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On the modelling and forecasting of socio-economic mortality

differentials: an application to deprivation and mortality in England

Andrés M. Villegas∗, Steven Haberman

Cass Business School, City University London, United Kingdom

Abstract

In any country, mortality rates and indices such as life expectancy usually differ across sub-
populations, for example, defined by gender, geographic area or socio-economic variables
(e.g. occupation, level of education, income). These differentials, and in particular those
related to socio-economic circumstances, pose important challenges for the design of pub-
lic policies for tackling social inequalities, as well as for the design of pension systems and
the management of longevity risk in pension funds and annuity portfolios. We discuss the
suitability for the modelling and forecasting of socio-economic differences in mortality of sev-
eral multiple population extensions of the Lee-Carter model, including a newly introduced
relative model based on the modelling of the mortality in socio-economic subpopulations
alongside the mortality of a reference population. Using England mortality data for socio-
economic subpopulations defined using a deprivation index, we show that this new relative
model exhibits the best results in terms of goodness of fit and ex-post forecasting perfor-
mance. We then use this model to derive projections of deprivation specific mortality rates
and life expectancies at pensioner ages and analyse the impact of socio-economic differences
in mortality on the valuation of annuities.

Keywords: Mortality modelling; multipopulation models; socio-economic circumstances;
annuity pricing

1. Introduction

In any country, mortality rates and indices such as life expectancy usually differ across
subpopulations, for example, defined by gender, geographic area or socio-economic vari-
ables. In particular, there is a well established inverse relationship between socio-economic
circumstances - whether measured by educational attainment, occupation, income or area
deprivation - and mortality, with higher socio-economic subgroups having lower mortality
rates and, in most cases, also experiencing faster mortality improvements than lower socio-
economic subgroups (see, e.g., Shkolnikov et al. (2006); Johnson (2011); Tarkiainen et al.
(2012); Raleigh and Kiri (1997)).
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These socio-economic differences in mortality not only pose significant challenges for the
design of public policies for tackling social inequalities, but also for the design of pension
systems and the management of longevity risk in pension funds and annuity portfolios. On
the one hand, differential mortality can have important consequences on the redistribution
properties of both defined benefit and defined contribution pension schemes (Liebman, 2002;
Brown, 2002), for example, undermining the equity and solidarity of national pensions sys-
tems by inducing an undesirable transfer of wealth away from lower socio-economic groups
with shorter life expectancy to higher socio-economic groups with above average longevity.
On the other hand, the ignorance of mortality heterogeneity when valuing pension liabilities
or pricing annuities could result in an inadequate funding of annuity and pension obliga-
tions. Furthermore, the successful development of a market of standardised longevity secu-
rities requires a good understanding of socio-economic mortality differentials as they are in
most situations the main determinant of the basis risk associated with index-based longevity
hedges (Coughlan et al., 2011).

In view of this, there is a need for methods that help us assess the magnitude of socio-
economic mortality differentials within a population and that enable us to examine their
possible future evolution. In general, to measure and project mortality differentials we require
a modelling approach that permits the simultaneous modelling of mortality in a group of
subpopulations. Moreover, in the specific context of socio-economic subpopulations, such a
model should ideally capture both mortality level differentials and mortality improvement
differentials among the subpopulations, that is, differentials in the average level of mortality
and differentials in the pace of mortality change.

Some authors have suggested the application of generalised linear models (Madrigal et al.,
2011) and survival models (Richards, 2008) in the quantification of socio-economic mortality
differentials. These statistical methods have specifically been proposed for the assessment of
baseline (level) mortality differentials, ignoring, in part due to the lack of appropriate data,
the differences in improvements by socio-economic characteristics and the modelling of their
possible future evolution. Provided that data requirements are met, a modelling alternative
that does allow the consideration of both level and trend differentials in mortality, as well
as the projection of their future evolution, is offered by the numerous stochastic mortality
models that have recently been proposed for the simultaneous modelling and forecasting of
mortality in a group of populations. Unfortunately, most of these multipopulation models
have not been designed with the aim of assessing socio-economic differences in mortality,
but with the purpose of comparing the mortality evolution of a group of countries or of
genders or regions within a country. As a result, some of these models may lack some of the
desirable features of an approach for the modelling and forecasting of mortality in a group
of socio-economic subpopulations, which include: transparency for the disentangling of level
and improvement differentials in mortality; consistency of subpopulation-specific mortality
forecasts with national mortality forecasts; ability to produce adequate interval forecasts
of mortality differentials; and ability to produce mortality rates forecast that preserve the
inverse relationship between socio-economic circumstances and mortality.

In this paper, we discuss the suitability for the modelling and forecasting of socio-
economic differences in mortality of several multiple population extensions of the Lee-Carter
model (Lee and Carter, 1992), including a newly introduced relative model based on the
modelling of the mortality in socio-economic subpopulations alongside the mortality of a ref-
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erence population. This later model has especially been designed taking into consideration
the characteristics of socio-economic subpopulations as well as some of the typical issues of
mortality data disaggregated by socio-economic circumstances. Although previous studies
have investigated the use of multipopulation mortality models in the assessment of mortality
differentials among two countries (Li and Hardy, 2011) and regions within a country (Debón
et al., 2011), this is the first study to apply such models to socio-economic mortality differ-
entials in particular. More specifically, we use multipopulation mortality models to analysis
the extent of mortality differentials across deprivation subgroups in England.

The reminder of this paper is organised as follows. Section 2 describes several alternative
methods for the measurement and projection of mortality differentials. Particularly, Section
2.4 introduces our proposed new relative modelling approach. In Section 3, we apply these
models in the examination of the relationship between deprivation and mortality in the
English population, emphasising on its implications for the valuation of life annuities. Finally,
Section 4 concludes with a discussion of our main findings.

2. Modelling socio-economic mortality differentials

In this section, we describe several multipopulation extensions of the Lee-Carter model
(Lee and Carter, 1992), and discuss their suitability for the modelling of socio-economic
mortality differentials. All these models propose a parametric representation of the central
death rate nµxtg in year t for people age [x, x + n) in subpopulation g, based on a cross-
classified mortality experience containing the observed number of deaths ndxtg at ages [x, x+
n), x ∈ X := {x1, . . . , xk}, in year t, t ∈ T := {t1, . . . , tn}, for subpopulation g, g ∈ G :=
{g1, . . . , gm}, with matching exposure nextg.

2.1. Independent modelling

The simplest approach for modelling mortality in a set of subpopulations would be to
use independent unrelated Lee-Carter models for each subpopulation. Thus, we could model
mortality in each subpopulation g ∈ G using the specification

log nµxtg = αxg + βxgκtg, (1)

where αxg captures the general age-specific mortality pattern for subpopulation g, ktg is a
time varying mortality index representing the overall level of mortality in year t for subpop-
ulation g, and βxg measures the age-specific response to changes in the general level κtg. The
parameters of this model are identifiable only up to a transformation as for any constants c1
and c2 6= 0, if we replace αxg by αxg+c1βxg, βxg by

1

c2
βxg, and κtg by c2(κtg−c1), equation (1)

will produce the same log death rates. Therefore, in order to ensure the identifiability of the
model, the constraints

∑

x∈X

βxg = 1,
∑

t∈T

κtg = 0 (2)

are imposed.
In this model mortality forecasts are obtained by modelling and forecasting the period

indexes using independent univariate ARIMA processes. In most applications, each period
index ktg, g ∈ G, can be modelled using a random walk with drift (ARIMA(0,1,0)):

κtg = dg + κt−1,g + ξtg, (3)

3
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where dg is the drift term and ξtg is a normally distributed error term with zero mean and
variance σ2

g . We note that under the independent modelling approach the error terms for
each subpopulation ξtg, g ∈ G, are assumed to be independent of one another.

The independent modelling approach is straightforward to implement. However, it has
several shortcomings. First, it assumes no interdependence among the mortality of the
subpopulations, a very unrealistic assumption for socio-economic subpopulations within a
country, which are likely to follow similar mortality trends. Second, although mortality
level differentials could be assessed by comparing the αxg terms and trend differentials by
comparing the βxg and κtg terms, this is not a straightforward task.

The assumption of complete independence among the subpopulations can be relaxed by,
instead of using independent random walks to model the time indexes, using a multivariate
random walk with drift so that

κt = d+ κt−1 + ξt, ξt ∼ N(0,Σ), (4)

where κt := (κt,1, κt,2 . . . , κt,m)
′, d is a vector of drift parameters and Σ is the variance-

covariance matrix. Since the diagonal terms of the variance-covariance matrix Σ coincide
with the variances σ2

g , g ∈ G, of ξtg in (3), the central and interval projections of mortality
rates for each subpopulation derived from the multivariate random walk and the indepen-
dent random walk with drifts are identical. However, the multivariate random walk yields
more precise interval projections of mortality differentials as the non-diagonal terms of the
variance-covariance matrix Σ capture the dependence among the subpopulations.

