= 0. Since c1(KG + 	) = −D

it follows that G is uniruled, by Lemma 2.21. In particular, G is algebraically
integrable, which implies the same holds for F .

We may freely replace (G, 	) by an F-dlt modification and so we may
assume without loss of generality that S is klt. Thus, so we may apply
Lemma 12.2 to conclude that KG + 	 is torsion. ��
Lemma 12.9 Suppose we have a morphism f : X → S where S is a surface
with klt singularities and κ(S) ≥ 0. Suppose moreover that the fibres of f are
generically transverse to F and that for all s ∈ S, the fibre f −1(s) does not
contain a divisor.

Then κ(KF ) = 0.

Proof Let S◦ = S\Sing S and let X◦ = f −1(S◦).
The pull back of a pluri-canonical form on S◦ restricts to a non-zero form

on the leaves of F |X◦ , i.e., we have a non-zero map

H0(S◦,OS(mKS)) → H0(X◦,OX◦(mKF ))
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for allm ≥ 0. Since the complement of X◦ in X has codimension at least two,
we see that H0(X◦,OX◦(mKF )) ∼= H0(X,OX (mKF )). By assumption, we
have that H0(S,OS(mKS)) �= 0 for some m sufficiently divisible, and our
result follows. ��

We will need the following definition, [43, Definition 8.1].

Definition 12.10 Let X be a projective manifold and let F be a co-rank one
foliation on X . Let H1, . . . , Hp be F-invariant hypersurfaces such that

∑
Hi

is a normal crossings divisor. We say that F is of KLT type with respect to
H1, . . . , Hp if there exist rational numbers 0 ≤ ai < 1 such that

N∗
F +

∑
ai Hi

is pseudo-effective.

We will also need the following theorem, due to Touzet.

Theorem 12.11 Let X be a projective manifold and let F be a co-rank one
foliation on X. Let H1, . . . , Hp be F-invariant hypersurfaces such that

∑
Hi

is a normal crossings divisor. Suppose that F is of KLT type with respect to
H1, . . . , Hp.
Then either

1. κ(N∗
F + ∑

Hi ) = ν(N∗
F + ∑

Hi ) ≥ 0 or
2. κ(N∗

F +∑
Hi ) = −∞, ν(N∗

F +∑
Hi ) = 1 and there exists a holomorphic

map � : X → h where h = Dn/� is a quotient of a polydisc by an
irreducible lattice � ⊂ (Aut D)n and F = �−1H where H is one of the
tautological foliations on h.

Proof This is [43, Theorem 6] and [43, Theorem 9.7]. ��
Wewill also need the following classification theorem on surface foliations:

Theorem 12.12 Let X be a normal projective surface and let L be a rank one
foliation on X with canonical foliation singularities. Suppose c1(KL) = 0.

Then there exists a finite cover τ : X̃ → X and a birational morphism
μ : X̃ → Y such that if L̃ and G are the transformed foliations on X̃ and
Y respectively, then τ is ramified along L̃-invariant divisors and μ contracts
KL̃-trivial rational curves tangent to L̃.
Moreover, one of the following holds:

1. X = C × E/G where g(E) = 1, C is a smooth projective curve, G
is a finite group acting on C × E and G is the foliation induced by the
G-invariant fibration C × E → C;

2. G is a linear foliation on the abelian surface Y ;
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3. Y is a P1-bundle over an elliptic curve and G is transverse to the bundle
structure and leaves at least one section invariant; or

4. Y ∼= P2,P1 × P1 or Fn (the n-th Hirzebruch surface) and G admits at
least 3 invariant rational curves. If Y ∼= P1 × P1 or Fn then at least 2 of
these invariant curves must be fibres of a P1-bundle structure on Y .

Proof This follows directly from [31, Theorem IV.3.6]. ��
Lemma 12.13 Suppose that κ(X) ≥ 0. Then κ(KF ) = 0.

