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Abstract. The numerical simulation of three-dimensional
dam break flows is discussed. A non-hydrostatic numer-
ical model for free-surface flows is considered, which is
based on the incompressible Navier-Stokes equations cou-
pled with a volume-of-fluid approach. The numerical re-
sults obtained for a variety of benchmark problems show
the validity of the numerical approach, in comparison
with other numerical models, and allow to investigate nu-
merically the non-hydrostatic three-dimensional effects,
in particular for the usual test cases where hydrostatic
approximations are known analytically. The numerical
experiments on actual topographies, in particular the
Malpasset dam break and the (hypothetical) break of
the Grande-Dixence dam in Switzerland, also illustrate
the capabilities of the method for large-scale simulations
and real-life visualization.

Key words Free-surface hydrodynamical flows, Hy-
draulic engineering, Volume-of-fluid modeling, Three-dimensional
non-hydrostatic model, Dam breaks, Finite-element method.

1 Introduction and Motivations

One essential feature of dam break studies consists in
accurately forecasting the fast floods that are incurred
in the area (valleys) below a dam by the failure of the
dam structure. The determination of the potential con-
sequences of a dam break requires the spatial location
of the flood, as well as the time evolution of the flow in
terms of fronts speed and water height.

Physical models have been used for a long time to
predict the impacts of dam breaks, but they are costly
and not always accurate enough because of the limited
measurability of some quantities and a scale that is smaller
than real-life situations.

Numerical models on the contrary have now proved
quite accurate and of reasonable cost in a number of
studies, see the numerous references below. Furthermore,
in comparison with physical models, they can provide

details at any point of the flow. Though, a careful and
accurate validation of numerical solutions remains diffi-
cult. On the one hand, because of an uncomplete math-
ematical theory, and on the other hand, because of com-
putational time and memory limitations, in particular
as concerns the full 3D models that compute numerical
approximations of the solutions to the non-hydrostatic
(“full”) three-dimensional (3D) Navier-Stokes equations
with free-surface (and possibly open) boundary condi-
tions.

In fact, the question of the design of an accurate sim-
plified model dedicated to the dam break problem is re-
current in the literature, see, e.g., [4,17,18,33]. Several
simplified models with a much more reasonable cost than
full 3D models have indeed succeeded in exhibiting nu-
merical results that are in adequation with experimental
results, see, e.g., [1]. But the simplified models are in-
herently biased, and the accurate quantification of the
model error compared with a full 3D model remains a
well-known mathematical challenge. Simplified models
are mainly hydrostatic models [1,18,35], possibly with
only a one-dimensional description of the front propaga-
tion, while the non-hydrostatic effects become not negli-
gible over rough topographies e.g. in dam break flows 1,
let alone 3D effects.

Since it has recently become possible to carry out
3D numerical simulations, see e.g. [3,9,10,21,29,36], the
goal of this article is thus two-fold, with a view to over-
coming some of the modeling errors that necessarily arise
in simplified models [23,26,27].

First, to highlight the consequences of non-hydrostatic,
three-dimensional effects (through computer analyses),
we discuss numerical solutions to the full 3D Navier-
Stokes equations with free-surface boundary conditions
for the usual benchmark problems where simplified hy-
drostatic 1D flows are known exactly and which have

1 Formally, non-hydrostatic effects are expected to be small
compared to the hydrostatic mainstream approximation, pro-
vided the bottom topography is flat enough [15]. The hy-
drostaticity assumption is also famously not adequate when
trying to reproduce some surface waves [5].
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been used extensively in the past for validating the spe-
cific simulation of dam break flows. Indeed, without a
complete mathematical theory, but with a view to build-
ing it, we believe it useful to numerically investigate the
essential features of full 3D models in simple benchmark
situations. Generalization is achieved via some classical
test cases such as the asymmetric dam breach or the
constriction of a flow in a channel, in order to highlight
non-hydrostatic effects.

Second, we illustrate the interest of large-scale real-
life simulations with that full 3D model for the industry
and land-planners. It seems indeed desirable, not only
for an accurate mathematical understanding, but also for
a fast and systematic planning procedure, that generic
(full, 3D) numerical models can easily reproduce cor-
rectly the essential features of a dam break flows without
any tuning or parametrization in most situations. The in-
troduction of additional physical features requiring the
tuning of parameters, such as friction boundary condi-
tions or turbulence models, could be considered in future
works. Such parametrized dissipation models are useful
when the numerical diffusion is too small compared to
the physical one. However, numerical results show that
it is not a problem for the test cases considered in this
work. Since 3D models are naturally more dissipative
than reduced 1D or 2D models, it is actually remarkable
to observe that our numerical results are comparable to
those obtained with reduced models.

The article is organized as follows. In the next sec-
tion, the mathematical and physical models are presented.
The numerical algorithms are then briefly described. (The
numerical method presented in this article for the full 3D
numerical simulation of dam break flows is based on a
Volume-Of-Fluid (VOF) modeling of free surfaces and
has already been used in the past for several situations
where free-surface flows occur [6,8,25].) Numerical ex-
periments are illustrated in the last section.

Benchmark problems have been considered first in
order to validate the numerical simulation of flooding
waves (simple dam break flows where data for approxi-
mations of the water height and mean velocity are avail-
able, either analytical expressions that are exact solu-
tions to simplified models or well-documented numeri-
cal solutions). The method is numerically demonstrated
to converge in test cases that are exactly solvable for
the well-known hydrostatic model based on the inviscid
Saint-Venant equations for shallow water (the Ritter test
case [30] and the Stoker test case [34], where the veloc-
ity is one-dimensional). The same 3D non-hydrostatic
features as in [15] appear, even if small, in a thin-layer
regime when the Navier-Stokes equations formally re-
duce to the Saint-Venant equations. This is a clear man-
ifestation of the modeling error.

