
On the Model Checking Problem for Branching
Time Logics and Basic Parallel Processes*

Javier Esparza and Astrid Kiehn

Institut flit Iaformatik, Technische Universits Miinchen
Arcisstr.21, D-80290 Miinchen, Fax +49 2105 8207

{esparza, kiehn}@infor~atik, tu-muenchen, de

Abstract . We investigate the model checking problem for branching
time logics and Basic Parallel Processes. We show that the problem is
undecidable for the logic VL(O, F, U) (equivalent to CTL*) in the usual
interleaving semantics, but decidable in a standard partial order inter-
pretation.

1 I n t r o d u c t i o n

Most techniques for the verification of concurrent systems are only applicable
to the finite state case. However, many interesting systems have infinite state
spaces. In the last years, several verification problems have been shown to be
decidable for two classes of infinite-state systems, namely the processes of Basic
Process Algebra (BPA) [1], a natural subset of ACP, and the Basic Parallel
Processes (BPP) [3], a natural subset of CCS. These results can be classified
into those showing the decidability of equivalence relations [3, 4], and those
showing the decidability of model checking for different modal and temporal
logics. In this paper, we contribute to this second group. In the sequel, when we
say that a logic is decidable for a class of processes, we mean that the model
checking problem is decidable.

BPA processes are recursive expressions built out of actions, variables, and
the operators sequential composition and choice. They are a model of sequential
computation. For BPA processes, the modal mu-calculus, the most powerful of
the modal and temporal logics commonly used for verification, is known to be
decidable. The proof is a complicated reduction to the validity problem for $2S
(monadic second order logic of two successors) [15, 8]. Simpler algorithms have
been given for the alternation-free fragment of the mu-calculus [2, 14].

BPPs are recursive expressions built out of actions, variables, and the opera-
tors prefix, choice, and parallel composition. BPPs without the parallel operator
have the same expressive power as finite automata. Therefore, they are a sort of
minimal concurrent extension of finite automata, and so a good starting point
for the study of Concurrent infinite-state systems. In [10] it was shown that the
linear time mu-calculus, which contains many other linear time logics, like PLTL

* This work was partially done within the Sonderforschungsbereich 342 WG A3: SAM

354

[6] or EL [22] is decidable. It was also shown that the modal mu-calculus is un-
decidable. The decidability of branching time logics like CTL [5], or CTL* [7],
which are some of the most frequently used for automatic verification in the
finite-state case, was left open.

In this contribution, we consider a logic VL(O, F, U) equivalent to CTL*
and two interpretations: the usual one based on the interleaving of concurrent
actions, and a natural partial order interpretation.

In the first half of the paper, we prove that , in the interleaving interpretation,
a small fragment of this logic (equivalent to the fragment of CTL formed by
propositional logic, EX, and AF), is already undecidable for BPPs without the
choice operator. Since a result of [11] shows that the fragment containing AG
instead of AF is decidable, this establishes the decidability border for branching
time logics in this interpretation.

In the second half of the paper, we prove that VL(O, F, U) is decidable in the
partial order interpretation (more precisely, we prove it for a subclass of BPPs,
and show how our results could be extended to the whole class).

The paper is organised as follows. Section 2 introduces Basic Parallel Pro-
cesses. Section 3 describes the syntax and interleaving semantics of the logic
VL(O, F, U). The undecidability result for the interleaving interpretation is con-
tained in Section 4. Section 5 gives a Petri net semantics for a subclass of
BPPs. Using this semantics, Section 6 gives a partial order interpretation of
VL(O, F, U). The decidability of model checking for this interpretation is con-
tained in Section 7.

2 B a s i c a n d V e r y B a s i c P a r a l l e l P r o c e s s e s

The class of Basic Parallel Process (BPP) expressions is defined by the following
abstract syntax:

E ::= 0 (inaction)
I X (process variable)
I a . E (action prefix)
{ E + E (choice)
] E II E (merge)

where a belongs to a set of atomic actions Act. The BPP expressions containing
no occurrence of the choice operator + are called Very Basic Parallel Process
(VBPP) expressions.