Proof We have an equality of divisors KF + N∗
F = KX , in particular we see

that c1(N∗
F ) = c1(KX ).

If κ(X) = 3, then κ(N∗
F ) = 3, a contradiction of the Bogomolov–

Castelnuovo–De Franchis inequality (see [21, Theorem 7.2] for the proof of
this statement in the singular setting). Thus, we may assume that κ(X) ≤ 2.
Moreover, by Lemma 12.6 we may assume that KX is nef.

We distinguish two cases. We first assume that κ(N∗
F ) = −∞. Letμ : Y →

X be a log resolution of X and let E be the reduced divisor whose support
coincides with theμ-exceptional divisor and G be the pulled back foliation. By
Lemma 12.6 Item (4), Sing X is tangent to F and so E is G-invariant. Notice
that OY (N∗

G + E) is the saturation of the image of μ∗OX (N∗
F ) in �1

Y (log E).
Since μ∗E = 0 and μ∗N∗

G = N∗
F , we have that κ(N∗

G + E) = −∞.
Write N∗

G + E1 ∼Q μ∗N∗
F + E2 where Ei ≥ 0 and is μ-exceptional. We

claim that �E1� = 0. Indeed, this is a local problemonboth X andY , so perhaps
shrinking both we may assume that E1 = aE for some rational number a > 0
so that E1 consists of a single component and N∗

G ∼Q μ∗N∗
F − aE . Consider

the following commutative diagram

Y ′ Y

X ′ X

ν

τ

μ

σ

where σ is the index one cover associated to N∗
F . Let F ′ be the pull back

of F along σ and let G′ be the pull back of G along τ . Assume that the
ramification index along E is r . Since X ′ is klt, by [21] we have a morphism
ν∗(�[1]

X ′ ) → �1
Y ′ and so

N∗
G′ = ν∗N∗

F ′ + cE ′,

where c ≥ 0. On the other hand, since E ′ is invariant

N∗
G′ = τ ∗(N∗

G) + (r − 1)E ′ ∼Q,ν (−ra + (r − 1))E ′.
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Thus, −ra + (r − 1) = c ≥ 0 which implies that a ≤ r−1
r < 1, as claimed.

Since N∗
G + E1 is pseudo-effective and �E1� = 0, it follows that G is a KLT

type foliation.
Since κ(N∗

G + E) = −∞, Theorem 12.11 implies that ν(N∗
G + E) = 1.

Since F has canonical singularities, we may write KG ≡ F where F ≥ 0 is
μ-exceptional. Since �E1� = 0, it follows that

KY + E = N∗
G + E + KG ≡ N∗

G + E + F

has numerical dimension, and hence Kodaira dimension, equal to one, which
in turn implies that κ(KX ) = 1.

Let f : X → C be the Iitaka fibration associated to KX . IfF is the foliation
induced by f then we may conclude by Lemma 12.3. So suppose for sake of
contadiction that the general fibre of f is transverse to F . We therefore get an
exact sequence

0 → L → F → f ∗TC ⊗ IZ → 0

whereL is the foliation by curves coming from the intersection ofF and TX/C
and Z is a subscheme supported on Sing X ∪ Sing F and on the locus where
F is tangent to the fibres of X → C .

Let X p be the fibre over p ∈ C , and let Fp be the foliation restricted to
X p. For general p we see that c1(KFp) = 0 and that X p is not uniruled. In
particular,Fp is canonical. We claim that N∗

Fp
is torsion for general p. Indeed,

KFp ∼Q 0 by Lemma 12.2 and KXp ∼Q 0 and so N∗
Fp

∼Q 0. Thus, we may
find aQ-divisor A on X whose support is contained in fibres of f , but contains
no fibre of f and a divisor B on C such that f ∗B ∼Q N∗

F + A. However,
KX ∼Q f ∗H where H is an ample Q-divisor on C and KX ≡ N∗

F . Thus,
A = 0 and B ≡ H . In particular, B is ample and κ(N∗

F ) = 1. It follows, by
Lemma 12.14, that F is algebraically integrable and so we may conclude by
Lemma 12.3.

