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Abstract .  We investigate the model checking problem for branching 
time logics and Basic Parallel Processes. We show that the problem is 
undecidable for the logic VL(O, F, U) (equivalent to CTL*) in the usual 
interleaving semantics, but decidable in a standard partial order inter- 
pretation. 

1 I n t r o d u c t i o n  

Most techniques for the verification of concurrent systems are only applicable 
to the finite state case. However, many interesting systems have infinite state 
spaces. In the last years, several verification problems have been shown to be 
decidable for two classes of infinite-state systems, namely the processes of Basic 
Process Algebra (BPA) [1], a natural subset of ACP, and the Basic Parallel 
Processes (BPP) [3], a natural subset of CCS. These results can be classified 
into those showing the decidability of equivalence relations [3, 4], and those 
showing the decidability of model checking for different modal and temporal 
logics. In this paper, we contribute to this second group. In the sequel, when we 
say that  a logic is decidable for a class of processes, we mean that  the model 
checking problem is decidable. 

BPA processes are recursive expressions built out of actions, variables, and 
the operators sequential composition and choice. They are a model of sequential 
computation. For BPA processes, the modal mu-calculus, the most powerful of 
the modal and temporal logics commonly used for verification, is known to be 
decidable. The proof is a complicated reduction to the validity problem for $2S 
(monadic second order logic of two successors) [15, 8]. Simpler algorithms have 
been given for the alternation-free fragment of the mu-calculus [2, 14]. 

BPPs are recursive expressions built out of actions, variables, and the opera- 
tors prefix, choice, and parallel composition. BPPs without the parallel operator 
have the same expressive power as finite automata.  Therefore, they are a sort of 
minimal concurrent extension of finite automata,  and so a good starting point 
for the study of Concurrent infinite-state systems. In [10] it was shown that  the 
linear time mu-calculus, which contains many other linear time logics, like PLTL 

* This work was partially done within the Sonderforschungsbereich 342 WG A3: SAM 
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[6] or EL [22] is decidable. It was also shown that  the modal mu-calculus is un- 
decidable. The decidability of branching time logics like CTL [5], or CTL* [7], 
which are some of the most frequently used for automatic verification in the 
finite-state case, was left open. 

In this contribution, we consider a logic VL(O, F, U) equivalent to CTL* 
and two interpretations: the usual one based on the interleaving of concurrent 
actions, and a natural partial order interpretation. 

In the first half of the paper, we prove that ,  in the interleaving interpretation, 
a small fragment of this logic (equivalent to the fragment of CTL formed by 
propositional logic, EX, and AF), is already undecidable for BPPs without the 
choice operator. Since a result of [11] shows that  the fragment containing AG 
instead of AF is decidable, this establishes the decidability border for branching 
time logics in this interpretation. 

In the second half of the paper, we prove that  VL(O, F, U) is decidable in the 
partial order interpretation (more precisely, we prove it for a subclass of BPPs, 
and show how our results could be extended to the whole class). 

The paper is organised as follows. Section 2 introduces Basic Parallel Pro- 
cesses. Section 3 describes the syntax and interleaving semantics of the logic 
VL(O, F, U). The undecidability result for the interleaving interpretation is con- 
tained in Section 4. Section 5 gives a Petri net semantics for a subclass of 
BPPs. Using this semantics, Section 6 gives a partial order interpretation of 
VL(O, F, U). The decidability of model checking for this interpretation is con- 
tained in Section 7. 

2 B a s i c  a n d  V e r y  B a s i c  P a r a l l e l  P r o c e s s e s  

The class of Basic Parallel Process (BPP) expressions is defined by the following 
abstract syntax: 

E ::= 0 (inaction) 
I X (process variable) 
I a . E  (action prefix) 
{ E + E (choice) 
] E II E (merge) 

where a belongs to a set of atomic actions Act. The BPP expressions containing 
no occurrence of the choice operator + are called Very Basic Parallel Process 
(VBPP) expressions. 