A further enhancement of the independent approach would be the use of co-integration
methods to model κt as suggested by Carter and Lee (1992) and described in Li and Hardy
(2011) and in Yang and Wang (2013). However, although theoretically sound, mortality data
disaggregated by socio-economic variables are typically available for short periods of time,
hampering the application of the required econometric techniques.

2.2. The joint k-model

A second alternative for modelling mortality differentials is the joint-κ model proposed
by Carter and Lee (1992). This extension of the Lee-Carter model assumes that all the
subpopulations are driven by a single period index. Formally, the model can be expressed as

log nµxtg = αxg + βxgκt, (5)

where αxg describes the average age profile for subpopulation g, κt is a period index driving
the mortality trend for all subpopulations, and βxg represents the age-subpopulation-specific
pattern of mortality change.

In order to facilitate the assessment of mortality differentials, it is convenient to re-
parametrised the model as1:

log nµxtg = αx + αxg + (βx + βxg)κt (6)

1 Delwarde et al. (2006) have considered a similar parametrisation in the simultaneous modelling of
mortality in five developed countries.

4
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with the following constraints

∑

x∈X

βx = 1,
∑

t∈T

κt = 0 (7)

∑

g∈G

αxg = 0,
∑

g∈G

βxg = 0 for all x ∈ X (8)

to ensure the identifiability of the model. This parametrisation allows the measurement of
subpopulation mortality as deviations from the general mortality pattern of the population.
Thus, parameters αx and αxg capture mortality level differentials, whereas parameters βx and
βxg capture mortality improvement differentials. Specifically, the term exp(αxg) quantifies
the average percentage deviation of subpopulation g from the the general level of mortality
in the population exp(αx). That is, if exp(αxg) > 1 then at ages [x, x + n) mortality in
subpopulation g is higher than in the total population, and if exp(αxg) < 1 then mortality is
lower. Similarly, if βxg > 0 then at ages [x, x+ n) mortality in subpopulation g is improving
at a faster pace than in the total population and if βxg < 0 then mortality is improving at a
slower rate.

Whilst the independent modelling approach includes a period index for each subpopu-
lation, the joint-κ has a single period index. Hence, mortality forecast for all the subpopu-
lations can be derived by modelling this period index using a univariate random walk with
drift

κt = d+ κt−1 + ξt (9)

Besides the transparency provided by parametrisation (6) for the identification of both
level and trend differentials in mortality, there are other compelling statistical and demo-
graphics reasons that suggest that the joint-κ may be a very attractive approach. Statis-
tically, a single time index is a very parsimonious way of linking the mortality of multiple
populations. Demographically, a single mortality driver may impose greater consistency
among the subpopulations, ruling out the possibility that the mortality of the subpopula-
tions evolves in completely different ways. Nevertheless, a single mortality driver also implies
that the improvement rates of the subpopulations will be perfectly correlated, resulting in
extremely narrow interval forecasts of mortality differentials.

There are two restricted versions of the joint-κ model which are worth exploring as
alternatives for modelling mortality differentials: the “common factor” model introduced by
Li and Lee (2005) and the stratified or additive Lee-Carter model considered in Butt and
Haberman (2009) and in Debón et al. (2011). The common factor model, obtained by setting
βxg = 0, can be expressed as

log nµxtg = αx + αxg + βxκt (10)

and the stratified Lee-Carter, which also sets αxg = αg, is given by

log nµxtg = αx + αg + βxκt (11)

These two variants of the joint-κ model, although very parsimonious, may be too strin-
gent for some applications. Both models assume the same mortality improvements for all

5
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subpopulations, which implies that improvement differentials in mortality are assumed to be
non-existent and makes it impossible to draw any conclusion as to whether relative mortality
differentials are increasing or decreasing. In addition, the stratified Lee-Carter model ignores
any variation of mortality differentials with age, failing to capture the commonly observed
decrease in socio-economic differentials in mortality with rising age (Hoffmann, 2005).

2.3. The three-way Lee-Carter

The three-way extension of the Lee-Carter model proposed by Russolillo et al. (2011)
provides an additional alternative for modelling mortality differentials. This variant of the
Lee-Carter model adds a subpopulation parameter that deals with trend differences in mor-
tality. Specifically, the model is given by

log nµxtg = αxg + βxλgκt, (12)

where αxg measures the age-subpopulation-specific pattern of mortality, βx and κt have
the same interpretation as in the Lee-Carter model, and λg is a new term capturing the
variability in the improvement rates of the subpopulations. As with the joint-κ model, the
interpretation of mortality differentials is made easier if we consider the re-parametrisation

log nµxtg = αx + αxg + βxλgκt, (13)

with constraints

∑

g∈G

αxg = 0 for all x ∈ X (14)

∑

x∈X

βx = 1,
∑

t∈T

κt = 0,
∑

g∈G

λg = 1 (15)

to ensure identifiability of the model. In this new parametrisation parameters αx and αxg

capture level differentials in mortality and have the same interpretation as in the joint-κ
model. Improvement differentials in mortality are captured by parameters λg, with λg > 1
(λg < 1) meaning that mortality in subpopulation g improves at a faster (slower) rate than
mortality in the general population. As in the joint-κ model mortality forecasts are obtained
by modelling the singe mortality driver κt using a univariate random walk with drift.

The joint-κ model and the three-way Lee-Carter share similar advantages and disadvan-
tages. As the joint-κ model, the three-way Lee-Carter offers a parsimonious and transparent
way of assessing mortality differentials, but, as a result of having a single mortality driver,
it also suffers from very narrow interval forecasts of mortality differentials.

2.4. A relative modelling approach

Finally, in order to model socio-economic mortality differentials, we introduce a new
relative modelling approach whereby subpopulation mortality is modelled relative to the
mortality of a reference population, which would in most cases be the national population
of the country from which the subpopulations come from. A relative approach offers several
advantages when compared with the previously described approaches that rely exclusively on
the mortality data of the socio-economic subpopulations. First, national mortality data are

6
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normally available for a longer period than mortality data disaggregated by socio-economic
circumstances, permitting a more precise estimation of the long-run mortality trend. More-
over, modelling the subpopulations alongside the national population will ensure the consis-
tency of the subpopulation-specific mortality forecasts with the national mortality forecasts.
Second, as opposed to mortality data for socio-economic subpopulations which are normally
available in an age-grouped format, national mortality data are typically available for indi-
vidual ages, facilitating the consideration of the effect of year of birth (cohort) in mortality
which has been identified in some populations (see, e.g., Willets (2004) for the UK).

Thus, we assume that besides the subpopulation mortality experience (ndxtg, nextg), there
is available an additional experience containing the number of deaths d′xt at age x, x ∈ X ′ =:
{x′

1, . . . , x
′
k′}, in year t, t ∈ T ′ := {t′1, . . . , t

′
n′} for a reference population with corresponding

exposures e′xt, possibly covering a wider age range and a longer period of time than in the
subpopulations’ data, i.e., x′

1 ≤ x1, x
′
k′ ≥ xk + n, t′1 ≤ t1, and t′n′ ≥ tk.

With this additional data at hand, we follow a modelling approach similar to that of
Jarner and Kryger (2011) and model the subpopulations death rates, nµxtg, relative to the
reference population death rates, µ′

xt. Specifically, we model the mortality rates of the
reference population as

log µ′
xt = α′

x + β′
xκ

′
t + γ′

t−x (16)

and the mortality rates of the subpopulations as

log nµxtg = log nµ̄
′
xt + αxg + βxκtg, (17)

where

nµ̄
′
xt =

(

n−1
∏

i=0

µ′
x+i,t

)
1

n

= exp

(

1

n

n−1
∑

i=0

(

α′
x+i + β′

x+iκ
′
t + γ′

t−x−i

)

)

(18)

is the geometric average of the mortality rates in the reference population between age x
and age x + n − 1. The identifiability of the model is ensured by imposing the following
parameter constraints

∑

x∈X ′

β′
x = 1 (19)

∑

t∈T ′

κ′
t = 0 (20)

∑

z=t−x
t∈T ′,x∈X ′

γ′
z = 0 (21)

∑

x∈X

βx = 1 (22)

∑

t∈T

κtg = 0 for all g ∈ G (23)

The parametric structure defined by (16) was introduced by Renshaw and Haberman
(2006) as a generalisation of the Lee-Carter model to allow for the consideration of cohort

7
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effects. In (16), α′
x captures the general age-specific mortality pattern in the reference

population, κ′
t represents the overall time trend of mortality in the reference population,

β′
x measures the age-specific response to changes in the general level of mortality, and γ′

t−x

captures the cohort effect. This parametrisation assumes that cohorts effects are the same
for all the subpopulations, which might be reasonable for socio-economic subpopulations
within a country but might not be appropriate for the modelling of multiple populations of a
different nature such as countries. We also note that for some applications the cohort effect
might not be significant and one might consider the original Lee-Carter model, omitting γ′

t−x

from the model.
Equation (17) models mortality in the subpopulations relative to mortality in the ref-

erence population. Within this parametric structure αxg captures mortality level differen-
tials, whilst βx and κtg capture mortality improvement differentials. As in the joint-k and
three-way Lee-Carter models, the term exp(αxg) measures the average percentage devia-
tion of subpopulation g from the pattern of mortality in the reference population. The
subpopulation-specific time index κtg measures the deviations of mortality improvements in
population g from the mortality improvements of the reference population. Therefore, a
decreasing trend in κtg implies that mortality in subpopulation g is improving at a faster
rate than in the reference population, while on the contrary, an increasing trend means that
mortality is improving at a slower pace than in the reference population.