We now assume that κ(N∗
F ) ≥ 0.

If κ(X) = 0, then since KX is nef, it follows that both N∗
F and KX , hence

KF are torsion, and we are done.
Supposeκ(X) ≥ 1 and let f : X → B be the canonicalmap.Byassumption,

there exists D ≥ 0 such that N∗
F ∼Q D and D is numerically equivalent to

f ∗H where H ≥ 0 is ample.However, this implies that D is actually supported
on fibres of f , and is in fact equal to a sum of fibres (with the appropriate
multiplicities), and so D = f ∗B for some ample divisor B. But this implies
that κ(N∗

F ) ≥ 1. By Lemma 12.14, it follows that F is in fact algebraically
integrable and so we conclude by Lemma 12.3. ��
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Lemma 12.14 Let X be a klt projective variety and let F be a co-rank one
foliation on X with non-dicritical singularities. Suppose thatSing X is tangent
to F , N∗

F is Q-Cartier and κ(N∗
F ) = 1.

Then F is algebraically integrable.

We thank the referee for suggesting the following proof of Lemma 12.14.

Proof Let π : X ′ → X be a log resolution of X and let F ′ be the pulled back
foliation. Let E be the sum of all the π -exceptional divisors and observe that
E is F ′-invariant.
By [16, Lemma 4.6] we may find effective π -exceptional divsiors E1 and

E2 such that E2 is F ′-invariant and �E2� = 0 such that π∗N∗
F + E1 ∼Q

NF ′ + E2. In particular, κ(N∗
F ′(E)) = 1. We may then apply [43, Lemma 9.2]

to conclude. ��
Lemma 12.15 Let X be aQ-factorial projective threefold and let π : X → B
be a fibration over a curve. Let L be a rank one foliation on X tangent to the
fibres of X → B. Suppose that

1. c1(KL) = 0;
2. L is not uniruled; and
3. the general fibre of π : X → B does not admit a quasi-étale cover by an

abelian surface.

Then κ(KL) = 0.

Proof Observe first of all that we may assume that L has canonical singulari-
ties, otherwise L would be uniruled, a contradiction.

Let Lp be the foliation restricted to X p. For a general p we have KL|X p =
KLp .
By Theorem 12.12, for a general fibre X p, we may find a finite mor-

phism τp : X̃ p → X p, ramified along foliation invariant divisors such that
the pulled back foliation on X̃ p is generated by a global vector field. In par-
ticular, KL|X p ∼Q 0. This implies that KL ∼Q

∑
ai Fi where ai are rational

numbers and Fi are divisors supported on fibres of f , and are therefore in fact
entire fibres (counted with multiplicity) since c1(KL) = 0. Thus, we may find
a finite morphism σ : X̃ → X ramified only along divisors supported on fibres
and such that if L̃ be the pulled back foliation on X̃ then KL̃ is Cartier. Since
all the fibres of X → B are L-invariant we have that KL̃ = σ ∗KL. Thus we
may freely replace X and L by X̃ and L̃ respectively and we may assume that
KL is Cartier.
In particular, around all points of X , we have thatL is generated by a vector

field v. Thus by [8] we may find a resolution of singularities μ : Y → X by
only blowing up in L-invariant centres. Since L has canonical singularities
this implies that KLY = μ∗KL where LY is the transformed foliation. Thus,
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we may replace X and L by Y and LY respectively and we may assume that
X is smooth.
We first handle the case where Lp is algebraically integrable for general

p, and hence L is algebraically integrable. In this case we get a rational map
g : X ��� S such that the fibres of g induce L. Again, by [8] we may find
a resolution of singularities of g, μ : X ′ → X , by blowing up in L-invariant
centres and let f ′ : X ′ → S be the induced map. Observe that μ∗KL = KL′
where L′ is the transformed foliation and we may argue as in Lemma 12.3 to
show that κ(KL′) = 0 and so κ(KL) = 0.