We also compare with numerical solutions to reduced
shallow-water models in a well-documented test case [4,
12,35] that consists of a simplified dam breach over a wet
bed (a 3D asymmetric extension of the Stoker test case).
Non-hydrostatic 3D features similar to the previous test
cases also exist.

Last, we tackle two real-life situations in large geo-
metrical domains (up to 20000 [m] long). The test cases

use real topologies and are computational challenges when
using a 3D approach due to the large scales. We insist
on the fact that the real topographies are handled nat-
urally without any parametrization, contrary to most
simplified models where a non-smooth topography im-
plies difficulties both on the numerical and modelling
viewpoints. In addition to show the capabilities of our
numerical method, such simulations also show that real-
istic results can be achieved with a model using as few
parameters as possible: we use neither friction nor tur-
bulence model (and thus do not tune any physical or
numerical parameters).

The first example is the Malpasset dam break, which
has been used extensively in the past for the validation
of numerical models, see e.g. [2,14,17,32]. To the best of
our knowledge, only qualitative results of the Malpasset
dam break have been presented when using numerical
simulation in three dimensions. Here, we aim at quan-
tifying the three-dimensional approach. The final exam-
ple (Grande-Dixence dam break) illustrates the poten-
tialities of the numerical approach in real topographies
and large computational domains, in particular for policy
makers to forecast floods and protect cities and inhabi-
tants.

The Malpasset test case allows to discuss the impor-
tance of the non-flat bottom on the non-hydrostatic fea-
tures of the flow. The Grande-Dixence test case shows
the potential importance of such simulations for disaster
predictions, together with the need for an appropriate
visualization of the simulation for industrial partners.

Finally, our results show that, although 3D numeri-
cal simulations remain computationally very expensive,
so simplified models in turn remain useful for a number
of “real-time” and “optimization” purposes in particu-
lar, full 3D models should definitely be used, either to
help designing appropriate simplified models in specific
situations that remain an actual challenge to model re-
duction, or at least as benchmarks to be compared with
various simplified models as long as they are practicable.

2 A VOF Approach to Free Surfaces Flows

Let us define T > 0 as the final time of simulation and
consider a bounded computational domain Λ ⊂ R

3 in
which the fluid remains confined for all times t ∈ [0, T ].
The domain actually occupied by the water at any given
time t is denoted by Ωt ⊂ Λ and the free surface be-
tween the water and the air by Γt = ∂Ωt\∂Λ. Let QT

denote the space-time domain containing the water, that
is QT = {(x, t) : x ∈ Ωt, 0 < t < T }. The velocity field
v : QT → R

d and the pressure field p : QT → R shall sat-
isfy the incompressible Navier-Stokes equations in QT :

ρ
∂v

∂t
+ ρ(v · ∇)v − 2∇ · (µD(v)) +∇p = f , (1)

∇ · v = 0, (2)

where D(v) = 1/2(∇v +∇vT ) is the symmetric defor-
mation rate tensor, ρ the constant density of water, µ
the constant molecular viscosity of the water and f de-
notes the external forces (that is the gravitational forces
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f = ρg here, with g the gravity acceleration vector). At
any given time t, slip or no-slip boundary conditions are
enforced on the boundary of the water domain Ωt that
is in contact with the boundary of the computational
domain viz. ∂Λ∩ ∂Ωt. On the water-air interface Γt, we
require free-surface forces:

−pn+ 2µD(v)n = 0 on Γt, t ∈ (0, T ), (3)

where n is the unit normal of the water-air free surface
oriented toward the air domain.

With a view to numerical computation, we model the
free-surface following the VOF approach [25]. The posi-
tion of the water at time t is tracked by a characteristic
function ϕ : Λ × (0, T ) → R. The function ϕ equals
one if water is present, zero if it is not. Initial condi-
tions are given for ϕ to define the initial water region
Ω0 = {x ∈ Λ : ϕ(x, 0) = 1}, as well as for the veloc-
ity field v (initially prescribed in Ω0). The kinematics of
the free surface is that of a material surface so that ϕ
satisfies

∂ϕ

∂t
+ v · ∇ϕ = 0 in Λ× (0, T ), (4)

where v outside QT can be any continuous extension
of v inside QT . (Note that ϕ(X(t), t) = ϕ(X(0), 0) is
uniquely defined whenever the trajectories X(t) of fluid
particles at position X(0) at time t = 0, thus such that
X′(t) = v(X(t), t), do not collide.)

For future reference, let us briefly recall how (1)–(4)
can be formally reduced to a shallow-water model (see
e.g. [15,24] for more details). The goal of the model re-
duction is to derive a closed set of equations simpler
than (1)–(4) for (approximations of) v and ϕ, when
the free surface is supposed to be “non-folded” over a
similarly non-folded topography. That is, assuming Λ =
{(x, y, z) ∈ S × (0, Z)} is a cylinder with base S ⊂ R

2

and axis directed along the gravity acceleration vector,
the free surface is required to be a piecewise smooth
manifold with equation z = b(x, y) + h̄(t, x, y) while
z = b(x, y) is the given topography equation (think of
rivers and lakes). Using scaling assumptions in a thin-
layer regime with slip boundary conditions on a slowly
varying topography (|∇b| ≪ 1), one can show formally
that v ≈ (u, v, 0) and p ≈ ρgh̄ where (h̄, u, v) satisfy the
viscous Saint-Venant equations in S × (0, T ):

∂h̄

∂t
+

∂h̄u

∂x
+

∂h̄v

∂y
= 0, (5)

h̄
∂u

∂t
+ h̄u

∂u

∂x
+ h̄v

∂u

∂y
+ gh̄

∂h̄

∂x
= kx − gh̄

∂b

∂x

−
µ

ρ

(

∂

∂x

(

h̄

[

3
∂u

∂x
+

∂v

∂y

])

+
∂

∂y

(

h̄
∂v

∂x
+ h̄

∂u

∂y

))