A BPP is defined by a family of recursive equations

E = 11 < i < n }

where the Xi are distinct and the Ei are BPP expressions at most containing
the variables {X1, . . . , Xn}. We further assume that every variable occurrence
in the Ei is guarded, that is, it appears within the scope of an action prefix. The
variable Xa is singled out as the leading variable.

355

Any B P P determines a labelled t ransi t ion sys tem 7- = (8, { ~ , I a 6 Act}),
whose s tates are the B P P expressions reachable f rom the leading variable, and
whose t rans i t ion relations are the least relations satisfying the following rules:

a . E a ~ E
E__t+E'
X : Y ? E' (X d+-----f E)

E a E!
E+ F '~+ E'

F ~ F ! F a ~ F ' E a~E '
E + F : , F ' EIIF :,E'IIF' EIIF ~

3 T h e log ic V L (O , F , U)

Stirling uses in [20] the no ta t ion L (O p t , . . . , Op,) to name the l inear-t ime tempo-
ral language whose t empora l opera tors are Opl, �9 �9 �9 Opn. He also uses VL(Op l , . . .
. . . , Opn) to n a m e the language obta ined by extending L (O p l , . . . , Op,) with the
branching opera tor V, which allows to quant i fy on paths. We stick to this no-
ta t ion, with a small deviat ion, namely tha t the logics we consider have t r u e as
only a tomic proposi t ion, instead of a set of proposi t ional variables.

The syn tax of VL(O, F, U) with a sort of labels s is given by the following
g r a m m a r (O s tands for the relativized next opera tor (a)) :

r ::= t rue I -~r [r A q$2 I Vr I (a)r [Fr [q$1Ur '

where a 6 s B abbreviates -,V-,.
Let T be the t ransi t ion sys tem of a B P P g over Act. We interpret VL(O, F, U)

with sort of labels Act on T . We need some prel iminary definitions. A path of
ao a l T is a (finite or infinite) sequence so ~ sl , . . . of s tates si and labels ai. A

pa th ~r is a run if it is maximal , i.e. either it is infinite or it is finite of length
ft

n and there is no a, s such tha t s , ~ s. Given a run ~r, Min(Tr) denotes so.
ao T ! Given two runs ~r and ~r !, we say ~r ~ ~r ! if 7r ! is a suffix of ~r, and we say 7r ,

a0 a l a l
i f T r = s 0 -~Sl ~ . . . a n d ~ r ' = s l ~

The deno ta t ion of a formula is a set of runs th rough T, defined according to
the following rules:

Iltruell

I1-r
I1r ^ r

IIVr

II(a)r
IIFr

= ~ -I1r
= II4111 n I1r
= {r ff R I V~r' 6 R . Min(rr') = Min(~r) ~ rr' E 11r

= {~ e ~ I ~ ' e ~ . ~ _ c ~ ' ^ ~' e I1r
= {~ e ~ 13~' e ~ . ~ E ~' ^ ~' ~ I1r

^ w " e n . ~ _ c ~" E ~' ~ ~" e I1r

where 7~ denotes the set of runs of T .

356

Observe that the operator V is a quantifier over all paths starting at a par-
ticular state.

We say that g satisfies a formula r if

Vr �9 T~. Min(lr) : X1 ~ 7r �9 I1r

where X1 is the leading variable of S.
In the sequel we refer to these definitions as the interleaving interpretation

of VL(O, F, V).

4 U n d e c i d a b i l i t y o f t h e i n t e r l e a v i n g i n t e r p r e t a t i o n

We show in this section that the model checking problem for the language
VL(O, F, U) and BPPs is undecidable under the interleaving interpretation. In
fact, we show that the problem is already undecidable for VBPPs and the fol-
lowing sublanguage of VL(O, F, U):

r : : = true I I r A r I Vrr

Notice that this is a pure branching-time language, because the linear time
operators (a) and F only appear quantified. We call it B - (O, F) (the extension
of B - (0, F) containing also V(a)r and 3Fr is called B(O, F) in [20]).