The age-modulating parameter βx indicates the magnitude of mortality improvement
differentials at each particular age. In principle, we could consider a model structure where
the age-modulating parameter is subpopulation specific (i.e., βxg as opposed to βx) as in
the augmented common factor model proposed by Li and Lee (2005). However, besides
being more parsimonious, a subpopulation-independent specification of the age-modulating
parameter is convenient in the forecasting of mortality in socio-economic subpopulations,
where an ordering of mortality levels is natural (subpopulations with lower socio-economic
conditions tend to have higher mortality than sub-populations with higher socio-economic
conditions). Notice that if subpopulation g1 has historically had lower mortality than sub-
population g2 (i.e. αx,g1 < αx,g2 for all x ∈ X ), then a sufficient condition for maintaining this
ordering in the forecasted mortality rates (i.e. nµx,tn+h,g1 < nµx,tn+h,g2 , h > 0) is βx > 0, and
(κtn+h,g1 −κtn,g1) > (κtn+h,g2 −κtn,g2), h > 0. Hence, the problem of preserving the mortality
ordering among the subpopulations reduces to modelling appropriately the multivariate time
index κtg.

Mortality rate extrapolations for the subpopulations require time series forecasts of the
multivariate period index κt := (κt,1, κt,2 . . . , κt,m)

′ as well as projected values of the mortality
rates in the general population, which in turn require times series forecasts of κ′

t and possibly
of γ′

t−x, depending on the projected trajectories of interest. We employ a random walk
with drift to model the reference population period index, and extrapolation of the cohort
parameter is not required in the case study considered in this paper. For the period index
of the subpopulations, we consider a multivariate random walk with drift (see equation (4))
so that any potential dependence among the subpopulations is captured.

2.5. Fitting the models

To fit the models we consider that subpopulation death counts are independent Poisson
responses nDxtg ∼ Poisson(nextg nµxtg) and derive parameter estimates by maximising the

8
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log-likelihood

L(ndxtg, nd̂xtg) =
∑

x∈X

∑

t∈T

∑

g∈G

ωxtg

{

ndxtg log nd̂xtg − nd̂xtg − log ndxtg!
}

, (24)

where nd̂xtg denotes the expected number of death predicted by the model and ωxtg are 0-1
weights indicating empty or omitted data cells.

For the new relative model we suppose that the reference population death counts are
also independent Poisson responses D′

xt ∼ Poisson(e′xtµ
′
xt) and estimate simultaneously the

parameters of equations (16) and (17) by maximising the total model log-likelihood under
the assumption of independence between D′

xt and Dxtg:

L(ndxtg, nd̂xtg, d
′
xt, d̂

′
xt) = Lref (d

′
xt, d̂

′
xt) + Lsub(ndxtg, nd̂xtg)

=
∑

x∈X ′

∑

t∈T ′

ω′
xt

{

d′xt log d̂
′
xt − d̂′xt − log d′xt!

}

(25)

+
∑

x∈X

∑

t∈T

∑

g∈G

ωxtg

{

ndxtg log nd̂xtg − nd̂xtg − log ndxtg!
}

,

where

nd̂xtg = nextg exp

(

1

n

n−1
∑

i=0

(

α′
x+i + β′

x+iκ
′
t + γ′

t−x−i

)

+ αxg + βxκtg

)

,

d̂′xt = e′xt exp
(

α′
x + β′

xκ
′
t + γ′

t−x

)

,

and ω′
xt, ωxtg are 0-1 weights that indicate empty or omitted data cells. In order to maximise

the log-likelihood functions, we employ suitable straightforward extensions of the Newton-
Raphson iterative procedure used by Brouhns et al. (2002) in the estimation of the Lee-Carter
model.

It is well-known that as a result of the relationship cohort = period - age, age-period-
cohort (APC) modelling is problematic (Renshaw and Haberman, 2006). Hence, the inclusion
of a cohort effect in the modelling of the reference population of the relative model makes
the fitting of this model complicated. Specifically, it has been reported that cohort-based
extension of the Lee-Carter model have a slow rate of convergence and a lack of stability
in the fitted parameters (Cairns et al., 2009). Cairns et al. (2009) suggest that these issues
might be the result of a remaining identifiability problem, with the log-likelihood function
being flat or approximately flat in certain dimensions. In fact, Hunt and Villegas (2013) have
proved that if the period index κ′

t is approximately linear, as is the case in the mortality
experience of most developed countries (Tuljapurkar et al., 2000), then an approximately
invariant parameter transformation arises. Therefore, to overcome the problems with the
fitting of the relative model we follow Hunt and Villegas (2013) and add to constraints
(19)-(23) the constraint

∑

c=t−x
t∈T ′,x∈X ′

(c− c̄)γ′
c = 0, (26)
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where c̄ = 1

k+n−1

∑

c=t−x,t∈T ′,x∈X ′ c, which combined with constraint (21) ensures that any
linear trend in the cohort effect is eliminated, and improves the stability and convergence of
the model.

3. Case study: Mortality by deprivation in England

In this section we employ the previously discussed models in the investigation of the
relationship between socio-economic circumstances and mortality in England. To this end,
we have derived a socio-economic classification of the English population using the Index
of Multiple Deprivation 2007 (IMD 2007) which measures socio-economic circumstances at
a small area level (Noble et al., 2007). The IMD 2007 is a composite index of deprivation
comprising seven deprivation domains2 and is calculated for each geographically defined
Lower Layer Super Output Area (LSOA) in England. There are 32,482 LSOAs in England
covering approximately 1,500 people each. In our analysis LSOAs are ranked and then
grouped into deprivation quintiles based on their IMD 2007 score. For each deprivation
quintile we have population and deaths estimates for the period 1981-2007, classified by
sex and age groups 50-54,. . .,80-84. Throughout this paper, we will refer to the deprivation
quintiles as Q1, Q2, Q3, Q4, and Q5, with Q1 being the least deprived quintile of the
population and Q5 the most deprived quintile. A particular feature of this dataset is that it
addresses the issues of low volume, consistency and credibility that have been encountered
in other similar datasets of mortality dissagregated by socio-economic cirmcumstances for
the English population. The details of this matter as well as the details of the compilation
of this dataset are described in Lu et al. (2012).

For the proposed new relative model, we consider deprivation-specific mortality relative to
mortality in England and Wales. Thus, we use as reference population data the England and
Wales mortality experience for calendar years 1961-2009 and individual ages 10, 11, . . . , 99,
obtained from the Human Mortality Database (2012). Despite the fact that the available
subpopulation data cover the age range 50-84 and the period 1981-2007, we use for the
reference population a wider age range, 10-99, and a longer observation period, 1961-2009,
so that more reliable estimates of the cohort effect and of the long-run mortality trend can be
produced. We exclude ages below 10 years as infant mortality tends to exhibit a significantly
different behaviour than mortality at older ages.

3.1. Comparison of the models

We first compare the models discussed in Section 2 in terms of their ability to fit and
forecast the mortality differentials in the deprivation subpopulations. Thus, we have fitted
the independent Lee-Carter model, the joint-κ model and its constrained variants the strat-
ified Lee-Carter and common factor models, the three-way Lee-Carter model, and the new
relative model using both the Lee-Carter model and the age-period-cohort model (16) for the
England and Wales reference population. Due to space constraints, we limit our comparisons

2The seven deprivations domains with their percentage participation in the index are: i) Income de-
privation (22.5%), ii) Employment deprivation (22.5%), iii) Health deprivation and disability (13.5%), iv)
Education, skills and training deprivation (13.5%), v) Barriers to housing and services (9.3%), vi) Crime
(9.3%), and vii) Living Environment deprivation (13.5%).
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Figure 1: Parameter estimates of the independent Lee-Carter model for the male deprivation subpopulations.
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Figure 2: Parameter estimates of the stratified Lee-Carter model for the male deprivation subpopulations.
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to the male population, but most of the conclusions of this section also apply to the female
population. Figures 1 to 7 present the corresponding parameters estimates for the male pop-
ulation. These parameters plots reveal a clear association between deprivation and mortality
in the English population. Specifically, αg in the stratified Lee-Carter model and αxg in all
the other models show a marked inverse relationship between deprivation and mortality, with
more deprived subpopulations having considerably higher mortality than less deprived ones.
In addition, parameters βxg of the joint-κ model, λg of the three-way Lee-Carter model, and
κtg of the relative models indicate that less deprived supbpopulations have experienced faster
mortality improvements than most deprived ones. Although this last conclusion could also
be drawn from the parameters of the independent Lee-Carter model, it is less obvious as it
requires the analysis of the interactions between βxg and κtg, underscoring one of the main
disadvantages of this approach.