A BPP is defined by a family of recursive equations 

E = 11 < i < n }  

where the Xi are distinct and the Ei are BPP expressions at most containing 
the variables {X1, . . . ,  Xn}. We further assume that  every variable occurrence 
in the Ei is guarded, that  is, it appears within the scope of an action prefix. The 
variable Xa is singled out as the leading variable. 
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Any B P P  determines a labelled t ransi t ion sys tem 7- = (8,  { ~ , I a 6 Act}), 
whose s tates  are the B P P  expressions reachable f rom the leading variable, and  
whose t rans i t ion  relations are the least relations satisfying the following rules: 

a . E  a ~ E  
E__t+E' 
X : Y ? E' (X d+-----f E) 

E a E! 
E+ F '~+ E' 

F ~ F ! F a ~ F '  E a~E '  
E + F  : , F '  EIIF :,E'IIF' EIIF ~ 

3 T h e  log ic  V L ( O ,  F ,  U)  

Stirling uses in [20] the no ta t ion  L ( O p t , . . . ,  Op,)  to  name  the l inear-t ime tempo-  
ral language whose t empora l  opera tors  are Opl, �9 �9 �9 Opn. He also uses VL(Op l , . . .  
. . . ,  Opn) to  n a m e  the language obta ined  by extending L ( O p l , . . . ,  Op, )  with the 
branching opera tor  V, which allows to quant i fy  on paths.  We stick to this no- 
ta t ion,  with a small  deviat ion,  namely  tha t  the logics we consider have t r u e  as 
only a tomic  proposi t ion,  instead of  a set of  proposi t ional  variables. 

The  syn tax  of  VL(O, F, U) with a sort of  labels s is given by the following 
g r a m m a r  (O s tands  for the relativized next  opera tor  (a)) : 

r ::= t rue  I -~r [ r A q$2 I Vr I (a)r [ Fr [ q$1Ur ' 

where a 6 s  B abbreviates  -,V-,. 
Let T be the t ransi t ion sys tem of a B P P  g over Act. We interpret  VL(O, F, U) 

with sort of  labels Act on T .  We need some prel iminary definitions. A path of  
ao a l  T is a (finite or infinite) sequence so ~ sl , . . .  of  s tates si and labels ai. A 

pa th  ~r is a run if it is maximal ,  i.e. either it is infinite or it is finite of  length 
ft 

n and there is no a, s such tha t  s ,  ~ s. Given a run ~r, Min(Tr) denotes so. 
ao T !  Given two runs ~r and ~r !, we say ~r ~ ~r ! if 7r ! is a suffix of ~r, and we say 7r , 

a0 a l  a l  
i f T r = s 0  -~Sl  ~ . . . a n d ~ r ' = s l  ~ . . . .  

The  deno ta t ion  of  a formula  is a set of  runs th rough  T,  defined according to  
the  following rules: 

Iltruell 

I1-r 
I1r ^ r 

IIVr 

II(a)r 
IIFr 

= ~ -I1r 
= II4111 n I1r 
= {r  ff R I V~r' 6 R .  Min(rr') = Min(~r) ~ rr' E 11r 

= {~ e ~ I ~ '  e ~ . ~ _ c  ~ ' ^  ~' e I1r 
= {~ e ~ 13~' e ~ . ~  E ~' ^ ~' ~ I1r 

^ w "  e n . ~ _ c  ~" E ~' ~ ~" e I1r 

where 7~ denotes the set of  runs of  T .  
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Observe that  the operator V is a quantifier over all paths starting at a par- 
ticular state. 

We say that  g satisfies a formula r if 

Vr �9 T~. Min(lr) : X1 ~ 7r �9 I1r 

where X1 is the leading variable of S. 
In the sequel we refer to these definitions as the interleaving interpretation 

of VL(O, F, V). 

4 U n d e c i d a b i l i t y  o f  t h e  i n t e r l e a v i n g  i n t e r p r e t a t i o n  

We show in this section that  the model checking problem for the language 
VL(O, F, U) and BPPs is undecidable under the interleaving interpretation. In 
fact, we show that  the problem is already undecidable for VBPPs and the fol- 
lowing sublanguage of VL(O, F, U): 

r : : =  true I I r A r I Vrr 

Notice that  this is a pure branching-time language, because the linear time 
operators (a) and F only appear quantified. We call it B -  (O, F)  (the extension 
of B -  (0,  F)  containing also V(a)r and 3Fr  is called B(O, F) in [20]). 

Branching-time logics have another interpretation, equivalent to the one 
given above] in which the denotation of a formula is a set of states. A state 
belongs to the new denotation of a formula iff all the runs starting at it belong 
to the old denotation. We use this interpretation in this section. 

We prove undecidability by a reduction from the halting problem of counter 
machines whose counters are initialised to 0 [16]. 