Branching-time logics have another interpretation, equivalent to the one
given above] in which the denotation of a formula is a set of states. A state
belongs to the new denotation of a formula iff all the runs starting at it belong
to the old denotation. We use this interpretation in this section.

We prove undecidability by a reduction from the halting problem of counter
machines whose counters are initialised to 0 [16].

A counter machine J~4 is a tuple

({q0, . . . ,qn+l}, {el, . . . ,ern}, {6o, . . . ,6n))

where ci are the counters, qi are the states with q0 being the initial slate and
q,+l the unique halting slate, and 6i is the transition rule for state qi (0 < i < n).
The states q0, �9 q~ are of two types. The states of type I have transition rules
of the form

cj := cj + 1; goto qk

for some j , k. The states of type II have transition rules of the form

if cj = 0 then goto qk else (cj := cj -- 1; goto q~,)

for some j , k, k'. A configuration of 3z[is a tuple (q i , j l , . . . ,Jm), where qi is a
state, and j l , . . . , jm are natural numbers indicating the contents of the counters.
The initial configuration is (q0, 0 , . . . , 0). The computation of At[is the sequence
of configurations which starts with the initial configuration and is inductively
defined in the expected way, according to the transition rules. Notice that the

357

computat ion of M is unique, because each state has at most one transition rule.
We say that M halts if its computation is finite. It is undecidable whether a
counter machine halts [16].

Given a counter machine A~, our reduction constructs a VBPP with leading
variable M, and a formula Halt of B - (O , F) such that • halts if and only if the
VBPP satisfies Halt.

In the sequel we identify this VBPP and its leading variable.
If instead of VBPPs we were considering a Turing-powerful model like CCS,

the problem would be trivial: M would just be a faithful model of the counter
machine A~, in which the occurrence of an action h a l t signals termination, and
we would take

Halt = V F 3 (h a l t) t r u e

which expresses that M eventually reaches a state from which it can do h a l t .
However, VBPPs are much less powerful than Turing Machines. The idea of

the reduction is to construct a VBPP which simulates the counter machine in
a weak sense: the VBPP may execute many runs from M, some of which - the
'honest ' runs - simulate the computation of the counter machine, while the rest
are 'dishonest' runs in which, for instance, a counter is decreased by 2 instead
of by 1.

We shall replace the formula Halt above by another one, more complicated.
First, we shall construct a formula Ch satisfying the following two properties:

(1) there exists a run starting at M whose states satisfy Ch, and
(2) if all the states of a run starting at M satisfy Ch, then the run is honest.

Then, we shall define

Halt = VF(v 3(ha t) t r . e)

If the model M of the counter machine satisfies Halt, then the runs starting at M
that satisfy Ch at every state must contain a state satisfying 3 (h a l t) t r u e . Since
such runs exist and are honest by (1) and (2), and since honest runs faithfully
simulate the behaviour of the counter machine, the counter machine terminates.

Conversely, assume that the counter machine terminates. A run starting at
M either is honest or contains a state which does not satisfy Ch- In the first case,
since the machine terminates, the run contains a state satisfying 3 (h a l t) t r u e ,
and therefore it satisfies Halt. In the second case, the run directly satisfies Halt.

We construct the VBPP model in two steps. First, we describe a rather
straightforward VBPP model. Unfortunately, it is not possible to find the for-
mula Ch for it. We solve this problem by 'refining' this model in an appropiate
way.

A first 'weak' model of a counter machine. A counter cj containing the number
n is modeled by n copies in parallel of a process Cj.

Cj def ~-- dec j �9 0

358

The action dec j models decreasing the counter cj by 1. Notice that VBPPs
cannot enforce synchronisation between the action dec j and a change of state
of the counter machine. In some sense, the formula ffalt will be in charge of
modelling these synchronisations.

The states of the counter machine are modelled according to their transition
rules.

type I : Sq i def i n i . (Sqi II {~i) t~ i de r ~ (Ok II Cj)
clef type/ / : SO i d~f ~n~. (SQi II Qi) qi = outi" 0
def

SQn+ 1 def= Xnn+" 1 " (SQn+l II qn+l) ~n+l = halt-0

VBPPs cannot model the fact that from a state qi of type II either the state
qk or the state q~ can be reached, because in order to describe the choice between
qk and q~ the choice operator is needed.