A first way of evaluating the goodness of fit of the models is inspecting the standardised
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Figure 3: Parameter estimates of the common factor model for the male deprivation subpopulations.
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Figure 4: Parameter estimates of the joint-κ model for the male deprivation subpopulations.
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Figure 5: Parameter estimates of the three-way Lee-Carter model for the male deprivation subpopulations.
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Figure 6: Parameter estimates of the relative model for the male deprivation subpopulations with Lee-Carter
reference.
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Figure 7: Parameter estimates of the relative model for the male deprivation subpopulations with age-period-
cohort reference.
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deviance residuals of the fitted subpopulation model

rxtg = sign(ndxtg − nd̂xtg)

√

dev(x, t, g)

φ̂
, φ̂ =

D(ndxtg, nd̂xtg)

N − ν
(27)

and, when applicable, the deviance residuals of the reference population model

r′xt = sign(d′xt − d̂′xt)

√

dev′(x, t)

φ̂
, φ̂′ =

D′(d′xt, d̂
′
xt)

N ′ − ν ′
, (28)

where

D(ndxtg, nd̂xtg) =
∑

x∈X

∑

t∈T

∑

g∈G

dev(x, t, g) =
∑

x∈X

∑

t∈T

∑

g∈G

2ωxtg

{

ndxtg log
ndxtg

nd̂xtg
− (ndxtg − nd̂xtg)

}

,

D′(d′xt, d̂
′
xt) =

∑

x∈X ′

∑

t∈T ′

dev′(x, t) =
∑

x∈X ′

∑

t∈T ′

2ω′
xt

{

d′xt log
d′xt

d̂′xt
− (d′xt − d̂′xt)

}

,
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Figure 8: Parameter estimates of the relative model for the female deprivation subpopulations with age-
period-cohort reference.
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N =
∑

xtg ωxtg, N ′ =
∑

xt ω
′
xt are the number of observations in the subpopulation

and reference population data, respectively, ν is the effective number of parameters in the
subpopulation part of the model, and ν ′ is the effective number of parameters in the reference
population part of the model3. Regular patterns in the residuals are a sign of the inability
of the model to describe all of the phenomena appropriately.

Figures 9 plots the standardised deviance residuals of the models without a reference
population, whereas Figure 10 plots the residuals of the relative models with a reference
population. The residuals of the stratified Lee-Carter model show systematic patterns by
age and calendar time, indicating that deprivation subpopulations do not satisfy the under-

3For example, the stratified Lee-Carter model (11) requires the estimation of k values of αx, m values
of αg, k values of βx and n values of βx, totalling 2k + m + n parameters, but since the parameters have
to satisfy the constraints

∑

x βx = 1,
∑

t κt = 0 and
∑

g αg = 0, the effective number of parameters is
ν = 2k + m + n − 3. For the relative model with age-period-cohort reference we take v′ as the number of
parameters in the reference population equation (16) less 4 to account for constraints (19)-(21), (26) and v as
the number of parameters that appear exclusively in the subpopulation equation (17) less 2 for constraints
(22) and (23).
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Figure 9: Deviance residuals for the models without a reference population applied to the male deprivation
subpopulations.
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(a) Lee-Carter: log nµxtg = αxg + βxgκtg
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(b) Stratified Lee-Carter: log nµxtg = αx + αg + βxκt
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(c) Common factor: log nµxtg = αx + αxg + βxκt
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(d) Joint-κ: log nµxtg = αx + αxg + (βx + βxg)κt
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(e) Three way Lee-Carter: log nµxtg = αx + αxg + βxλgκt
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Figure 10: Deviance residuals for the models with a reference population applied to the male deprivation
subpopulations.
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(a) Lee-Carter reference: log µ′

xt = α′

x + β′

xκ
′

t
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(b) Age-period-cohort reference: log µ′

xt = α′

x + β′

xκ
′

t + γt−x

Note: The first row of each subfigure displays the residuals for the reference population and the second row

of each subfigure displays the residuals for the deprivation subpopulations.

lying model assumption that on a log scale the age-specific mortality profile of the subgroups
defined by the extra variate (g) deviate parallelly from the population age-specific mortality
profile. The common factor model does not exhibit any clear pattern by age and depriva-
tion quintile, signifying that it captures satisfactorily mortality level differentials among the
deprivation subpopulations. However, this model assumes that mortality level differentials
are constant over time, failing to capture differences in the rate of mortality improvement
as revealed by the diagonal patterns observed in the calendar year residual plots. The in-
dependent Lee-Carter model, the joint-κ model and the three-way Lee-Carter model do not
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exhibit any clear pattern in their residual plots, suggesting that all three models capture
successfully both mortality level and mortality improvement differentials among the depri-
vation subgroups. In Figure 10 we observe a distinctive ripple effect in the year-of-birth
residual plots under the Lee-Carter model for the reference population, indicating a failure
to capture cohort effects. This contrasts with the absence of any major distinctive pattern
in both the reference population and subpopulation residual plots under age-period-cohort
modelling, indicating the success of this model in capturing the main effects of the reference
population as well as in capturing mortality differentials in the deprivation subpopulations.

When assessing the goodness of fit of different models, it is natural that models with
more parameters provide a better fit to the data. Therefore, we use information criteria to
rule out the possibility that the better fit observed in a model is a result of overparametrisa-
tion. Information criteria modify the maximum likelihood criterion by including a penalty
function so that overparametrised models are penalised. Here, we consider the Bayes Infor-
mation Criterion (BIC) which has been proposed by Cairns et al. (2009) for the quantitative
comparison of mortality projection models. This criterion is given by BIC = L−0.5ν logN ,
where L denotes the maximum log-likelihood of the model and ν is the effective number
of parameters of the model. From this definition, it is clear that models with higher BIC
values are preferable. In order to allow the comparison between models with and with-
out a reference population, for models with a reference population we take the total model
log-likelihood as being comprised of a reference population part, Lref , and a subpopula-
tion part, Lsub, as in equation (25), and report thus the two corresponding BIC values
BICref = Lref − 0.5ν ′ logN ′ and BICsub = Lsub − 0.5ν logN .

Table 1 contains BIC values for each of the seven adjusted models, together with their
respective rankings (in brackets). The small BIC values for the stratified Lee-Carter model
and the common factor model confirm the inability of these models to capture adequately
the differentials in mortality of the deprivation subpopulations. We observe that the relative
model with age-period-cohort reference, the only model capturing the cohort effect, is by
far on top of the subpopulation BIC ranking. This model is followed by the joint-κ model,
the relative model with Lee-Carter reference and the three-way Lee Carter, all of them with
very close matching statistics. We also note that among models with a reference population,
the age-period-cohort model performs much better than the Lee-Carter model, providing
evidence of the existence of a cohort effect.

It is possible that a model has good in-sample-fit but produces poor ex-post forecast,
that is, forecasts that deviate significantly from the realised outcomes. Therefore, in addi-
tion to the assessment of goodness of fit, it is necessary to evaluate the ex-post forecasting
performance of the models using suitable backtesting methods. For that purpose, we apply a
expanding horizon backtest as proposed by Dowd et al. (2010). This backtesting procedure
entails the following steps:

(a) Select a metric of interest, that is, the forecasted variable which is the focus of the back-
test. Since our interest is forecasting both individual subpopulation mortality rates and
mortality rates differentials among the subpopulations, we base our backtest exercise
on the subpopulation-specific probability of dying between ages 50 and 85, 35q50,t,g,
as well as on the ratio of this probabilities in the most and least deprived subpopula-
tions, 35q50,t,Q5/35q50,t,Q1, and in the fourth and second IMD quintiles of the population,
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Table 1: Log-likelihood L, effective number of parameters ν, and BIC values for the different models applied
to the male deprivation subpopulations.

Subpopulations Reference population
Model ν L BIC ν ′ L BIC

Independent LC 195 -6 448 -7 116(5) - - -
Stratified LC 43 -22 770 -22 918(7) - - -

Common factor 66 -7 827 -8 053(6) - - -
Joint-k 94 -6 538 -6 860(2) - - -

Three way LC 71 -6 670 -6 913(4) - - -
Relative (LC reference) 171 -6 310 -6 896(3) 227 -31 025 -31 997(2)
Relative (APC reference) 171 -5 630 -6 216(1) 353 -23 251 -24 001(1)

35q50,t,Q4/35q50,t,Q2, with 35q50,t,g calculated on a period basis using the expression

35q50,t,g = 1− (1− 5q50,t,g) (1− 5q55,t,g) · · · (1− 5q80,t,g)

where

5qx,t,g =
5 5µx,t,g

1 + 2.5 5µx,t,g

, x = 50, 55, . . . , 80.