, (6)

h̄
∂v

∂t
+ h̄u

∂v

∂x
+ h̄v

∂v

∂y
+ gh̄

∂h̄

∂x
= ky − gh̄

∂b

∂y

−
µ

ρ

(

∂

∂y

(

h̄

[

∂u

∂x
+ 3

∂v

∂y

])

+
∂

∂x

(

h̄
∂u

∂y
+ h̄

∂v

∂x

))

. (7)

Considering the smaller number of unknowns, it is a pri-
ori computationally less costly to solve the Saint-Venant
system (5)–(7) than the full 3D Navier-Stokes equations.
Note that the viscous terms in (5)–(7) are very small for

water (ρ|v||Λ|1/3/µ≫ 1) and occur only in the “second-
order” approximation to (1)–(4), but their importance
arises through the determination of a unique entropic
solution to the inviscid Saint-Venant system of balance
laws obtained in the vanishing viscosity limit µ

ρ → 0,

recall, e.g., [15,24]. (At the numerical level, one can ei-
ther solve a variational formulation of (5)–(7) like [21],
or more commonly capture entropic solutions to the in-
viscid limit of (5)–(7) and next add viscous perturba-
tions like, e.g., [32].) The force term (fx, fy) is typically
parametrized to account for friction and turbulence at
the bottom topography.

The main limitations of the reduced model are a hy-
drostatic pressure, which is consistent with small verti-
cal velocities and a horizontal motion “by slices” (where
a given velocity profile is imposed all along horizontal
directions), and a non-folded description of the free sur-
face, which is consistent with a non-breaking flow at-
tached to the topography.

Although the latter consistency assumptions seems
reasonable in a number of applications to geophysical
flows, which explains why the shallow-water reduced model
has proved useful to many applications in hydraulics (see
the discussion about dam break flows in Section 1), they
are not satisfied in general and may locally induce strong
inaccuracies, in particular where the bottom topography
b varies fast. Then, a full 3D modeling of dam break flows
may be useful, at least for benchmarking purposes.

3 Numerical Discretization

The advocated numerical algorithm relies on a time split-
ting method to decouple advection and diffusion phe-
nomena and a two-grid approach for the space discretiza-
tion. It is straightforwardly adapted from [25] and only
briefly described hereafter. We recall that one goal of
this work is to validate the method for dam break simu-
lations.

3.1 Time Splitting Scheme

Let τ > 0 be a given time step and tn = nτ , n ≥ 0, be a
sequence of discrete times. Let ϕn, vn, Ωn be approxi-
mations of ϕ, v, Ω respectively at time tn. The approx-
imations ϕn+1, vn+1, Ωn+1 at time tn+1 are computed
by a splitting algorithm illustrated in Figure 1.

First two advection problems are solved, that lead
to the new approximation of the characteristic function
ϕn+1 together with a prediction vn+1/2 of the new ve-
locity in the new water domain Ωn+1 with free surface
Γn+1. (The domain Ωn+1 is defined as the set of points
such that ϕn+1 equals one.) This advection step con-
sists in solving, with an (explicit) forward characteristics
method, four transport equations between tn and tn+1:

∂ϕ

∂t
+ v · ∇ϕ = 0,

∂v

∂t
+ (v · ∇)v = 0, (8)

with initial conditions given by the values of the func-
tions ϕ and v at time tn. The solutions read ϕn+1(x +
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n, pn
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Ωn

Time tn
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n+1/2

ϕn+1ϕn+1

Ωn+1Ωn+1

Advection

v
n+1, pn+1

Diffusion

Time tn+1

Fig. 1. The splitting algorithm (from left to right) for a dam break flow (collapse of a column of water initially located on
the left of the domain). Two advection problems are solved to determine the new approximation of the characteristic function
ϕn+1, the new liquid domain Ωn+1 and the predicted velocity vn+1/2. Then, a time dependent Stokes problem is solved to
obtain the velocity vn+1 and the pressure pn+1 in the new liquid domain Ωn+1.

τvn(x)) = ϕn(x) and vn+1/2(x + τvn(x)) = vn(x) for
all x ∈ Ωn.

Then, a time dependent Stokes problem is solved in
Ωn+1 × (tn, tn+1) using the predicted velocity vn+1/2 as
initial condition. We use an (implicit) backward Euler
scheme. The velocity vn+1 and the pressure pn+1 are
thus solution to a boundary value problem in Ωn+1:

ρ
vn+1 − vn+1/2

τ
− 2∇ ·

(

µD(vn+1)
)

+∇pn+1 = fn+1,

∇ · vn+1 = 0,
(9)

with boundary condition (4) on Γn+1 and slip or no-slip
elsewhere (recall Section 2).

Two different spatial discretizations are used for the
advection problems and for the Stokes problem, as illus-
trated in Figure 2. A regular grid of square cells Ch is
used to solve the advection problems, while the Stokes
problem is solved on a coarser unstructured tetrahedral
finite element mesh TH .

Fig. 2. Two-grid method in the two-dimensional case for
a dam break flow (collapse of a column of water initially
located on the left of the domain): structured grid of small
square cells Ch (left) and unstructured finite element mesh of
triangles TH (right).

3.2 Advection Step

The cavity Λ is embedded into a box that is meshed into
a structured grid denoted by Ch, made of cubic cells of

size h. We label each cell Cijk by the multi-index (ijk),
where the indices i, j, k vary respectively only in each
one of the three spatial directions of a Cartesian frame.
All advection steps are solved on the same structured
grid Ch with a forward characteristics method detailed
in [25], using, at any time tn, piecewise constant ap-
proximations of ϕn and vn on Ch (hence a collection
of values ϕn

ijk , v
n
ijk indexed by their cell label (ijk)).