The model M of the counter machine is defined by

SM def = sQ1 II -. . II sOn+l
clef

x -- s~ l lq 0

It follows easily from the operational semantics of BPPs that the reachable
states of M have the form

s~ II %~0 II ..- II Qn+l ~"+' II ca jl II . . . II c d -

where pk is defined a s , P II . . - II P (and p0 m e a n s that the state contains no

copies of P at all). The reachable states in which all the indices io , . . . , i,~+1
except one, say ij, are 0, and moreover ij = 1, correspond to the configurations
of the counter machine. The nonzero index corresponds to the state, and the
indices J l , - . - , j m correspond to the values of the counters. We say that these
states are meaningful.

The honest runs of M are defined as those containing a prefix with the following
property: the projection of the sequence of states reached along the prefix on the
set of meaningful states corresponds to the computation of the counter machine
.~vt. It is clear that M has honest runs, but not every run of M is honest.

A second 'weak' model. Following an idea introduced by Hirshfeld in [13], we
split the actions of the first model. A counter cj is now modelled by

A state qi of type II is modelled by

def 1 . 0U.i;2 0 sqi ded i ~ . (qi II Sqi) Qi = ~

In the other equations we replace i n i and out i by in i 1 and out i for consis-
tency, but the actions are not split.

3 5 9

In order to describe the formula Ch, we first introduce some notations. Define

k

EN(al , . . . ,ak) =- A 3(ai) t r u e
i = 1

where EN stands for ENabled. Now, let A be the set of actions of the form
outil , out 2, dec 2 or dec 3, and let a l , . . . , a k be actions of A. Define

k

E'-"N(al,...,a~) : EN(al , . . .ak) A A-~(a i)EN(ai) A A -,EN(a)
i = 1 aEA\{al...ak)

In other words, EN(a l , . . . , a~) states that the actions a l , . . . a k are enabled, no
sequence ai ai is enabled, and all the other actions of A are disabled.

The formula Ch is a disjunction of formulae. For each state qi of type I,
contains a disjunct of the form E-'N(outl) . For each state qi of r type II, r

contains two disjuncts. The first is

and the second is

It is easy to see that some run starting at M satisfies Ch. The following lemma
proves that Ch also satisfies condition (2).

L e m m a l . If all the states of a run of M satisfy the formula Ch, then the run is
honesl.

Proof. (Sketch). Consider an arbitrary meaningful state E of a run in which
every state satisfies Ch. Show that the next meaningful state of the run is the
one that corresponds to the next configuration in the computation of the counter
machine. More concretely, examine the actions enabled at E, and check that only
one leads to a state E ' satisfying Ch. Then examine the actions enabled at E ' ,
check again that only one leads to a state satisfying Ch, and so on. The procedure
terminates when a sequence of actions leading to a meaningful state has been
determined.

Now, we use the argument presented at the beginning of the section to prove
that a machine A/I terminates iff the model ~I satisfies the formula Halt.

T h e o r e m 2 . The model checking problem for the logic B-(O, F) and VBPPs is
undecidable.

360

5 A p a r t i a l o r d e r i n t e r p r e t a t i o n o f V L (O , F , U)

We give a partial order interpretation of VL(O, F, U) for so called simple BPPs.
More precisely, we translate simple BPPs into Petri nets, and then use the stan-
dard partial order semantics of Petri nets given in [9].

The subclass of simple BPP expressions is defined in two steps:

s ::= o I x I a . E I S + S
E : : = S I E l l E

In general, simple BPP processes are not finite-state but they can be char-
acterized using a finite set of process expressions. To a family of recursive

equations g = {Xi aef Ei I 1 < i < n} we associate the set of generators
Gen(E) = U Gen(Ei) defined by:

a e n (x) = 0

acn(O) = {0}

Ven(a El) = {a.E1} Uaen(E1)
Gen(E1 A- E2) = {El -4- E2} U (Gen(E1) \ {E,}) U (aen(E~) \ {E2})

ae~(E~ II Z2) = ae~(E1) U a e . (E 2)

Let - denote the congruence generated by the equations expressing commu-
tativity and associativity of II- We use l 'IieI S{ to denote the parallel product
Si, II Sis I]- . . II Sik where I is the finite index set { i l , . . . i k} . Given an expres-
sion E = 1-Lei si, let [E I be the multiset of parallel components of 1-Lel Si. The
number of occurrences of an element G in the multiset IEI is denoted by IEIG.