(b) Select the historical “lookback” period used to estimate the parameters of the model
and select the time horizon over which the forecasts will be made. We fit the models
over the restricted period 1981-2000 and perform forecasts for the period 2001-2007.

(c) Compare graphically the forecasts against realised outcomes of the metrics of inter-
est. We plot 95% prediction intervals (fan charts) of the metrics of interest obtained
by simulating 10 000 paths of the period indexes of each of the models with realised
outcomes of the metrics superimposed. We note that these prediction intervals ignore
any provision for parameter uncertainty.

We exclude the stratified Lee-Carter model, the common factor model, and the relative
model with Lee-Carter reference from the backtesting exercise as these models show a poor
performance in terms of in-sample-fit. For the independent Lee-Carter model, we include
both the forecasted intervals using independent random walks with drift for each subpopu-
lation’s period index and using a multivariate random walk with drift. Figure 11 shows the
comparison of the prediction intervals and the realised outcomes of the metrics of interest.
From this figure we note the following:

• The consistent underestimation of mortality decline by all the models with the excep-
tion of the relative model with an age-period-cohort reference, giving evidence that the
possibility of capturing cohort effects results in substantial improvements in forecasting
performance.

• The exact agreement between prediction intervals of subpopulation mortality rates of
the two alternative forecasting methods for the independent Lee-Carter model, but the
difference in the prediction intervals of the mortality differentials, with the independent
random walk approach resulting in excessively wide prediction intervals.
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Figure 11: Predicted and realised outcomes of the backtesting metrics for the period 2001-2007.
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(a) Lee-Carter with independent random walk with drift
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(b) Lee-Carter with multivariate random walk with drift
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(c) Joint-κ
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(d) Three-way Lee-Carter
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(e) Relative model with APC reference

Note: Left and central frames depict the values for 35q50,t,g and right frames depict the values for

35q50,t,Q5/35q50,t,Q1 and 35q50,t,Q4/35q50,t,Q2
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• The extremely narrow prediction intervals of mortality differentials produced by the
joint-κ model and the three-way Lee-Carter model, which is a result of the perfect
correlation of subpopulation mortality improvements induced by the use of a single
mortality driver for all the subpopulations. Therefore, although these two models
show reasonable goodness of fit and provide a transparent framework for quantify-
ing historical mortality differentials, they are likely to underestimate the uncertainty
associated with the predictions of mortality differentials.

• The relatively poor performance of all the models in the forecasting of mortality dif-
ferentials with a consistent underestimation of the widening of mortality differentials.
Nevertheless, the relative model with a age-period-cohort reference shows the best per-
formance, with central predictions that deviate the least from the realised outcomes
and predictions intervals that match the observed variability.

In summary, the independent Lee-Carter model, the joint-κ model, the three-way Lee-
Carter model and the relative model with age-period-cohort reference all succeed in fitting
historical mortality differentials in the English male population, with the latter model out-
performing the others according to the BIC criterion. In addition, the relative model with
age-period-cohort reference outperforms the others in terms of ex-post evaluation of the
model predictions. Equivalent analyses - not shown here - for the female population lead to
similar conclusions. For these reasons, our subsequent discussions on the differentials in mor-
tality across deprivations quintiles will be based on the relative model with age-period-cohort
reference.

3.2. Historical mortality differentials: 1981-2007

We now use the new relative model with age-period-cohort reference to analyse the socio-
economic differentials in mortality observed in the English male and female populations
during the period 1981-2007. Figures 7 and 8 depict the corresponding parameter estimates
for the male and female populations, respectively.

We first turn our attention to the parameter estimates of the England and Wales reference
populations. The main age-effects plots (α′

x vs. x) for both sexes have the usual features
of static life tables, with a more pronounced accident hump in males and lighter mortality
in females. For both males and females, the period index plot (κ′

x vs. t) exhibits a steady
decline in mortality with a mild curvature. For both genders, the plot of the age-modulating
parameter β′

x reveals that the ages in the range 20-40 have experienced the slowest mortality
decline, with β′

x being even negative for the male experience. This result coincides with the
pronounced decrease in the rate at which mortality improved in the last quarter of the past
century reported by Renshaw and Haberman (2003) for both males and females in the age
band 20-40. Finally, the plots of the cohort effect (γ′

t−x vs. t− x) for both sexes are similar
and reveal the impact of the 1919 influenza pandemic and the rapid mortality improvement
experienced by the generation born between 1925 and 1945 as reported by Willets (2004).
It is worth mentioning that the cohort effect for the generations born after 1945 need to be
interpreted with care as they only reflect the behaviour of mortality at young and middle
ages, and it is not totally clear whether these effects will still hold at older ages.

The subpopulation parameters reveal very different subpopulation mortality rate levels as
well as very different evolutions of these rates over time. In particular, the plots of exp(αxg)

21

Page 21 of 34

Society of Actuaries 475 N. Martingale Rd. Schaumberg, IL 60173

NORTH AMERICAN ACTUARIAL JOURNAL



F
O

R
 P

E
E
R

 R
E
V
IE

W

show a steep increase in mortality rate levels with increasing deprivation. For instance,
during the period 1981-2007 males age 50-54 in the least deprived quintile experienced 36%
lower mortality than the reference population, which contrasts with the 65% higher mortality
experienced by males age 50-54 in the most deprived quintile. Significant differences in the
level of mortality are observed for both genders and all ages, though with varying magnitudes.
Males show higher mortality level differentials than females. For instance, while for males
age 60-64 the ratio between mortality in the most deprived and the least deprived quintile,
exp(αx,Q5)/exp(αx,Q1 ), is 2.25, for females this ratio reduces to 2.11. In addition, mortality
level differentials narrow with age. At age 50-54 males and females in the most deprived
quintile have respectively 2.57 and 2.03 higher mortality than persons of the same sex and
age in the least deprived quintile. By contrast, at age 80-84 males and females in the
most deprived quintile have respectively 1.31 and 1.22 higher mortality than persons of the
same sex and age in the least deprived quintile. This decrease in socio-economic mortality
differences with rising age is commonly reported in mortality research (Hoffmann, 2005).

The plots of κtg indicate that, in spite of the overall decrease in mortality levels, the
more deprived quintiles have experienced slower mortality reductions than the less deprived
ones, evidencing a widening of the mortality gap between the least and the most deprived
areas of England. The sharp deceleration after 1997 in the pace of mortality improvement
of the most deprived quintile of the female population indicated by κt,Q5 is particularly
noticeable. For both males and females, it is also worth noticing the close alignment between
the period indexes for the two least deprived quintiles, κt,Q1 and κt,Q2, which contrasts
with the marked differences in the corresponding level parameters αx,Q1 and αx,Q2. This
indicates that despite the fact that there are material level differences between these two
subpopulations, improvement differences are negligible.

The plots of βx show that in the male population the highest differentials in the rate of
mortality improvement are observed at ages 50-54 and 60-64, whereas in the female popula-
tion the greatest mortality improvement differentials are achieved at ages 70-74 and 75-79.
We also notice that at ages 55-59 and 60-64 females from all deprivation quintiles have
experienced more or less the same mortality reduction. For males, we see a decline in mor-
tality improvement differentials with rising age similar to that observed in mortality level
differentials. Nonetheless, this inverse relationship between age and mortality improvement
differential does not hold for females. In fact, from age group 55-59 until age group 75-79
improvement differences increase with age.

3.3. Mortality differential projections

In order to project age-subpopulation-specific mortality rates and examine the possible
future evolution of mortality differentials, we extrapolate the period indexes κ′

t and κtg.
The presence of a mild curvature in κ′

t complicates its forecasting. Although second order
ARIMA models should produce good time series fits, Haberman and Renshaw (2009) argue
against the use of this approach as it tends to produce excessively wide prediction intervals.
Therefore, we instead follow Haberman and Renshaw (2009) and curtail the time series
at a perceived point of departure from linearity. To assist with this subjective task, we
monitor the profile of the R2 linear regression goodness-of-fit statistic, constructed backwards
following the approach proposed by Denuit and Goderniaux (2005). For both males and
females, the R2 statistic attains a maximum around 1980: thus, we model κ′

t post 1980 using
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Figure 12: Period index time series for the England and Wales reference population (modelled post 1980).

1960 1970 1980 1990 2000 2010 2020 2030
0.9

0.92

0.94

0.96

0.98

1
R

2
 vs. t

calendar year (t)

1960 1970 1980 1990 2000 2010 2020 2030
−3

−2

−1

0

1

2

3
Residuals vs. t

calendar year (t)

1960 1970 1980 1990 2000 2010 2020 2030
−70

−50

−30

−10

10

30

50
κ’

t
 vs. t

calendar year (t)

(a) Male population

1960 1970 1980 1990 2000 2010 2020 2030
0.9

0.92

0.94

0.96

0.98

1
R

2
 vs. t

calendar year (t)

1960 1970 1980 1990 2000 2010 2020 2030
−3

−2

−1

0

1

2

3
Residuals vs. t

calendar year (t)

1960 1970 1980 1990 2000 2010 2020 2030
−70

−50

−30

−10

10

30

50
κ’

t
 vs. t

calendar year (t)

(b) Female population

Note: First row: R2 goodness of fit statistics. Second row: random walk with drift time series residuals.