A counter machine J~4 is a tuple 

({q0, . . . ,qn+l},  {el, . . . ,ern}, {6o, . . . ,6n))  

where ci are the counters, qi are the states with q0 being the initial slate and 
q,+l the unique halting slate, and 6i is the transition rule for state qi (0 < i < n). 
The states q0, �9  q~ are of two types. The states of type I have transition rules 
of the form 

cj := cj + 1; goto qk 

for some j ,  k. The states of type II have transition rules of the form 

if cj = 0 then goto qk else (cj := cj -- 1; goto q~,) 

for some j ,  k, k'. A configuration of 3z[ is a tuple (q i , j l , . . .  ,Jm), where qi is a 
state, and j l , . . . ,  jm are natural numbers indicating the contents of the counters. 
The initial configuration is (q0, 0 , . . . ,  0). The computation of At[ is the sequence 
of configurations which starts with the initial configuration and is inductively 
defined in the expected way, according to the transition rules. Notice that  the 
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computat ion of M is unique, because each state has at most one transition rule. 
We say that  M halts if its computation is finite. It is undecidable whether a 
counter machine halts [16]. 

Given a counter machine A~, our reduction constructs a VBPP with leading 
variable M, and a formula Halt of B - ( O ,  F )  such that  • halts if and only if the 
VBPP satisfies Halt. 

In the sequel we identify this VBPP and its leading variable. 
If instead of VBPPs we were considering a Turing-powerful model like CCS, 

the problem would be trivial: M would just  be a faithful model of the counter 
machine A~, in which the occurrence of an action h a l t  signals termination, and 
we would take 

Halt = V F 3 ( h a l t ) t r u e  

which expresses that  M eventually reaches a state from which it can do h a l t .  
However, VBPPs are much less powerful than Turing Machines. The idea of 

the reduction is to construct a VBPP which simulates the counter machine in 
a weak sense: the VBPP may execute many runs from M, some of which - the 
'honest '  runs - simulate the computation of the counter machine, while the rest 
are 'dishonest' runs in which, for instance, a counter is decreased by 2 instead 
of by 1. 

We shall replace the formula Halt above by another one, more complicated. 
First, we shall construct a formula Ch satisfying the following two properties: 

(1) there exists a run starting at M whose states satisfy Ch, and 
(2) if all the states of a run starting at M satisfy Ch, then the run is honest. 

Then, we shall define 

Halt = VF( v 3(ha t) t r . e  ) 

If the model M of the counter machine satisfies Halt, then the runs starting at M 
that  satisfy Ch at every state must contain a state satisfying 3 ( h a l t )  t r u e .  Since 
such runs exist and are honest by (1) and (2), and since honest runs faithfully 
simulate the behaviour of the counter machine, the counter machine terminates. 

Conversely, assume that  the counter machine terminates. A run starting at 
M either is honest or contains a state which does not satisfy Ch- In the first case, 
since the machine terminates, the run contains a state satisfying 3 ( h a l t )  t r u e ,  
and therefore it satisfies Halt. In the second case, the run directly satisfies Halt. 

We construct the VBPP model in two steps. First, we describe a rather 
straightforward VBPP model. Unfortunately, it is not possible to find the for- 
mula Ch for it. We solve this problem by 'refining' this model in an appropiate 
way. 

A first 'weak' model of a counter machine. A counter cj containing the number 
n is modeled by n copies in parallel of a process Cj. 

Cj def ~-- dec j  �9 0 
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The action dec j  models decreasing the counter cj by 1. Notice that VBPPs 
cannot enforce synchronisation between the action dec j  and a change of state 
of the counter machine. In some sense, the formula ffalt will be in charge of 
modelling these synchronisations. 

The states of the counter machine are modelled according to their transition 
rules. 

type I : Sq i def i n i .  (Sqi II {~i) t~ i de r ~  (Ok II Cj) 
clef type/ / :  SO i d~f ~n~. (SQi II Qi) qi = outi" 0 
def 

SQn+ 1 def= Xnn+" 1 " (SQn+l II qn+l) ~n+l = halt-0 

VBPPs cannot model the fact that from a state qi of type II either the state 
qk or the state q~ can be reached, because in order to describe the choice between 
qk and q~ the choice operator is needed. 