P r o p o s i t i o n 3 . Let ~ = { Xi aef --- Ei I 1 < i < n} be a simple BPP process.

1. Gcn(E) is finite,
2. Ei -- rIj~j sj for a finite index set J and Sj E Gen(g),

3. if G E Gcn(C) and G 2_+ H then there are finite index sets J and K such
that Y -- I]jes Sj [[HkeK Xik where all Sj e Gen(g) and all Xik's are
variables of E,

4. for each G E Gen(g) and each G -% H there is exactly one representation
for H according to 3. (up to =_).

5.1 The Partial Order Interpretation

For lack of space we refer to [9] for basic definitions and notations of net theory.
We denote a labelled net by the fourtuple (S, T, IV, 1), where S, T are disjoint sets
of places and transitions, W: (S • T) U (T x S) --+ IN is a weight function, and
h T --+ s is a labelling function. A Petri net is a pair (N, Mo), where N is a net
and M0 is the initial marking.

The net of a simple BPP process is obtained by taking its generators as places.
The transitions a generator can perform determine the Petri net transitions. If

361

G a H for a generator G, then the net contains a transition with G as input
place. The set of the output places is obtained from the process H as follows.
Due to Proposition 3 we know that H can be uniquely represented (up to -
) as a parallel product of generators and variables. Moreover, the variables are
defined by expressions which, due to their guardedness, can also be seen as a
parallel product of generators. In this way we can uniquely associate to H a
multiset of generators. The elements of this multiset are the output places of the
transition. So the Petri net associated to g is PN(g) = (N(g), M~) where

N(E) = (S~, Te, WE, le)

Se -~ Gen(g)

TE = {(a, ~, H) I a e aen(E), a -~ ~r}
1 if t = (G, a, H)

We(G,t) ~ 0 otherwise

We(t,G) = I I-[S~IG + ~ IE,,,la with
jEJ kEK

t = (G ' ,a ,H) ,H =_ r I Sj II I I x,~
JEJ kEK

le(t) = a where t = (G, a, H)

and the initial marking M0 C is defined by MoE(G) = IElla for every c ~ ce~ (~)
where Et is the expression defining the leading variable X1.

For example the net representation of

X1 def = ~ - (x a II (b. x ~ + c . o))
clef

X~ = d. X1 I l d ' X 1

with leading variable X1 is given in Figure 1. Only the names of the places and
the labels of the transitions are shown.

The main property of the net representation follows immediately from the
definitions:

P r o p o s i t i o n 4 . In the net representation of a BPP process, every transition t
has exactly one input place s, and the weight of the arc from s to t is 1.

The partial order counterpart of a labelled transition system is the unfolding
of the Petri net [9]. The unfolding of a Petri net is an acyclic net, usually infinite.
Figure 1 shows on the left a Petri net, and on the right an initial part of its infinite
unfolding. We denote the unfolding of a net PN(s by flu = (N,,pu) where
N~ = (B, E, W) is the acyclic net structure and pu the mapping establishing the
link to the nodes of the net PN(E). Following [9], the places and transitions of
the unfolding of a Petri net are called conditions and events, respectively.

The cuts of the unfolding are the partial order counterparts of the states of
the transition system. A maximal set B t __C_ B of conditions of Nu is a cut if

Vb, b' ~ B':-~(b -~ b') A -~(b' -~ b) ^ -~(b#b')

362

a.(X1 IJ (b.X2 4- c.O))

d.X1 2~ (~ 0

~.(X~ll (b.x~ + ~.o))

~.(x~ll (b.x~ ... 0

+ c.O

~.(Xlll (b.X2 +~.o)) ~ . ~) ~.(Xll[(b.X2 +~.o))

Fig. 1. Net representation of the BPP given in the text (left) and its unfolding (right)

where z _ y if there is a pa th in N= leading from x to y and x # y if there are
e,e I E E, e ~ e I such tha t ' e = "e ' and e -< x and e I _ y (we then say that x
and y are in conflict).