The algorithm consists in moving the cell (ijk) in the
direction τvn

ijk and next conservatively distributing the
transported quantities ϕn

ijk and vn
ijk into the overlapped

cells (with ratio the area intersected by the transported
cell divided by the area of the transported cell). Yet, the
repeated projection of a cell onto the structured grid is
an overly diffusive procedure for accurate propagation of
a front like Γn.

We use a variation of the heuristic SLIC algorithm
developed in [25] and inspired by [28] to reduce the nu-
merical diffusion of the front. The cells where ϕn

ijk = 1

are advected first. Next, in the cells (ijk) where 0 <
ϕn
ijk < 1, a square subcell is defined within (ijk), with

center such that some of its edges coincide with an edge
of the cell (ijk), on the other side of which the approx-
imation of ϕn is also non-uniformly 0, if possible. After
pushing this way the fluid along the faces of the cell, the
subsequent translation and the projection of those lat-
ter subcells follow the same characteristic method as for
completely filled cells. Once advected, the correspond-
ing quantity is redistributed to the underlying cells of
Ch proportionally to the volume of the intersection. The
cell advection and projection with SLIC algorithm are
presented in Figure 3, for a two-dimensional grid Ch for
the sake of simplicity.

Last, to avoid ϕn+1

ijk > 1 for some (ijk), a post-
processing technique redistributes the excess of water
from over-filled cells to cells (ijk) where 0 < ϕn

ijk < 1.

Related to global repair algorithms [31], this technique
produces final values ϕn+1

ijk which are between zero and
one, even when the advection of ϕn gives values strictly
larger than one. The technique consists in moving the
fraction of liquid in excess in the cells that are over-
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corner, then it is advected and projected on one cell only, with
contribution 1

4
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filled to receiver cells in a global manner by sorting the
cells according to ϕn+1. Details can be found in [25]. In
most of our computations, only a small amount of excess
water cannot be redistributed (the so-called numerical
compression in [25]).

3.3 Diffusion Step

Let TH be a tetrahedral discretization of the cavity Λ sat-
isfying the usual compatibility conditions between tetra-
hedra to define a FE mesh (see e.g. [16]). The maximal
diameter of the elements is denoted by H (typically H
is of the order 5h to 10h). We denote by Pℓ the nodes of
the FE mesh.

Once values ϕn+1

ijk and v
n+1/2
ijk have been computed

on Ch, one computes continuous piecewise linear approx-

imations of ϕn+1

H and v
n+1/2
H on TH by assigning to each

mesh node Pℓ an average value in a patch of neighboring
cells (a local L2-projection with mass lumping):

ϕn+1

Pℓ
=

∑

K∈TH ,K∋Pℓ

∑

ijk, Cijk⊂K

αijkℓ ϕ
n+1

ijk , (10)

with

αijkℓ =
ψPℓ

(Cijk)
∑

K∈TH ,K∋Pℓ

∑

i′j′k′, Ci′j′k′⊂K

ψPℓ
(Ci′j′k′)

, (11)

where ψPℓ
, ℓ = 1, . . . , N denotes the continuous piece-

wise linear functions defining a FE basis with non-zero
value only at node Pℓ. HereK denotes an element (tetra-
hedron) of the finite element mesh TH , and N denotes
the total number of vertices of TH . The notation PK ∋ℓ

means that the node Pℓ is one of the vertices of the el-
ement (tetrahedron) K. The notation Cijk ⊂ K means
that the center of mass of the cell Cijk is located in the
finite element K. The same kind of formula is used to
obtain the values of the predicted velocity vn+1/2 at the
vertices Pℓ. Moreover, note that there is no need to inter-
polate the pressure on the grid Ch as it does not appear
in the advection problems.

We denote by Ωn+1

H the approximation of the water
domain Ωn+1 defined as the union of all elements of the
finite element mesh such that one of their vertices P has
a value ϕn+1

P > 0.5, and by Γn+1

H the approximation
of the water-air interface Γn+1, thus an error of order
O(H) (an adaptive mesh algorithm for the improvement
of that projection error has been discussed in [7].)

Let us denote by vn+1

H (resp. pn+1

H ) the piecewise
linear approximation of vn+1 (resp. pn+1). The Stokes
problem is solved with a stabilized discrete variational
formulation (Galerkin Least Squares method) and con-
sists in finding the velocity vn+1

H and pressure pn+1

H such
that:

∫

Ωn+1

H

vn+1

H − v
n+1/2
H

τ
·wdx + 2µ

∫

Ωn+1

H

D(vn+1

H ) : D(w)dx

−
∫

Ωn+1

H

fn+1 ·wdx−
∫

Ωn+1

H

pn+1

H ∇ ·wdx−
∫

Ωn+1

H

q∇ · vn+1

H qdx

−
∑

K⊂Ωn+1

H

αK

∫

K

(

vn+1

H − v
n+1/2
H

τ
+∇pn+1

H − fn+1

)

· ∇qdx

= 0, (12)

for all w and q, the velocity and pressure test functions
compatible with the boundary conditions on ∂Λ. The
value of the stabilization parameter αK (a function of the
local Reynolds number) has been discussed in [25]. The
corresponding linear system is solved with a standard
GMRES method without restarting technique (from the
library SparseLib++), with an ILU preconditioner.

The continuous piecewise linear approximation of the
velocity vn+1

H on TH is finally restricted at the center of

each cell Cijk to obtain the values vn+1

ijk on the structured
grid Ch for the next advection step. This is an interpo-
lation from the finite elements to the grid of small cells
that is the reverse of (10)(11). When the center of mass
of the cell Cijk belongs to the element K, the new ve-
locity is given by the linear interpolation, based on the
finite element basis functions:

vn+1

ijk =
∑

Pℓ∈K

vn+1

Pℓ
ψPℓ

(Cijk).