By Theorem 12.12 we may find a cover τp : X̃ p → X p ramified along
invariant divisors and a birational contraction μp : X̃ p → Yp such that Yp
falls into one the types listed in Theorem 12.12. We now argue based on
which case Yp in falls into. Note that, since the surfaces appearing in Cases
(2), (3) and (4) of Theorem 12.12 are not deformation equivalent, we may
consider the four cases separately. Observe also that in Case (2) that τp is an
isomorphism, unless Lp is algebraically integrable. In Case (2) we also have
thatμp is an isomorphism since the foliation on Yp is smooth, hence terminal,
and c1(Kτ−1

p Lp
) = 0.

In Case (1), we see that L is algebraically integrable and so we are done.
Case (2) does not occur by assumption.
In Case (3), we run a KX -MMP over B, call it φ : X ��� X ′ and let L′ be

the transformed foliation on X ′. Each step of this MMP is L-trivial. Thus, it
suffices to check that κ(KL′) = 0. A general fibre is uniruled, but not rationally
connected, and so this MMP terminates in a Mori fibre space g : X ′ → S over
B with dim(S) = 2. Let h : S → B be the induced morphism. As in the proof
of Lemma 12.6 we see that φ only contracts curves tangent to L. Note that
since KL is Cartier we also have that KL′ is Cartier, and so KL′ = g∗M where
M is a Cartier divisor on S with c1(M) = 0.
By assumption, we know that the fibres of g are generically not tangent to

L′ and so we have a non-zero morphism

dg : (g∗L′)∗∗ ∼= M → TS/B .

Since c1(M) = 0 this immediately implies that for a general p ∈ B that
M |Sp ∼= TS/B |Sp , where Sp is the fiber over p.
Since ρ(X ′/S) = 1 and KL′ is g-trivial, we see that (g∗L′)∗∗ is a rank

one reflexive sheaf and c1((g∗L′)∗∗) = 0. Thus, we have (g∗L′)∗∗ =
TS/B(− ∑

ai Fi ) where Fi are supported on fibres of S → B.
Since c1(TS/B(− ∑

ai Fi )) = 0 and noting that T ∗
S/B = KS/B − R where

R is the ramification divisor of h, we have

c1(KS/B +
∑

ai Fi − R) = 0.
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Thus,

KS/B +
∑

ai Fi − R ∼Q h∗M

for some Q-divisor M on B such that c1(M) = 0. We apply [6, Theorem 3.5]
to conclude that M ∼Q 0 and hence KL is torsion.

In Case (4), we proceed in a similar fashion to the above case with a few
modifications. We first claim that we may assume without loss of generality
that ρ(X p) ≥ 2. SinceLp is singular for a general p it follows that there exists
a component� ⊂ Sing L such that� dominates B. Let b : X̃ → X be a blow
up centred in � followed by a resolution of singularities which is a sequence
of blow ups in foliation invariant centres, again which exists by [8]. Let L̃ be
the pulled back foliation and observe that KL̃ = b∗KL. By construction we
have ρ(X̃ p) ≥ 2, c1(KL̃) = 0 and L̃ has canonical singularities. So we may
freely replace X by X̃ as required.

For general p let D0,p and D∞,p denote two Lp-invariant divisors which
are fibres in a P1-fibration structure on X p.

First, assume that there exist two divisors D0 and D∞ on X such that
D0 ∩ X p = D0,p and D∞ ∩ X p = D∞,p for general p and that if we run a
KX -MMP φ : X ��� X ′ over B, we terminate in aMori fibre space g : X ′ → S
where S is a surface, D0 and D∞ are not contracted by φ and g contracts the
strict transforms of D0 and D∞, call them D′

0 and D′∞. Arguing as above we
see that c1((g∗L)∗∗) = TS/B(−�0 − �∞ − ∑

ai Fi ) where �0 = g(D′
0) and

�∞ = g(D′∞) are reduced divisors dominating B and Fi are supported on
fibres of S → B.