There is a natural partial order on cuts which correponds to the teachability
relation between states:

C 1 _E e 2 iff Vbl E e l 3b2 E c2: bl -< b2

Finally, a run in the partial order interpretation of VL(O, F, U) is a pair
~r = (N, p), where N is a conflict free subnet of Nu satisfying

- Min(N) is a cut of Nu, and
- N is not properly included in any other conflict free subnet N ' such tha t

Min(N) = Min(N~).

and p is the restriction of p= to the nodes of N. Min(N) is also denoted by
Min(~r).

As in the interleaving case, a run represents one of the possible futures of the
system from a certain reachable state.

We interpret the logic VL(O, F, U) on the set of runs of the unfolding flu.
In correspondence with the interleaving interpretation we write for two runs

~r and ~r' having E and E ~ as sets of nodes, respectively,

- ~ E_ ~r' if E ' C_ E i.e. r ' is a suffix of ~, and
- 7r -% ~r' if E \ E ' = {e} and p,~(e) = a.

363

The denotation of a formula is a set of runs of~,,, defined according to exactly
the same rules as in the interleaving case, but taking partial order runs instead
of interleaving runs. For a BPP g let 7~ be the set of runs of its unfolding. We
say that g satisfies a formula r if

Wr e T~. Min(~r) = Min(Nu) ~ ~" �9 I1r

The runs 7r such that Min(zr) = Min(N=) are, loosely speaking, those starting
at the initial state. In the sequel we refer to this definition as the partial order
interpretation of VL(O, F, U).

6 D e c i d a b i l i t y o f t h e p a r t i a l o r d e r i n t e r p r e t a t i o n

The key to prove the decidability of the partial order interpretation is to observe
that the unfolding of a simple BBP is almost a bipartite labelled tree. The
conditions of an unfolding have at most one input event, because unfoldings are
occurrence nets; moreover the events of the unfolding of a simple BPP have at
most one input condition, because the transitions of the nets obtained from BPPs
have one single input place. The "almost" is due to the fact that an unfolding may
have more than one minimal element. This is only a minor technical difficulty,
which can be easily overcome by adding a ' junk' root node to the unfolding.

We now profit from the fact that the validity problem for the monadic second
order logic of a tree with fan-out degree n, denoted by SnS, is decidable [19]. We
shall reduce the model checking problem for the partial order interpretation of
VL(O, F, U) to this problem.

We first fix some notations on SnS. The language of SnS contains a constant
e, unary function symbols succl , . . . , succn, a binary predicate symbol < and an
arbitrary finite set of unary predicate symbols. SnS is the monadic second order
logic over this language; i.e. formulas are built from the symbols of the language,
first-order variables x, y , . . . , second order variables X, Y , . . . and the quantifiers
3, V (ranging over either kind of variable). Unary predicates can be interpreted
as sets; according to it, we write x E P instead of P(z) .

The standard interpretation has {1, 2 , . . . , n}* as domain; e is mapped to the
empty string; for i = 1, . . . , n, succi is mapped to the function succ i (z) = zi; <
is mapped to the prefix relation on {1, 2 , . . . , n}*. This structure is also known
as the infinite tree of fan-out degree n.

We proceed as follows. Given a BPP s and a formula r of VL(O, F, U), we
construct two formulae of SnS, where n is large enough, for instance the length
of the description of PN(E) (with numbers represented in unary). The first of
these two formulae, which we call Unf, has a unique model, which is (isomorphic
to) the unfolding/~u of E. The second formula, which we call Gr has as models
the unfoldings which satisfy r Once these two formulae have been constructed,
the model checking problem reduces to showing that the formula Unf(E) :=~ Gr
is valid.