4 Numerical Experiments

The results of several numerical experiments are pre-
sented in this section. We present first the classical Rit-

ter [30] and Stoker [34] test cases, when a one-dimensional
(1D) dam breaks over a dry or wet bed respectively.
Since the proposed numerical method has already been
validated in the past for free-surface flows, see e.g. [25],
the goal of our first examples is to evaluate the impact
of a full 3D model compared with a reduced 1D hy-
drostatic model in standard benchmarks for dam break
flows. In those cases, the water level and the depth-
averaged velocity solution to the Navier-Stokes equa-
tions can be approximated by the solution to the in-
viscid Saint-Venant equations (5)–(7), a simplified 1D
model for shallow-water flows whose solution is analyt-
ically known here. Numerical convergence is observed
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toward a solution close to the analytical formula, as ex-
pected for high Reynolds numbers and flat topographies.
But (admittedly small) 3D non-hydrostatic effects are
also clearly characterized and we briefly discuss them via
our computer analyses. In a second step, comparisons
with well-documented examples are presented (asym-
metric dam, Malpasset dam break). Again, our numer-
ical results are close to the numerous (numerical and
physical) data available in the literature, but also show
some distinctive features of the 3D non-hydrostatic ef-
fects. We end this section with the new real-life sim-
ulation of the (hypothetical) break of a large dam in
Switzerland, to show how large-scale numerical results
can be coupled with efficient visualization techniques.
All computations in this Section are achieved on an In-
tel Xeon (2.93GHz) with 8GB memory.

4.1 The Ritter Test Case

The Ritter test case consists of a 1D channel with a
flat horizontal bottom (oriented along Ox). The dam is
vertical and breaks instantaneously at initial time. The
initial conditions for the water height are:

h0(x) =

{

h0, x < a,
0, x ≥ a.

(13)

with zero initial velocity; h0 is the initial height of the
water and a is the initial location of the dam. Relation-
ship (13) implies that, downstream of the dam, the do-
main is assumed to be dry, while the fluid upstream is
initially at rest. This is a Riemann problem for the in-
viscid Saint-Venant equations (µρ = 0) and one exact

solution is a rarefaction wave, see, e.g., [11], with fan:

h̄(x, t) =

(

2
√
gh0 −

x− a

t

)2

9g
,

u(x, t) =
2

3

(

√

gh0 +
x− a

t

)

,

(14)

if −1 < x/(t
√
gh0) < 2 (elsewhere, the solution is equal

to the initial condition). Numerical simulations can be
done using Navier-Stokes equations and a 3D velocity
in the same setting after extruding the computational
domain into a transverse direction (hence in a pseudo 2D
configuration consisting of a channel with a rectangular
cross-section).

We consider the geometry described in [15], namely a
channel defined by the domain (−50, 50)× (0, 2)× (0, 3).
The initial height is h0 = 2 [m] and the dam is initially lo-
cated at abscissa a = 0 [m]. The liquid properties are µ =
10−3 [kg/(ms)] and ρ = 103 [kg/m3] (water). Slip bound-
ary conditions are imposed at the bottom of the channel.
The computational cost of the numerical simulations is
between 10 minutes (h = 8 · 10−2, H = 3/5, τ = 0.1),
to 12 hours (h = 4 · 10−2, H = 3/14, τ = 0.025). As the
mesh size and time step are divided by two (in each di-
rection), one can see that the numerical algorithms scale
appropriately.

Figure 4 visualizes the profile of the numerical solu-
tion (water height) after reconstruction on several FE
meshes (coarse to fine) and its comparison with (14) at
times t = 0, 3 and 5 [s]. (The CFL number is smaller
than one.) One can see that the numerical simulations
converge to a Navier-Stokes solution close to the rar-
efaction wave predicted by the Saint-Venant equations.
Yet, differences between the Navier-Stokes and the Saint-
Venant predictions are localized close to regions where
the derivatives are discontinuous. First, Navier-Stokes
equations tend to regularize this singular behavior. Sec-
ond, the Navier-Stokes front speed seems to slightly slow
down as time goes on, in comparison with the Saint-
Venant prediction. Of course, this sounds natural in a
simulation where the kinetic energy is dissipated be-
cause of viscous effects. But this is especially true at the
front of the wave. Note indeed that the front shapes are
slightly different close to the vacuum. This is not a pure
artifact due to the reconstruction on the FE mesh, inso-
far as the wave tip decreases as the mesh is refined, but
also a natural effect at a point where pure-slip and no
surface tension boundary conditions should match. So
viscous dissipation and 3D geometry effects especially
affect the tip of the wave, where a “thin-layer” approxi-
mation has no meaning (since ∂u/∂x jumps). Then, the
inertial terms in the momentum balance projected along
the gravity direction may not be negligible, a local mani-
festation of the 3D non-hydrostatic effects, and the limit
angle of the free surface at the tip of the wave may not
be zero (contrary to the hydrostatic case).

4.2 The Stoker Test Case

In the Stoker test case, the water released as the dam
breaks flows over a wet bed instead of a dry bed. We
consider the same channel and the same fluid properties
as in the previous section, with initial conditions

h0(x) =

{

hl, x < a,
hr, x ≥ a.

(15)

for the water height, together with zero initial velocity;
hl and hr are the initial heights of the water on the left
and right sides of the dam, and a is the initial location
of the dam on the Ox direction. Stoker’s exact solution
to the inviscid Saint-Venant equations is the superimpo-
sition of two waves (see, e.g., [21]): one up-going rarefac-
tion wave and one down-going shock wave connected by
a medial zone with a constant depth hm and constant
velocity um. Let us define cl =

√
ghl, cr =

√
ghr and

cm =
√
ghm, then analytical formulas read,

h̄(x, t) =























hl if x− a < −clt,
(

2
√
ghl−

x− a

t

)2

9g , if − clt < x− a < (um − cm)t,

hm if (um − cm)t < x− a < Wt,
hd if Wt < x− a,

(16)
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Fig. 4. Ritter analytical test case: comparison with analytical solution at times t = 0, 3 and 5 [s]. Left: coarse mesh (h =
8 ·10−2,H = 3/5, τ = 0.1); middle: middle mesh (h = 6 ·10−2 ,H = 3/8, τ = 0.05); right: fine mesh (h = 4 ·10−2,H = 3/14, τ =
0.025). All the grid points on the free surface are represented, including those in the transverse direction.

whereW is the speed of the hydraulic jump given by the

Rankine-Hugoniot relation as W =
hmum
hm − hr

. Note that

cm (and thus hm) is actually the solution of a polynomial
equation of degree 6 corresponding to the conservation of
the Riemann invariant on the rarefaction wave, and um
is given by the Rankine-Hugoniot relation at the shock
wave.