The model M of the counter machine is defined by 

SM def = sQ1 II -. .  II sOn+l 
clef 

x -- s~ l lq  0 

It follows easily from the operational semantics of BPPs that  the reachable 
states of M have the form 

s~ II %~0 II ..- II Qn+l ~"+' II ca jl II . . .  II c d -  

where pk is defined a s ,  P II . . -  II P (and p0 m e a n s  that the state contains no 

copies of P at all). The reachable states in which all the indices io , . . . ,  i,~+1 
except one, say ij, are 0, and moreover ij = 1, correspond to the configurations 
of the counter machine. The nonzero index corresponds to the state, and the 
indices J l , - . - , j m  correspond to the values of the counters. We say that  these 
states are meaningful. 

The honest runs of M are defined as those containing a prefix with the following 
property: the projection of the sequence of states reached along the prefix on the 
set of meaningful states corresponds to the computation of the counter machine 
.~vt. It is clear that  M has honest runs, but  not every run of M is honest. 

A second 'weak' model. Following an idea introduced by Hirshfeld in [13], we 
split the actions of the first model. A counter cj is now modelled by 

A state qi of type II is modelled by 

def 1 . 0U.i;2 0 sqi  ded i ~ .  (qi II Sqi) Qi = ~  

In the other equations we replace i n  i and out  i by in i  1 and out  i for consis- 
tency, but the actions are not split. 
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In order to describe the formula Ch, we first introduce some notations. Define 

k 

EN(al , . . . ,ak)  =- A 3(ai) t r u e  
i = 1  

where EN stands for ENabled. Now, let A be the set of actions of the form 
outil , out  2, dec 2 or dec 3, and let a l , . . . , a k  be actions of A. Define 

k 

E'-"N(al,...,a~) : EN(al , . . .ak)  A A-~(a i )EN(ai )  A A -,EN(a) 
i = 1  aEA\{al...ak) 

In other words, EN(a l , . . . ,  a~) states that  the actions a l , . . . a k  are enabled, no 
sequence ai ai is enabled, and all the other actions of A are disabled. 

The formula Ch is a disjunction of formulae. For each state qi of type I, 
contains a disjunct of the form E-'N(outl) .  For each state qi of r type II, r 

contains two disjuncts. The first is 

and the second is 

It is easy to see that  some run starting at M satisfies Ch. The following lemma 
proves that  Ch also satisfies condition (2). 

L e m m a l .  If all the states of a run of M satisfy the formula Ch, then the run is 
honesl. 

Proof. (Sketch). Consider an arbitrary meaningful state E of a run in which 
every state satisfies Ch. Show that  the next meaningful state of the run is the 
one that  corresponds to the next configuration in the computation of the counter 
machine. More concretely, examine the actions enabled at E,  and check that  only 
one leads to a state E '  satisfying Ch. Then examine the actions enabled at E ' ,  
check again that  only one leads to a state satisfying Ch, and so on. The procedure 
terminates when a sequence of actions leading to a meaningful state has been 
determined. 

Now, we use the argument presented at the beginning of the section to prove 
that  a machine A/I terminates iff the model ~I satisfies the formula Halt. 

T h e o r e m 2 .  The model checking problem for the logic B-(O,  F) and VBPPs is 
undecidable. 



360 

5 A p a r t i a l  o r d e r  i n t e r p r e t a t i o n  o f  V L ( O , F ,  U )  

We give a partial order interpretation of VL(O, F, U) for so called simple BPPs. 
More precisely, we translate simple BPPs into Petri nets, and then use the stan- 
dard partial order semantics of Petri nets given in [9]. 

The subclass of simple BPP expressions is defined in two steps: 

s ::= o I x I a . E  I S + S  
E : : =  S I E l l E  

In general, simple BPP processes are not finite-state but they can be char- 
acterized using a finite set of process expressions. To a family of recursive 

equations g = {Xi aef Ei I 1 < i < n} we associate the set of generators 
Gen(E) = U Gen(Ei) defined by: 

a e n ( x )  = 0 

acn(O) = {0} 

Ven(a  El) = {a.E1} Uaen(E1) 
Gen(E1 A- E2) = {El -4- E2} U (Gen(E1) \ {E,}) U (aen(E~) \ {E2}) 

ae~(E~ II Z2) = ae~(E1) U a e . ( E 2 )  

Let - denote the congruence generated by the equations expressing commu- 
tativity and associativity of II- We use l 'IieI S{ to denote the parallel product 
Si, II Sis I]- . .  II Sik where I is the finite index set { i l , . . . i k} .  Given an expres- 
sion E = 1-Lei si, let [E I be the multiset of parallel components of 1-Lel Si. The 
number of occurrences of an element G in the multiset IEI is denoted by IEIG. 