For the definition of Unf(g) we introduce for every place s~ of PN(E) a
predicate P,~, for every transition tj a predicate P(tJ3e(tD)' and finally a predicate

364

Pj~nk to identify junk nodes. It is now routine to construct a formula Unf(E)
such that its only model is the maximal branching process of PN(g) , once the
junk nodes are removed.

We now introduce some auxiliary formulas of SnS. They contain free vari-
ables; the name of the formula is parameterized with them.

The irreflexive prefix relation < on { 1 , . . . , n } * is definable in SnS. Using
this fact, we can easily define formulas Conf(x, y), Min(x, X) and Succ(X,]1, x)
expressing that x and y are in conflict, x is minimal in X and that there is
exactly one element x E UP(, je (0) with x E X \ Y where Y C X, respectively.
With the help of these we can define the formula Run(X) as the conjunction of

Vx. Min(x ,X) --~ V x G 1)8
8ES

w: vy. (~ �9 x A y �9 x) -~ ~Cod(~, y)
VxVyVz . (x �9 X A y �9 X A x < z < y) ~ z �9 X
w . ~(~ �9 x) -~ 3y . ~ �9 z A (~ < ~ v Conf (~ , y))

and encode the partial order interpretation of VL(O, F, U) into SnS. To simplify
the formulae, we assume that V, 3 quantify over runs.

F t r u e (X) = Run(X)
F-.r = ~Fr

Fr162 -- Fr A Fr

Eve(X) = VY.(Vx.Min(x, X) ~-* Min(x, Y)) ~ Fo(Y)

F(a)r = 3Y.3x.Succ(X,Y,x) A V x �9 P(t,a) A Fr
tel~'(a)

Fr162) -= 3Y.X C_Y AFr AVZ .X C _ Z A Z C_Y--+ Fr

Finally, since C satisfies a formula r of VL(O, F, U) if all the runs that start at
the initial state are in]]r we define a formula IRun(X) for initial runs (those
runs of the unfolding in which the minimal conditions have no input events).

T h e o r e m 5. Let $ be a simple BPP and let r be a formula of VL(O, F, U). Then
satisfies r iff the following formula of SnS is a tautology:

Unf(s -+ (VX. IRun(X) ---* Fr

There are no serious conceptual problems to extend this result to all BPPs.
The net semantics of CCS without restriction and relabelling given by Gorrieri
and Montanari in [12] associates to every BPP a finite Petri net in which every
transition has exactly one input place. This semantics is more difficult to describe
succintly, and that is why we have not considered it here.

A natural question to ask is why this decidability proof does not work in the
interleaving case. The proof consists of three parts:

- BPPs are given a semantics with a tree structure,

365

- the tree is encoded into SnS, and
- the logic is encoded into SnS.

When we try to extend this decidability proof to the interleaving case, there
are two possibilities. In the first one, we take the unfolding of the Petri net as
semantics. As we have seen, this unfolding can be encoded into SnS. However,
the interleaving interpretation of the logic cannot: it is not possible to replace
Run(X) by a formula FiringSequence(X), because a firing sequence is not char-
acterised by its set of events. In the second possibility, we take the unfolding
of the transition system as semantics. Now, we can construct an SnS formula
FiringSequence(X), which holds for a set of reachable states X iff they are the
states of a maximal path, but it is no longer possible to encode the unfolding as
an SnS formula!

7 C o n c l u s i o n s

We have proved the undecidability of the model checking problem for the frag-
ment B - (O, F) of the logic VL(O, F, U) and VBPPs (recursive processes built
out of atomic actions and the prefix and parallel operators) in the usual inter-
leaving semantics. B - (O, F) corresponds to the fragment of CTL containing the
operators EX and AF. This result shows that most branching time logics de-
scribed in the literature become undecidable even for very simple infinite-state
concurrent systems. The situation of the finite state case, in which branching
time logics are easier to check than linear time ones, gets inverted, because
the linear time mu-calculus, a rather powerful linear time logic, is decidable for
BPPs, and even for Petri nets, which have larger expressive power [10].