Let us consider initial heights given by hl = 2 [m]
and hr = 1 [m]. Figure 6 visualizes the profile of the
numerical solution, computed on the fine grid of small
cells Ch and its comparison with (16) at times t = 0, 3
and 5 [s]. Three mesh sizes and time steps are considered.
(The CFL number is smaller than one.) One can see that
the numerical simulations again converge to a Navier-
Stokes solution close to the one predicted by the Saint-
Venant equations, and compare well with other 3D simu-
lations like [15]. The front speeds again clearly agree, and
the main differences between the Navier-Stokes and the
Saint-Venant predictions are again localized close to the
discontinuities only. Navier-Stokes equations not only
tend to regularize the fronts. But 3D (non-hydrostatic)
effects are also clearly seen close to each front. Compared
with the exact Saint-Venant solution, an overshoot oc-
curs around the shock wave, together with an oscillation
close to the rarefaction wave. Figure 7 shows that the
Navier-Stokes solutions (reached in the limit of numeri-
cal convergence) includes a significant non-zero vertical
component close to the shock wave. These features are

not numerical artefacts. They do not completely vanish
as the discretization parameters are refined, and they
also show up in [15] where the discretization method is
quite different.

In order to emphasize the three-dimensional charac-
ter of the computational solver, let us extend this Stoker
test case to a full three-dimensional situation, following
[1,22]. The dimensions of the computational domain are
20× 20× 3 [m3]. A cylindrical column of water of height
wl = 2.5 [m] and radius r = 2.5 [m] is initially located at
the center of the domain. The rest of the domain is filled
(wet bed) with water up to an height of wr = 0.5 [m].
The column of water is released at time t = 0 [s]. The fi-
nite element mesh TH contains 1323720 elements, which
corresponds to H = 0.1 [m]. The size of the cells in Ch
is h = 0.01 [m]. The time step is τ = 0.01 [s]. Figure 8
shows the magnitude of the water velocity field at dif-
ferent times. The radial invariance of the front is well-
preserved, showing that the wave propagation is not in-
fluenced by the Cartesian grid Ch for the advection that
is aligned with the coordinates axes.

4.3 Dam breach over a flat wet bed

This benchmark problem is a popular test case of a dam
break over a wet bed [4,12,35]. The dam is partially, in-
stantaneously, broken at time t = 0 [s], in an asymmetric
manner, as only a non-central part of the dam is removed
– the dam breach.



8 Alexandre Caboussat et al.

−50 0 50
0

0.5

1

1.5

2

2.5

3

x

h

Time = 0 [s]

 

 

theoretical values

computed values

−50 0 50
0

0.5

1

1.5

2

2.5

3

x

h

Time = 0 [s]

 

 

theoretical values

computed values

−50 0 50
0

0.5

1

1.5

2

2.5

3

x

h

Time = 0 [s]

 

 

theoretical values

computed values

−50 0 50
0

0.5

1

1.5

2

2.5

3

x

h

Time = 3 [s]

 

 

theoretical values

computed values

−50 0 50
0

0.5

1

1.5

2

2.5

3

x

h

Time = 3 [s]

 

 

theoretical values

computed values

−50 0 50
0

0.5

1

1.5

2

2.5

3

x

h

Time = 3 [s]

 

 

theoretical values

computed values

−50 0 50
0

0.5

1

1.5

2

2.5

3

x

h

Time = 5 [s]

 

 

theoretical values

computed values

−50 0 50
0

0.5

1

1.5

2

2.5

3

x

h

Time = 5 [s]

 

 

theoretical values

computed values

−50 0 50
0

0.5

1

1.5

2

2.5

3

x

h

Time = 5.0 [s]

 

 

theoretical values

computed values

Fig. 6. Stoker analytical test case: comparison with analytical solution at times t = 0, 3 and 5 [s]. Left: coarse mesh (h =
8 · 10−2, H = 3/5, τ = 0.1); right: middle mesh (h = 6 · 10−2, H = 3/8, τ = 0.05); right: fine mesh (h = 4 · 10−2,H = 3/14, τ =
0.025). All the grid points on the free surface are represented, including those in the transverse direction.

Fig. 8. Axisymmetric Stoker test case: visualization of the velocity magnitude of the water surface at times 0, 0.5, 1.0 and
2.5 [s] (left to right).

The computational domain is constructed by vertical
extrusion on 20 [m] of a 2D unstructured mesh of the do-
main (0, 200)× (0, 200) [m2]. Specific dimensions of the
dam can be found, e.g., in [4]. The 3D finite element mesh
is composed of 567364 elements and 97146 vertices, for
a mesh size H ≃ 2 [m]. The size of the small structured
grid of cells is h = 0.5 [m]. The time step is τ = 0.05 [s],
implying that the CFL number is close to 0.5. While
slip boundary conditions are still enforced on the lat-
eral walls, we imposed no-slip boundary conditions on
the (flat) bottom for this test case, in contrast with the
Ritter and Stoker test cases where slip boundary con-
ditions were used. Note that slip and no-slip boundary
conditions are the two limits between which the whole
range of boundary conditions with a friction term like
Manning in shallow-water models varies. The location of
the liquid at initial time consists of two layers of water

at rest (zero initial velocity) with respective heights of
h1 = 10 [m] (on the left side of the dam) and h2 = 5 [m]
(on the right side of the dam). At time t = 0 [s], the
non-central part of the dam is removed.