Third row: time series with predictions and with 95% prediction intervals.

a random walk with drift. The corresponding residual and time series plots, together with
R2 profiles are presented in Figure 12.

Since κtg does not show any significant departure from linearity, we use a multivariate
random walk with drift to model its dynamics. We recall from Section 2 that this approach
permits the consideration of correlations in the mortality evolution of the different subpop-
ulations which is a necessary feature for the adequate estimation of prediction intervals of
mortality differentials.

We use the forecasted values of κ′
t and κtg together with the estimated α′

x, β
′
x, γ

′
t−x, αxg,

and βx to obtain forecasts of subpopulation specific mortality rates for ages 50-84 up to year
2030. We note that forecasts for this period and age range do not require the extrapolation
of the cohort component.

These projected mortality rates are then employed to compute: the ratio between the
mortality rates of the most and least deprived quintiles 5µx,t,Q5

/5µx,t,Q1
, the difference be-

tween the mortality rates of the most and least deprived quintiles 5µx,t,Q5
− 5µx,t,Q1

, subpop-
ulation specific period life expectancies

e̊xtg = 0.5 +
110−x
∑

h=1

hpxtg, (29)

and the life expectancy gap between the most and least deprived quintiles e̊x,t,Q1
− e̊x,t,Q5

,
where hpxtg = pxtgpx+1,t,g · · · px+h−1,t,g and pxtg = exp(−µxtg).

The implementation of the period life expectancy formula (29) requires subpopulation
mortality rates, µxtg, for individual ages x, x+1, . . . , 110, which are not available due to the
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Figure 13: Time series of fitted and forecasted mortality rates 5µxtg for the deprivation subpopulations.
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Note: The lines labelled “E&W” correspond to the fitted and projected values of 5µ̄
′

xt for the England and

Wales reference population.

age-grouped format of our subpopulation dataset and its truncation at age 84. To tackle this
problem, we set µ′

110,t = 0.7 and extrapolate the England and Wales mortality rates along
the age axis up to age 110 using the topping-out by age technique proposed by Haberman
and Renshaw (2009). This technique, which is a variant of the widely used demographic
method introduced by Coale and Kisker (1990), uses the quadratic differencing formula

uj = log q′99+j,t+j = a+ bj + cj(j + 1), (30)

q′99+j,2009+j = 1− exp(−µ′
99+j,2009+j), j = −1, 0, . . . , 11,

which requires u−1 = log q′98,t−1, u0 = log q′99,t and u11 = log q′110,t+11.
These extrapolated mortality rates are then used as a reference to expand the abridged

subpopulation mortality rates under the assumptions that 5µxtg/5µ̄
′
xt ≈ µx+2,t,g/µ

′
x+2,t and

that mortality differences vanish at age 100. More specifically, for ages x ≤ 82 we inter-
polate log-linearly the mortality ratio µx,t,g/µ

′
x,t after setting µx+2,t,g/µ

′
x+2,t = 5µxtg/5µ̄

′
xt,

x ∈ {50, 55, . . . , 80}; for ages 82 < x ≤ 99, which are outside the observable age range, we
modify (30) and use the differencing formula

uj = log

∣

∣

∣

∣

log
µ82+j,t,g

µ′
82+j,t

∣

∣

∣

∣

= a+ bj + cj(j + 1), j = −1, 0, . . . , 17, (31)

with u−1 = log
∣

∣log µ81,t,g

/

µ′
81,t

∣

∣, u0 = log
∣

∣log µ82,t,g

/

µ′
82,t

∣

∣ and u17 = log 0.01; and for ages
100 ≤ x ≤ 110 we set µxtg/µ

′
xt = 1.
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Figure 14: Time series of mortality rate differentials between the most and least deprived quintiles of the
population.
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Note: Values prior to 2007 are observed differentials and values post 2007 are projected differentials.

Figure 13 depicts the projected evolution of deprivation-specific mortality rates at se-
lected ages. A key feature of note is that these projected mortality rates exhibit a coherent
behaviour, in the sense that they are consistent with the England and Wales forecasted rates
and that there are no cross-overs between the subpopulations. This is a major characteristic
of mortality projections produced using the relative modelling approach proposed in this
paper. The forecasted fast decline of mortality rates at age 75-79, especially in the female
population, is also particularly noteworthy. This feature is a reflection of the faster mortality
decline experienced by those born between 1925-1945 captured by the cohort parameters of
the reference population.

Figure 13 suggests a tendency to convergence in the mortality rates of the deprivation
subpopulations. To investigate further this feature, we display in Figure 14 the relative mor-
tality difference between the most and least deprived quintiles, 5µx,t,Q5

/5µx,t,Q1
, as well as the

corresponding absolute mortality difference, 5µx,t,Q5
− 5µx,t,Q1

. In relative terms, we observe
a widening of the mortality differences between the extreme deprivation quintiles, reflecting
the slowest mortality improvements experienced by the most deprived subpopulation. By
contrast, in absolute terms, with the exception of some old ages in the female population, a
general narrowing in mortality differences is observed. Therefore, when drawing conclusions
on the widening or narrowing of mortality differences, the reference measure needs to be
clearly stated.
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Figure 15: Central projections and 95% prediction intervals of mortality rate differences at age 65-69.
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Figure 15 presents a closer look at mortality differentials projections at age 65-69: central
predictions are accompanied with 95% prediction intervals (fan charts) obtained by simulat-
ing 10 000 paths of the random walk model of κ′

t and the multivariate random walk model
of κtg. For both sexes a widening of mortality relative differentials is projected, although
with a steeper trend and sligthly wider prediction intervals for males. Whereas for men
the mortality rate at age 65-69 in 2030 of the most deprived quintile is forecasted to be
between 2.5 and 3.2 times the mortality rate of the least deprived quintile, for women the
ratio between the mortality rate at age 65-69 of the the most deprived quintile and the least
deprived quintile is projected to range between 2.3 and 2.9.

Forecasted period life expectancies at age 65 together with the life expectancy gap be-
tween the most and least deprived quintiles are displayed in Figure 16. We note that despite
the overall increase in life expectancy, the most deprived quintile has gained fewer years in
life expectancy than the least deprived quintile. Specifically, the life expectancy gap between
the most and the least deprived quintile increased from 2.9 years for males and 2.3 for fe-
males in 1981 to 3.8 and 3.2 years in 2007, respectively. For males, the life expectancy gap
is projected to reach a value of 4 years in 2030 with a 95% confidence interval of 3.5-4.5
years. For females, the life expectancy gap is forecasted to remain practically unchanged at
3.1 years, but with a considerably wide prediction interval of 2.6-3.9 years in 2030.
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Figure 16: Historical and projected period life expectancies and life expectancy gap at age 65.
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Note: The lines labelled “E&W” correspond to period life expectancies for the England and Wales reference
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intervals.

3.4. Implications for life annuities

In order to assess the financial implications of socio-economic mortality differentials, in
this section we investigate the variability of annuities values across deprivation subgroups.

A typical practice in the valuation of annuities is to vary the baseline mortality assump-
tions according to socio-economic characteristics, but to assume the same future mortality
improvements for all individuals, regardless of their socio-economic characteristics (Madrigal
et al., 2011; Lu et al., 2012). Therefore, to examine the extent to which these assumptions
are reasonable, we consider two alternative mortality scenarios. In a first scenario we suppose
that there are both level and improvement differences in mortality and compute projected
mortality rates using the full forecasting model:

nµx,2007+j,g = nµ̄
′
x,2007+j exp (αxg + βxκ2007+j,g) , j > 0. (32)

In a second scenario we assume that improvement differentials are non-existent and take
mortality differences as being fixed at their 2007 level. Thus, we project mortality rates
using the expression

nµx,2007+j,g = nµ̄
′
x,2007+j exp (αxg + βxκ2007,g) , j > 0, (33)
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Table 2: Percentage increase/decrease in annuity rates over the England and Wales annuity rate

Males

Scenario 1: Scenario 2:
Level and improvement differences Only level differences

Age E&W Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

50 18.71 4.5% 2.7% 0.8% -2.7% -8.8% 4.1% 2.5% 0.8% -2.1% -7.2%
55 17.23 5.3% 3.1% 0.9% -3.1% -9.7% 5.0% 2.9% 1.0% -2.5% -8.2%
60 15.55 6.1% 3.5% 1.0% -3.4% -10.3% 5.8% 3.3% 1.0% -2.8% -8.9%
65 13.53 6.9% 3.9% 1.1% -3.5% -10.4% 6.6% 3.7% 1.1% -3.0% -9.2%
70 11.37 7.4% 3.9% 1.1% -3.4% -10.0% 7.1% 3.8% 1.1% -3.0% -9.1%
75 8.93 7.7% 3.9% 1.1% -3.0% -9.0% 7.4% 3.8% 1.1% -2.7% -8.4%
80 6.58 7.0% 3.4% 1.3% -2.0% -6.8% 6.9% 3.4% 1.3% -1.8% -6.4%