We also show that VL(O, F, U) is decidable for simple BPPs in a natural
partial order semantics. The result follows easily from the fact that this semantics
is always a tree expressible in SnS, the monadic second order logic of n successors.

This result is not as conclusive as the first, because BPPs have a limited
expressive power, and we do not know how far can the decidability result be
extended to larger classes of processes. However, it adds a new motivation for
the study of partial order logics. So far, these logics have been studied either
because they can express some properties difficult to formalise with interleaving
logics like serializability of transactions, or concurrency of program segments
[17, 18], or because they extend well-known interleaving logics [21]. In the finite
state case, partial order logics tend to have higher complexity than interleaving
logics. Our results show that in the infinite state case partial order logics may
be easier to handle.

A c k n o w l e d g e m e n t s

We'~hank Colin Stirling and three anonymous referees for helpful comments.

366

References

1. J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. In-
formation and Computation 60:109-137, 1984.

2. O. Burkart and B. Steffen. Model checking for context-free processes. In Proceedings
of CONCUR '92, LNCS 630:123-137, 1992.

3. S. Christensen, Y. Hirshfeld, and F. Moiler. Bisimulation Equivalence is Decidable
for all Basic Parallel Processes. In Proceedings of CONCUR '93, LNCS 715:143-157,
1993.

4. S. Christensen, H. Hfittel, and C. Stirling. Bisimulation Equivalence is Decidable
for all Context-free Processes. In Proceedings of CONCUR '92, LNCS 630:138-147,
1992.

5. E.M. Clarke and E.A. Emerson. Design and Synthesis of synchronization skeletons
using Branching Time Temporal Logic. In Proceedings of Workshop on Logics of
Programs, LNCS 131:52-71, 1981.

6. E.A. Emerson. Temporal and ModM Logic. In Handbook of Theoretical Computer
Science, Volume B, 995-1072, 1990.

7. E.A. Emerson and J.Y. Halpern. "Sometimes" and "Not Never" revisited: on
Branching versus Linear Time Temporal Logic. Journal of the ACM 33(1):151-
178, 1986.

8. E.A. Emerson and C. S. 3utla. Tree Automata, Mu-Calculus and Determinacy. In
Proceedings of FOCS '91, 1991.

9. J. Engelfriet. Branching processes of Petri nets. Acta lnformatica 28:575-591, 1991.
10. J. Esparza. On the Decidability of the Model Checking Problem for Several V-

calculi and Petri Nets. In Proceedings of CAAP "94, LNCS 787:115-129, 1994.
11. J. Esparza. On the uniform word problem for commutative context-free grammars.

Submitted for publication, 1994.
12. R. Gorrieri and U. Montanari. A Simple Calculus of Nets. In Proceedings of

CONCUR '90, LNCS 458:2-30, 1990.
13. Y. Hirshfeld. Petri Nets and the Equivalence Problem. In Proceedings of CSL '93,

1994.
14. H. Hungar and B. Steffen. Local Model Checking for Context-Free Processes. In

Proceedings of ICALP '93, LNCS 707, 1993.
15. D. Muller and P. Schupp. The Theory of Ends, Pushdown Automata and Second

Order Logic. Theoretical Computer Science 37: 51-75, 1985.
16. M. Minsky: Computation. Finite and Infinite Machines. Prentice-Hall, 1967.
17. D. Peled, S. Katz, and A. Pnueli. Specifying and Proving Serializability in Tem-

poral Logic. In Proceedings of LICS '91, 232-245, 1991.
18. W. Penczek. Temporal Logics for Trace Systems: On Automated Verification.

International Journal on Foundations of Computer Science 33:31-67, 1992.
19. M.O. Rabin. Decidability of second-order theories and automata on infinite trees.

Transactions of the American Mathematical Society 141:1-35, 1969.
20. C. Stifling. Modal and Temporal Logics. In Handbook of Logic in Computer

Science, Oxford University Press, 1991.
21. P.S. Thiagarajan. A Trace Based Extension of PTL. In Proceedings of LICS '94,

1994.
22. P. Wolper. Temporal Logic can be more expressive. Information and Control

56(1,2):72-93, 1983.