Figure 9 visualizes the water height at times t =
0.0, 2.5, 5.0, 7.5, 10.0 and 12.5 [s]. Results can be eas-
ily compared with those of the literature (in particu-
lar in [4,12] and references therein). One can observe
that the shape of the contours are very comparable to
the existing results of the literature, while the amount
of the overshoot of the advancing front is slightly re-
duced. While the presence of an overshoot at the front
is again a manifestation of non-hydrostatic effects, it is
significantly reduced here, probably due to the modeling
(no-slip boundary conditions) and numerical artifacts in-
herent to 3D methods (3D diffusion, maybe further in-
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Fig. 9. Partial dam break over a flat wet bed at times t = 0.0, 2.5, 5.0, 7.5, 10.0 and 12.5 [s]. Top: water height (in meters);
bottom: contours of water height (in meters).

creased here because of the rather coarse mesh we use
for efficient 3D velocity approximations).

4.4 Dam break with constriction : comparison with
experimental results

We consider a dam break wave in a channel with a rect-
angular section, similar to the Ritter test case. The chan-
nel has a constriction approximately 12 [m] away from
the left extremity of the domain. The experimental con-
ditions, as well as the geometrical quantities, are fully
described in [19,20] and illustrated in Figure 10. The fi-
nite element mesh used has 286398 nodes and 1569600
elements, with typical size H = 0.006 [m]. The struc-
tured grid contains 106246000 cells, with typical size
h = 0.002 [m]. The bottom of the domain is dry and
flat, and the water is initially at rest, with height 0.3 [m]

ahead of the dam. At initial time, the dam breaks en-
tirely.

This test case is highly non-hydrostatic, since the
constriction induces large vertical velocities, as illustrated
by snapshots of the numerical solution on the finite el-
ement mesh in Figure 11. It is thus a good benchmark
to validate the use of 3D simulations and compare with
simplified models or experimental data. Measured val-
ues of the water level are available at four given points,
labeled S1 through S4, and illustrated in Figure 10. Fig-
ure 12 visualizes a comparison of the time evolution of
the water level at these four markers with experimental
data [19,20]. The approximation of the water height is
computed on the grid of small cells. Simulation results
of the water depth are in agreement with the experimen-
tal data for all the four markers. Actually, results at the
third marker S3 are significantly better than those given,
e.g., in [19] when using an hydrostatic simplified model.
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Fig. 5. Ritter analytical test case: Visualization of the ve-
locities at time t = 5 [s] next to the liquid front. Top: coarse
mesh; middle: middle mesh; bottom: fine mesh. Results mag-
nified by a factor 5 in the vertical direction.

On the other hand, results at the fourth marker S4 are
less accurate due to the very shallow behavior of the
water after the constriction (meaning shallow water-like
models are more adapted here).

Remark that, the narrower the constriction, the slowlier
the liquid goes into the channel, as the backward wave
becomes stronger. Numerical investigations have shown
precisely that, if the channel is 10 [cm] wide instead of
25 [cm], the behavior of the water level for marker S1 is
unchanged, but the water does not reach the marker S4

in the time interval considered.

4.5 Malpasset dam break

The Malpasset dam break is a real-life test case. The
Malpasset dam was located approximately 12000 [m] up-
stream of Frejus on the French Riviera. The maximum
reservoir capacity was meant to be 55106 [m3]. The dam
failed explosively on December 2, 1959, and the flood
wave ran along the valley to Frejus. The evolution of the

Fig. 7. Stoker analytical test case: Visualization of the ve-
locities at time t = 5 [s] next to the liquid front. Top: coarse
mesh; middle: middle mesh; bottom: fine mesh. Results mag-
nified by a factor 3 in the vertical direction.

Dam

0.5 m 0.25 m

6.1 m 8.7 m 0.2 m 1.0 m 0.2 m 4.3 m

5.1 m 7.1 m 2.5 m 1.9 m

S1 S2
S3 S4

Fig. 10. Dam break with constriction. Notation, dimensions
and location of the markers.

water front and water height has been well-documented
via data collection and measurement, or reproduction
with a physical model or computations.

The breakage of the Malpasset dam has been widely
treated in the literature, see, e.g., [2,13,17,18]. This test
case has also been a benchmark model for Electricité de
France (EDF) for several years, in order to validate sim-
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Fig. 11. Dam break with constriction; visualization of the mesh near the constriction and snapshots of the solution at times
t = 0.4, 0.6 [s].
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Fig. 12. Dam break with constriction. Time evolution of the water height at the markers S1, S2, S3 and S4, and comparison
with experimental data [19].

plified 1D or 2D models based on shallow water equa-
tions. 3D simulations of the Malpasset dam break are
less frequent and can be found, for instance, in [3,21].

The Malpasset test-case allows one to compare a full
3D model with simplified 1D or 2D models with a view
to reproducing experimental results. First, the friction at
bottom in Navier-Stokes equations can be simply mod-
elled by a no-slip boundary condition (the singular limit
of the Navier friction boundary condition) and does not
necessarily require tuning a parameter like in Saint-Venant
equations. Second, the non-hydrostatic features of the
flow in the presence of a non-trivial topography can be
discussed. To the best of our knowledge, only qualitative
results of the Malpasset dam break have been presented
when using 3D numerical simulations. Here, we aim at
quantifying some effects of the 3D approach.