Females

Scenario 1: Scenario 2:
Level and improvement differences Only level differences

Age E&W Q1 Q2 Q3 Q4 Q5 Q1 Q2 Q3 Q4 Q5

50 19.23 2.9% 1.7% 0.4% -1.7% -5.4% 2.6% 1.5% 0.5% -1.2% -4.2%
55 17.99 3.4% 1.9% 0.4% -1.9% -6.1% 3.1% 1.7% 0.5% -1.4% -4.9%
60 16.28 4.2% 2.3% 0.6% -2.3% -7.1% 3.9% 2.1% 0.6% -1.7% -5.8%
65 14.59 4.6% 2.5% 0.5% -2.4% -7.6% 4.2% 2.2% 0.5% -1.9% -6.4%
70 12.44 5.1% 2.5% 0.5% -2.4% -7.8% 4.7% 2.3% 0.6% -1.9% -6.8%
75 9.99 5.0% 2.2% 0.5% -2.2% -7.3% 4.8% 2.0% 0.5% -1.8% -6.5%
80 7.42 4.4% 1.6% 0.5% -1.5% -5.7% 4.2% 1.5% 0.4% -1.2% -5.1%

Note: The column “E&W” presents the annuity rate for a person in England and Wales age x in 2007 at a
4% interest rate.

which assumes that the mortality improvements of all the subpopulations follow the same
behaviour of the improvements of the England and Wales reference population. Table 2
presents for these two mortality scenarios the percentage deviation of the annuity rate of each
deprivation quintile with respect to the comparable England and Wales annuity rate. The
values presented correspond to level immediate annuities for individuals age 50, 55, . . . , 80 in
2007, computed under the cohort trajectory4 and assuming an interest rate of 4%. Referring
to Table 2 we note the following:

• As expected, annuity values decrease significantly as the level of deprivation increases.
For example, under the assumption of both level and improvement differentials in
mortality, the annuity rate at age 65 for males in the most deprived quintile is 10.4%
less than the corresponding rate for the England and Wales population. This contrasts
with a 6.9% excess for males age 65 in the least deprived quintile compared to the
England and Wales population.

• Although mortality differentials decrease with rising age, the impact of these differen-

4As opposed to a period approach, a cohort approach makes full allowance for the future evolution of
mortality rates. Thus, the annuity rate for an individual of subpopulation g age x in year t is computed
using mortality rates µxtg, µx+1,t+1,g, µx+2,t+2,g . . . , µ110,t+110−x,g
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tials on annuity values does not decrease significantly with age, and, in some cases, can
even increase. For instance, at age 80 the annuity rate for males in the least deprived
quintile is 7.0% higher than the corresponding annuity rate for the whole of the Eng-
land and Wales population, which is an even greater difference than the 4.5% observed
at age 50.

• The impact of improvement differentials on the valuation of annuities is in general of
second order when compared to that of level differentials. In fact, for most ages and
deprivation subgroups the difference between annuity rates computed under the two
alternative mortality scenarios is less than 0.7%. This difference is only significant
for the youngest ages of the most deprived quintile, reaching a maximum of 1.6% at
age 50 in the male population. These results suggest that assuming the absence of
improvement differentials in mortality is in principle reasonable for the valuation of
annuities. In contrast, the correct estimation of initial socio-economic differentials in
mortality is critical in the pricing and reserving of annuities and pensions.

• The variability of annuity rates by socio-economic characteristics can be more sig-
nificant than the variability of annuity rates by gender. For instance, at age 65 the
percentage difference between the annuity rate for females and males in England and
Wales is 14.59/13.53 − 1 = 7.8%, whereas the percentage difference between the an-
nuity rate for the two extreme deprivations quintiles is 6.9%− (−10.4%) = 17.3% and
4.6%− (−7.6%) = 12.2%, for males and females, respectively. Although in this simple
comparison the significance of socio-economic circumstances is exaggerated by the fact
that deprivation quintile is a multilevel factor while gender is a binary factor, this
result is still interesting in view of the recent European Court of Justice ruling that
insurance premiums and benefits after 21 December 2012 should be gender neutral
(Court of Justice of the European Union, 2011), and, hence, socio-economic character-
istics might be a candidate for substituting part of the role of gender in the pricing of
annuities.

4. Discussion

In this paper we have examined a number of alternatives for the modelling and forecast-
ing of socio-economic differentials in mortality, including several existing multipopulation
extensions of the Lee-Carter model and a newly proposed relative model. An application
to deprivation subpopulations in England showed that in the presence of both level and im-
provement differentials, the new relative model exhibits the best results in terms of goodness
of fit and forecasting performance. A key feature for the success of this model is the possi-
bility of relying on the wider mortality experience of a reference population which enables
the consideration of cohort effects and a more reliable estimation of the long-run mortality
trend.

We note, however, that in other applications with different aims and using datasets with
other characteristics, a different model might be appropriate. For instance, if the focus of the
study is on the assessment of historical mortality differentials rather than on their forecasting,
the joint-κ model and the three-way Lee-Carter model deserve serious consideration. Given
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the commonly observed widening of relative mortality differentials and the decrease in socio-
economic mortality differentials with rising age, models that are not able to capture any of
these features, such as the common factor model and the stratified Lee-Carter, are likely
to be too rigid for most applications. In spite of that, these models may still be applied
successfully in situations where there are data limitations and more parsimonious models
are preferred, or in the study of mortality differentials in populations of a different nature.
An example of the later is the application of the stratified Lee-Carter in the modelling of
mortality in Spanish regions discussed in Debón et al. (2011).

A noticeable advantage of the Lee-Carter based methods discussed in this paper is that
they offer a simple methodology for projecting subpopulation-specific mortality rates. How-
ever, since these methods are based on pure extrapolation of past trends, they assume that
socio-economic mortality improvement differentials will remain constant in the future, ig-
noring the fact that policy interventions for reducing health inequalities will likely change
the future mortality gradient. Nevertheless, many of the factors behind health inequalities
change very slowly and, hence, the assumption that relative mortality differentials will not
narrow seems a reasonable starting point for forecasting (Wanless et al., 2012).

A simplifying assumption of the relative model introduced in this paper is that cohort
effects are the same between socio-economic subpopulations. However, there is some evidence
that cohort effects may vary across socio-economic subgroups. For instance, it has been
reported that the cohort effect for assured lives, who are more likely to belong to higher
socio-economic subgroups, is centred in a slightly earlier generation than seen in the general
population of England and Wales (CMI Bureau Mortality Sub-Committee, 2002; Willets,
2004). Consequently, the development of models that allow for socio-economic variations in
cohort effects deserves further investigation.

In the second part of this paper we have applied the new proposed relative model to
analyse the extent of mortality differentials across deprivation subgroups in England during
1981 through 2007. This analysis reveals a clear association between area deprivation and
mortality rates, with people living in more deprived areas having higher mortality rates
than those living in less deprived areas. The mortality differentials found in this study are
substantial. In fact, at some ages the mortality rates of the most deprived quintile can be
more than twice the mortality rates of the least deprived quintile. In addition, our analysis
indicates a widening of the relative mortality gap between more and less deprived areas of
England, mainly as a result of the slower mortality improvements experienced by the lowest
socio-economic subgroups.

It has been shown that socio-economic differences in mortality have a significant impact
on the pricing of life annuities. Moreover, despite the fact that socio-economic differences
in mortality tend to decrease with age, it was found that their financial impact is still very
significant at old ages. These results become more relevant in light of the European Court
of Justice ban on the use of gender as an underwriting variable. With gender removed
from the list of admissible rating factors, socio-economic related rating factors gain relative
importance in the modelling of longevity risk.

Finally, we recognise some data issues that might distort our results on the association
between mortality and deprivation. First, our quintile groups are defined using the IMD
2007, implicitly assuming that the relative ranking by deprivation of small areas in England
remained unchanged over the 1981-2007 period. Second, it is plausible that healthier people
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will tend to move from more deprived areas to less deprived ones and vice versa, resulting in
a potential bias toward higher mortality inequalities. However, previous studies have shown
that the majority of small areas in England have stayed in the same deprivation quintile
over our period of study (Norman, 2009; Lu et al., 2012), and that selective migration has
a negligible impact on the analysis of trends in mortality inequalities (Norman et al., 2005).
A detailed discussion of these two issues with particular reference to the dataset used in this
paper is provided by Lu et al. (2012, Appendix A).