P r o p o s i t i o n 3 .  Let ~ = { Xi aef --- Ei I 1 < i < n} be a simple BPP process. 

1. Gcn(E) is finite, 
2. Ei -- rIj~j sj for a finite index set J and Sj E Gen(g), 

3. if G E Gcn(C) and G 2_+ H then there are finite index sets J and K such 
that Y -- I]jes Sj [[ HkeK Xik where all Sj e Gen(g) and all Xik's are 
variables of E, 

4. for each G E Gen(g) and each G -% H there is exactly one representation 
for H according to 3. (up to =_). 

5.1 The Partial Order Interpretation 

For lack of space we refer to [9] for basic definitions and notations of net theory. 
We denote a labelled net by the fourtuple (S, T, IV, 1), where S, T are disjoint sets 
of places and transitions, W: (S • T) U (T x S) --+ IN is a weight function, and 
h T --+ s is a labelling function. A Petri net is a pair (N, Mo), where N is a net 
and M0 is the initial marking. 

The net of a simple BPP process is obtained by taking its generators as places. 
The transitions a generator can perform determine the Petri net transitions. If 
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G a H for a generator G, then the net contains a transition with G as input 
place. The set of the output places is obtained from the process H as follows. 
Due to Proposition 3 we know that H can be uniquely represented (up to - 
) as a parallel product of generators and variables. Moreover, the variables are 
defined by expressions which, due to their guardedness, can also be seen as a 
parallel product of generators. In this way we can uniquely associate to H a 
multiset of generators. The elements of this multiset are the output places of the 
transition. So the Petri net associated to g is PN(g)  = (N(g), M~) where 

N(E) = (S~, Te, WE, le) 

Se -~ Gen(g) 

TE = {(a, ~, H) I a e aen(E), a -~ ~r} 
1 if t = (G, a, H) 

We(G,t)  ~ 0 otherwise 

We(t,G) = I I-[ S~IG + ~ IE,,,la with 
jEJ  kEK 

t =  (G ' ,a ,H) ,H =_ r I  Sj II I I  x,~ 
JEJ kEK 

le(t) = a where t = (G, a, H) 

and the initial marking M0 C is defined by MoE(G) = IElla for every c ~ ce~ (~ )  
where Et  is the expression defining the leading variable X1. 

For example the net representation of 

X1 def = ~ - ( x a  II (b. x ~  + c .  o)) 
clef 

X~ = d.  X1 I l d ' X 1  

with leading variable X1 is given in Figure 1. Only the names of the places and 
the labels of the transitions are shown. 

The main property of the net representation follows immediately from the 
definitions: 

P r o p o s i t i o n 4 .  In the net representation of a BPP process, every transition t 
has exactly one input place s, and the weight of the arc from s to t is 1. 

The partial order counterpart of a labelled transition system is the unfolding 
of the Petri net [9]. The unfolding of a Petri net is an acyclic net, usually infinite. 
Figure 1 shows on the left a Petri net, and on the right an initial part of its infinite 
unfolding. We denote the unfolding of a net PN(s  by flu = (N,,pu) where 
N~ = (B, E, W) is the acyclic net structure and pu the mapping establishing the 
link to the nodes of the net PN(E).  Following [9], the places and transitions of 
the unfolding of a Petri net are called conditions and events, respectively. 

The cuts of the unfolding are the partial order counterparts of the states of 
the transition system. A maximal set B t __C_ B of conditions of Nu is a cut if 

Vb, b' ~ B':-~(b -~ b') A -~(b' -~ b) ^ -~(b#b') 



362 

a.(X1 IJ (b.X2 4- c.O)) 

d.X1 2~ (~ 0 

~.(X~ll (b.x~ + ~.o)) 

~.(x~ll (b.x~ ... 0 

+ c.O 

~.(Xlll (b.X2 +~.o)) ~ .  ~ )  ~.(Xll[ (b.X2 +~.o)) 

Fig. 1. Net representation of the BPP given in the text (left) and its unfolding (right) 

where z _ y if there is a pa th  in N= leading from x to y and x # y  if there are 
e,e I E E, e ~ e I such tha t  ' e  = "e '  and e -< x and e I _ y (we then say that  x 
and y are in conflict). 