Since c1(TS/B(−�0−�∞−∑
ai Fi )) = 0 andnoting thatT ∗

S/B = KS/B−R
where R is the ramification divisor of h we have

c1(KS/B + �0 + �∞ +
∑

ai Fi − R) = 0.

Thus,

KS/B + �0 + �∞ +
∑

ai Fi − R ∼Q h∗M.

We again apply [6, Theorem 3.5] (see also [18, Theorem 1.3]) to conclude that
M ∼Q 0 and hence KL is torsion.
Thus, to conclude it suffices to arrange the existence of D0 and D∞ and

such aMori fibre space structure. Let p ∈ B be a general point. Observe thatL
is singular and so by assumption ρ(X p) ≥ 2. Then we may find a sufficiently
small étale neighborhood U of p such that X ×B U admits divisors D0 and
D∞ as required and an MMP over U terminating in the desired Mori fibre
space structure. Thus, we may find a (possibly ramified) cover B → B such
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that X = X ×B B admits such an MMP over B. Let L be the pulled back
foliation. Observe that σ : X → X is ramified only along L-invariant divisors
and so KL = σ ∗KL and thus we may freely replace X and L by X and L)

respectively and our result follows. ��
Corollary 12.16 Suppose we have a morphism f : X → C where C is a
smooth curve of positive genus and suppose that the general fibre does not
admit a quasi-étale cover by an abelian surface.

Then κ(KF ) = 0.

Proof By Lemma 12.3, we may assume that F is generically transverse to f .
LetL be the foliation in curves tangent to bothF and the fibration f : X → C .
We have an exact sequence

0 → L → F → ( f ∗TC) ⊗ IZ → 0,

where Z is supported on the components of fibreswhich areF-invariant and on
subvarieties of codimension at least 2. Thus, we have KF = KL + f ∗KC + D
where D ≥ 0 is the codimension one part of Z .

By Lemma 12.7, F is not uniruled and so we know that KL is pseudo-
effective. By assumption, f ∗KC is nef, and since KF is numerically trivial we
must have C is genus one and D = 0. In particular, since D = 0 we see that
no component of a fibre of f can be invariant under F .

So KL ∼Q KF and, in particular, it suffices to prove that KL is torsion.
Observe that L has canonical singularities above the generic point of C . We
may now apply Lemma 12.15 to conclude. ��
Proposition 12.17 Suppose F has canonical singularities and c1(KF ) = 0.

Then κ(KF ) = 0.

Proof First, assume that KX is pseudo-effective. Then κ(KX ) ≥ 0 and we
apply Lemma 12.13 to conclude.

Now, assume that KX is not pseudo-effective. By Lemma 12.6, we may
assume that X admits a Mori fibre space f : X → B. If B is a surface with
κ(B) ≥ 0 or f is tangent to F , we may apply Lemmas 12.9 and 12.8 to
conclude (note that since f : X → B is a Mori fibre space it follows that
f −1(b) does not contain a divisor for any b and that B is klt since X is). If B
is a rationally connected surface then X is rationally connected and therefore
it is immediate that KF is torsion.

Otherwise, we may find a map X → C where C is a curve. If C is of
positive genus then observe that if F is a general fibre then −KF �= 0 and so
it does not admit a quasi-étale cover by an abelian surface and we conclude by
Corollary 12.16. Otherwise X is rationally connected and again it is immediate
that KF is torsion. ��

123



688 P. Cascini, C. Spicer

12.3 Proof of Theorem 12.1

Proof If � �= 0 or F is not canonical we apply Proposition 12.4.
If � = 0 and F is canonical we apply Proposition 12.17. ��
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