5. Acknowledgments

We are grateful for comments received at the Longevity 8 Conference in Waterloo, Canada
in 2012; at the Demographic Analysis and Research International Conference in Chania,
Greece in 2012; and at a presentation for the Longevity Science Advisory Panel. We would
also like to thank to Ana Debón and Andrew Hunt for the comments received on an earlier
version of this paper and to Madhavi Bajekal for the fruitful discussions on socio-economic
differentials in mortality.

References

Brouhns, N., Denuit, M., Vermunt, J., Dec. 2002. A Poisson log-bilinear regression approach
to the construction of projected lifetables. Insurance: Mathematics and Economics 31 (3),
373–393.

Brown, J. R., Dec. 2002. Differential Mortality and the Value of Individual Account Retire-
ment Annuities. In: Feldstein, M., Liebman, J. B. (Eds.), The Distributional Aspects of
Social Security and Social Security Reform. University of Chicago Press.

Butt, Z., Haberman, S., 2009. Ilc: A collection of R functions for fitting a class of Lee-
Carter mortality models using iterative fitting algorithms. Actuarial Research Paper, Cass
Business School.

Cairns, A. J., Blake, D., Dowd, K., Coughlan, G. D., Epstein, D., Ong, A., Balevich, I.,
2009. A quantitative comparison of stochastic mortality models using data from England
and Wales and the United States. North American Actuarial Journal 13 (1), 1–35.

Carter, L. R., Lee, R. D., 1992. Modeling and forecasting US sex differentials in mortality.
International Journal of Forecasting 8 (3), 393–411.

CMI Bureau Mortality Sub-Committee, 2002. Working Paper 1: An interim basis for ad-
justing the ’92 Series’ mortality projections for cohort effects. CMI, London.

Coale, A., Kisker, E., 1990. Defects in data on old age mortality in the United States: New
procedures for calculating approximately accurate mortality schedules and life tables at
the highest ages. Asian and Pacific Population Forum 4, 1–31.

Coughlan, G. D., Khalaf-Allah, M., Ye, Y., Kumar, S., Cairns, A. J., Blake, D., Dowd, K.,
2011. Longevity hedging 101: A framework for longevity basis risk analysis and hedge
effectiveness. North American Actuarial Journal 15 (2), 150–176.

31

Page 31 of 34

Society of Actuaries 475 N. Martingale Rd. Schaumberg, IL 60173

NORTH AMERICAN ACTUARIAL JOURNAL



F
O

R
 P

E
E
R

 R
E
V
IE

W

Court of Justice of the European Union, 2011. Taking the gender of the insured individ-
ual into account as a risk factor in insurance contracts constitutes discrimination. Press
Release, No 12/11.

Debón, A., Montes, F., Mart́ınez-Ruiz, F., Dec. 2011. Statistical methods to compare mor-
tality for a group with non-divergent populations: an application to Spanish regions.
European Actuarial Journal 1 (2), 291–308.

Delwarde, A., Denuit, M., Guillén, M., Vidiella-i Anguera, A., 2006. Application of the
Poisson log-bilinear projection model to the G5 mortality experience. Belgian Actuarial
Bulletin 6 (1), 54–68.

Denuit, M., Goderniaux, A.-C., 2005. Closing and projecting life tables using log-linear
models. Bulletin of the Swiss Association of Actuaries (1), 29–48.

Dowd, K., Cairns, A. J., Blake, D., Coughlan, G. D., Epstein, D., Khalaf-Allah, M., 2010.
Backtesting stochastic mortality models: An ex-post evaluation of multi-period-ahead
density forecasts. North American Actuarial Journal 14 (3), 281–298.

Haberman, S., Renshaw, A., 2009. On age-period-cohort parametric mortality rate projec-
tions. Insurance: Mathematics and Economics 45 (2), 255–270.

Hoffmann, R., Aug. 2005. Do socioeconomic mortality differences decrease with rising age?
Demographic Research 13, 35–62.

Human Mortality Database, 2012. University of California, Berkeley (USA), and
Max Planck Institute for Demographic Research (Germany). www.mortality.org or
www.humanmortality.de.

Hunt, A., Villegas, A., 2013. Robustness and stability in cohort-based extensions of the
Lee-Carter model of mortality. Working paper.

Jarner, S. F., Kryger, E. M., 2011. Modelling adult mortality in small populations: The
Saint Model. ASTIN Bulletin 41 (2), 377–418.

Johnson, B., 2011. Deriving trends in life expectancy by the National Statistics Socio-
economic Classification using the ONS Longitudinal Study. Health Statistics Quar-
terly (49), 9–52.

Lee, R. D., Carter, L. R., Sep. 1992. Modeling and forecasting U.S. mortality. Journal of the
American Statistical Association 87 (419), 659–671.

Li, J. S., Hardy, M. R., 2011. Measuring basis risk in longevity hedges. North American
Actuarial Journal 15 (2), 177–200.

Li, N., Lee, R. D., 2005. Coherent mortality forecasts for a group of populations: An exten-
sion of the Lee-Carter method. Demography 42 (3), 575–594.

32

Page 32 of 34

Society of Actuaries 475 N. Martingale Rd. Schaumberg, IL 60173

NORTH AMERICAN ACTUARIAL JOURNAL



F
O

R
 P

E
E
R

 R
E
V
IE

W

Liebman, J., 2002. Redistribution in the current US social security system. In: Feldstein,
M., Liebman, J. (Eds.), The Distributional Aspects of Social Security and Social Security
Reform. University of Chicago Press.

Lu, J., Wong, W., Bajekal, M., 2012. Mortality improvements by socio-economic circum-
stances in England (1982 to 2006). Institute and Faculty of Actuaries Sessional Research
Paper. (Presented Sept. 2012).

Madrigal, A., Matthews, F., Patel, D., Gaches, A., Baxter, S., 2011. What longevity pre-
dictors should be allowed for when valuing pension scheme liabilities. British Actuarial
Journal 16 (1), 1–38.

Noble, M., Mclennan, D., Wilkinson, K., Whitworth, A., Exley, S., Barnes, H., Dibben,
C., 2007. The English indices of deprivation 2007. Department of Communities and Local
Government, London.

Norman, P., Aug. 2009. Identifying change over time in small area socio-economic depriva-
tion. Applied Spatial Analysis and Policy 3 (2-3), 107–138.

Norman, P., Boyle, P., Rees, P., Jun. 2005. Selective migration, health and deprivation: a
longitudinal analysis. Social Science and Medicine 60 (12), 2755–71.

Raleigh, V. S., Kiri, V. a., Dec. 1997. Life expectancy in England: variations and trends by
gender, health authority, and level of deprivation. Journal of Epidemiology and Community
Health 51 (6), 649–58.

Renshaw, A., Haberman, S., Jan. 2003. Lee-Carter mortality forecasting: a parallel gener-
alized linear modelling approach for England and Wales mortality projections. Journal of
the Royal Statistical Society: Series C (Applied Statistics) 52 (1), 119–137.

Renshaw, A., Haberman, S., Jun. 2006. A cohort-based extension to the Lee-Carter model
for mortality reduction factors. Insurance: Mathematics and Economics 38 (3), 556–570.

Richards, S., 2008. Applying survival models to pensioner mortality data. British Actuarial
Journal 14 (2), 257–303.

Russolillo, M., Giordano, G., Haberman, S., 2011. Extending the LeeCarter model: a three-
way decomposition. Scandinavian Actuarial Journal (2), 96–117.

Shkolnikov, V. M., Andreev, E. M., Jasilionis, D., Leinsalu, M., Antonova, O. I., McKee, M.,
Oct. 2006. The changing relation between education and life expectancy in central and
eastern Europe in the 1990s. Journal of Epidemiology and Community Health 60 (10),
875–81.

Tarkiainen, L., Martikainen, P., Laaksonen, M., Valkonen, T., Mar. 2012. Trends in life
expectancy by income from 1988 to 2007: decomposition by age and cause of death.
Journal of Epidemiology and Community Health 66 (7), 573–578.

33

Page 33 of 34

Society of Actuaries 475 N. Martingale Rd. Schaumberg, IL 60173

NORTH AMERICAN ACTUARIAL JOURNAL



F
O

R
 P

E
E
R

 R
E
V
IE

W

Tuljapurkar, S., Li, N., Boe, C., 2000. A universal pattern of mortality decline in the G7
countries. Nature 405 (6788), 789–792.

Wanless, D., Pattison, J., McPherson, K., Haberman, S., Blakemore, C., Wong, W., Lu, J.,
Jan. 2012. Life expectancy past and future variations by socio-economic group in England
and Wales. Longevity Science Advisory Panel. Available at www.longevitypanel.co.uk.

Willets, R., 2004. The cohort effect: Insights and explanations. British Actuarial Journal
10 (4), 833–877.

Yang, S. S., Wang, C.-W., Nov. 2013. Pricing and securitization of multi-country longevity
risk with mortality dependence. Insurance: Mathematics and Economics 52 (2), 157–169.

34

Page 34 of 34

Society of Actuaries 475 N. Martingale Rd. Schaumberg, IL 60173

NORTH AMERICAN ACTUARIAL JOURNAL