There is a natural  partial  order on cuts which correponds to the teachability 
relation between states: 

C 1 _E e 2 iff Vbl E e l  3b2 E c2: bl -< b2 

Finally, a run in the partial  order interpretation of VL(O, F, U) is a pair 
~r = (N, p), where N is a conflict free subnet of Nu satisfying 

- Min(N) is a cut of Nu, and 
- N is not properly included in any other conflict free subnet N '  such tha t  

Min(N) = Min(N~). 

and p is the restriction of p= to the nodes of N. Min(N) is also denoted by 
Min(~r). 

As in the interleaving case, a run represents one of the possible futures of the 
system from a certain reachable state. 

We interpret the logic VL(O, F, U) on the set of runs of the unfolding flu. 
In correspondence with the interleaving interpretation we write for two runs 

~r and ~r' having E and E ~ as sets of nodes, respectively, 

- ~ E_ ~r' if E '  C_ E i.e. r '  is a suffix of ~, and 
- 7r -% ~r' if E \ E '  = {e} and p,~(e) = a. 
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The denotation of a formula is a set of runs of~,,, defined according to exactly 
the same rules as in the interleaving case, but taking partial order runs instead 
of interleaving runs. For a BPP g let 7~ be the set of runs of its unfolding. We 
say that  g satisfies a formula r if 

Wr e T~. Min(~r) = Min(Nu) ~ ~" �9 I1r 

The runs 7r such that  Min(zr) = Min(N=) are, loosely speaking, those starting 
at the initial state. In the sequel we refer to this definition as the partial order 
interpretation of VL(O, F, U). 

6 D e c i d a b i l i t y  o f  t h e  p a r t i a l  o r d e r  i n t e r p r e t a t i o n  

The key to prove the decidability of the partial order interpretation is to observe 
that  the unfolding of a simple BBP is almost a bipartite labelled tree. The 
conditions of an unfolding have at most one input event, because unfoldings are 
occurrence nets; moreover the events of the unfolding of a simple BPP have at 
most one input condition, because the transitions of the nets obtained from BPPs 
have one single input place. The "almost" is due to the fact that  an unfolding may 
have more than one minimal element. This is only a minor technical difficulty, 
which can be easily overcome by adding a ' junk' root node to the unfolding. 

We now profit from the fact that  the validity problem for the monadic second 
order logic of a tree with fan-out degree n, denoted by SnS, is decidable [19]. We 
shall reduce the model checking problem for the partial order interpretation of 
VL(O, F, U) to this problem. 

We first fix some notations on SnS. The language of SnS contains a constant 
e, unary function symbols succl , . . . ,  succn, a binary predicate symbol < and an 
arbitrary finite set of unary predicate symbols. SnS is the monadic second order 
logic over this language; i.e. formulas are built from the symbols of the language, 
first-order variables x, y , . . . ,  second order variables X, Y , . . .  and the quantifiers 
3, V (ranging over either kind of variable). Unary predicates can be interpreted 
as sets; according to it, we write x E P instead of P(z ) .  

The standard interpretation has {1, 2 , . . . ,  n}* as domain; e is mapped to the 
empty string; for i = 1, . . . ,  n, succi is mapped to the function succ i (z)  = zi; < 
is mapped to the prefix relation on {1, 2 , . . . ,  n}*. This structure is also known 
as the infinite tree of fan-out degree n. 

We proceed as follows. Given a BPP s and a formula r of VL(O, F, U), we 
construct two formulae of SnS, where n is large enough, for instance the length 
of the description of PN(E) (with numbers represented in unary). The first of 
these two formulae, which we call Unf, has a unique model, which is (isomorphic 
to) the unfolding/~u of E. The second formula, which we call Gr has as models 
the unfoldings which satisfy r Once these two formulae have been constructed, 
the model checking problem reduces to showing that  the formula Unf(E) :=~ Gr 
is valid. 

For the definition of Unf(g) we introduce for every place s~ of PN(E) a 
predicate P,~, for every transition tj a predicate P(tJ3e(tD)' and finally a predicate 
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Pj~nk to identify junk nodes. It is now routine to construct a formula Unf(E) 
such that its only model is the maximal branching process of PN(g) ,  once the 
junk nodes are removed. 

We now introduce some auxiliary formulas of SnS. They contain free vari- 
ables; the name of the formula is parameterized with them. 

The irreflexive prefix relation < on { 1 , . . . , n } *  is definable in SnS. Using 
this fact, we can easily define formulas Conf(x, y), Min(x, X)  and Succ(X, ]1, x) 
expressing that x and y are in conflict, x is minimal in X and that  there is 
exactly one element x E UP( , je (0)  with x E X \ Y where Y C X, respectively. 
With the help of these we can define the formula Run(X) as the conjunction of 

Vx. Min(x ,X)  --~ V x G 1)8 
8ES 

w: vy.  (~ �9 x A y �9 x )  -~ ~Cod(~, y) 
VxVyVz .  (x �9 X A y  �9 X A x  < z < y) ~ z �9 X 
w . ~(~ �9 x )  -~ 3y . ~ �9 z A (~ < ~ v Conf (~ ,  y)) 

and encode the partial order interpretation of VL(O, F, U) into SnS. To simplify 
the formulae, we assume that V, 3 quantify over runs. 

F t r u e ( X  ) = Run(X) 
F-.r = ~Fr  

Fr162 -- Fr A Fr  

Eve(X) = VY.(Vx.Min(x, X)  ~-* Min(x, Y))  ~ Fo(Y) 

F(a)r = 3Y.3x.Succ(X,Y,x)  A V x �9 P(t,a) A Fr 
tel~'(a) 

Fr162 ) -= 3Y.X C_Y AFr AVZ .X  C _ Z A Z  C_Y--+ Fr 

Finally, since C satisfies a formula r of VL(O, F, U) if all the runs that  start  at 
the initial state are in ]]r we define a formula IRun(X)  for initial runs (those 
runs of the unfolding in which the minimal conditions have no input events). 

T h e o r e m  5. Let $ be a simple BPP and let r be a formula of VL(O, F, U). Then 
satisfies r iff the following formula of SnS is a tautology: 

Unf(s  -+ (VX. IRun(X) ---* Fr 

There are no serious conceptual problems to extend this result to all BPPs. 
The net semantics of CCS without restriction and relabelling given by Gorrieri 
and Montanari in [12] associates to every BPP a finite Petri net in which every 
transition has exactly one input place. This semantics is more difficult to describe 
succintly, and that  is why we have not considered it here. 

A natural question to ask is why this decidability proof does not work in the 
interleaving case. The proof consists of three parts: 

- BPPs are given a semantics with a tree structure, 
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- the tree is encoded into SnS, and 
- the logic is encoded into SnS. 

When we try to extend this decidability proof to the interleaving case, there 
are two possibilities. In the first one, we take the unfolding of the Petri net as 
semantics. As we have seen, this unfolding can be encoded into SnS. However, 
the interleaving interpretation of the logic cannot: it is not possible to replace 
Run(X) by a formula FiringSequence(X), because a firing sequence is not char- 
acterised by its set of events. In the second possibility, we take the unfolding 
of the transition system as semantics. Now, we can construct an SnS formula 
FiringSequence(X), which holds for a set of reachable states X iff they are the 
states of a maximal path, but it is no longer possible to encode the unfolding as 
an SnS formula! 

7 C o n c l u s i o n s  

We have proved the undecidability of the model checking problem for the frag- 
ment B -  (O, F)  of the logic VL(O, F, U) and VBPPs (recursive processes built 
out of atomic actions and the prefix and parallel operators) in the usual inter- 
leaving semantics. B -  (O, F)  corresponds to the fragment of CTL containing the 
operators EX and AF. This result shows that  most branching time logics de- 
scribed in the literature become undecidable even for very simple infinite-state 
concurrent systems. The situation of the finite state case, in which branching 
time logics are easier to check than linear time ones, gets inverted, because 
the linear time mu-calculus, a rather powerful linear time logic, is decidable for 
BPPs, and even for Petri nets, which have larger expressive power [10]. 

We also show that  VL(O, F, U) is decidable for simple BPPs in a natural 
partial order semantics. The result follows easily from the fact that  this semantics 
is always a tree expressible in SnS, the monadic second order logic of n successors. 

This result is not as conclusive as the first, because BPPs have a limited 
expressive power, and  we do not know how far can the decidability result be 
extended to larger classes of processes. However, it adds a new motivation for 
the study of partial order logics. So far, these logics have been studied either 
because they can express some properties difficult to formalise with interleaving 
logics like serializability of transactions, or concurrency of program segments 
[17, 18], or because they extend well-known interleaving logics [21]. In the finite 
state case, partial order logics tend to have higher complexity than interleaving 
logics. Our results show that  in the infinite state case partial order logics may 
be easier to handle. 
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