The 3D computational domain is constructed by ex-
trusion. The 2D map of the topography has been digi-
tized from ancient topographical maps (see [17] and ref-
erences therein). The overall dimensions of the domain
are 17500 [m] × 9000 [m]. Elevation of the valley ranges
from −20 [m] (below sea level) to +100 [m] (above sea
level); this latter value is an estimation of the initial free
surface elevation in the reservoir. The 2D mesh contains
13541 points and 39541 triangles. It is illustrated in Fig-
ure 13 (top), as actually available in the public domain.
This mesh is then extruded over 10 layers of prisms, each
of them cut into six tetrahedra, to form a 3D finite ele-
ment mesh TH of 311443 vertices and 1716000 elements,
with resolutionH = 5 [m]. The cell size of the structured
mesh is h = 2 [m].

Fig. 13. Malpasset test case: Two-dimensional mesh of the
topography (top) and initial position of the liquid – the lake
behind the dam and the sea – (bottom).

The dam structure is following a straight line be-
tween the points of coordinates: (4701 [m], 4143 [m]) and



12 Alexandre Caboussat et al.

(4655 [m], 4392 [m]). The reservoir level is located be-
hind the dam, at a constant water level equal to 100 [m].
The level of the Mediterranean sea is constant and equal
to zero. Initial conditions are also represented in Fig-
ure 13 (bottom). The remaining part of the bottom of
the domain is dry. At time t = 0, the dam is com-
pletely and instantaneously removed; the water there-
fore flows down the valley. Recall that no-slip boundary
conditions are enforced on the bottom topography (un-
like published results we do not calibrate any friction
coefficient). Several points of given coordinates (gauge
points) have been measured thanks to a reduced-scale
physical model. They can be used for comparison with
the numerical results. The coordinates of these particu-
lar points can be found, e.g. in [17,21].

Figure 14 shows snapshots of the solution at times
t = 0, 100, 200, 300, 400 and 500 [s], together with a vi-
sualization of the velocity field. Each time step, cor-
responding to one second of simulation, takes approx.
10 minutes of CPU time.

Figure 15 shows a comparison between the numer-
ical results and physical results obtained with the re-
duced scale model or computational results using sim-
plified models [21]. The comparison focuses on the max-
imal water height (left) and the arrival time of the first
water wave (right) at the gauge points. Figure 15 (right)
shows that the computed arrival times of the water wave
at these given points is larger than the ones of the physi-
cal model. This means that the wave calculated with the
3D numerical simulation actually travels slowlier than
the physical one. This is not surprising and is a conse-
quence of i) the inherent numerical diffusion of a three-
dimensional model due to a relatively large mesh size; ii)
the no-slip boundary conditions on the topography that
slow the water evolution.

On the other hand, Figure 15 (left) shows the max-
imal water level at these gauge points, when the over-
shoot observed for instance in Figure 6 for the Stoker
test case is smoothed. We observe that numerical results
are rather close to existing results. Little oscillations on
the water levels happen usually on one time step. They
originate mostly at the forefront of a shock wave, when
the topography of the bedrock varies quite fast below the
markers or when the markers are physically located at
the intersection of valleys where interacting waves may
amplify the shock. These oscillations are inherent to the
3D character of the model, and reveal some local non-
hydrostatic features that, compared with the Stoker test
case, are amplified by the topography.

4.6 Grande-Dixence dam break

The last numerical experiment tackles the hypotheti-
cal dam break of the Grande-Dixence dam located in
Switzerland, and the resulting flood in the valley Val
d’Hérens. It illustrates the capability to perform large-
scale simulations in real-life topographical geometries,
and the interest in visualizing 3D simulations, but has
no validation purposes.
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Fig. 15. Malpasset dam break: maximum water level (top)
and wave arrival times (bottom) at the gauge points. Com-
parison between numerical results, results from [21] and re-
sults from the reduced-scale physical model.

The Grande-Dixence dam is the tallest dam in Switzer-
land. Opened in 1965, it is 285 [m] high and the lake
created behind the dam (Lac des Dix) contains 400 [mio
m3] of water. It is located at the top of a 30000 [m] long
valley leading to the river Rhone and directly above the
city of Sion.

The computational domain is constructed as follows.
A two-dimensional elevation map is obtained from Swiss
topographical data. The resolution of the structured two-
dimensional mesh is 25 [m]. The 3D finite element mesh
is generated by extrusion of the 2D map on 10 layers
of prisms, split into six tetrahedra each, leading to a fi-
nite element mesh composed of 13876525 elements and
2057005 vertices with resolution H = 50 [m]. The com-
putational domain is thus 5750 [m] wide, 28900 [m] long
and 400 [m] high. On the other hand, the structured
grid of small cells has a resolution of h = 10 [m]. No-slip
boundary conditions are imposed on the bottom topog-
raphy. The dam of height 285 [m] is initially assumed
filled with 400 [mio m3] of water at rest.

Figure 16 illustrates the location of the liquid front
at several times of the simulation and the flooding areas
in the valley. Figure 17 illustrates snapshots of the wa-
ter domain colored according to the instantaneous liquid
velocity, which ranges from 0 to 120 [m/s]. Finally, Fig-
ure 18 illustrates the water height at several time steps.
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Fig. 14. Malpasset dam break: snapshots of the 3D solution at times t = 0, 100, 200, 300, 400 and 500 [s].

Fig. 16. Numerical solution of the Dixence dam break. Snapshots of the liquid domain (top view) at times t =
0, 2, 4, 6, 8, 10 [min].

The water height ranges from 0 to 200 meters outside
the initial lake reservoir.

Conclusions and Further Comments

A numerical method for the simulation of full three-
dimensional free-surface flows has been presented. The
proposed computational framework has been successful
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Fig. 17. Numerical solution of the Dixence dam break. Snapshots of the liquid domain with fluid velocity at times t =
1, 2, 4, 6, 8, 10 [min].
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Fig. 18. Numerical solution of the Dixence dam break. Snapshots of the water level (top view) at times t = 0, 2, 4, 6, 8, 10 [min].

in solving a variety of test cases (from simple bench-
marks to real-life situations) with a view to simulating
dam breaks. In particular, the numerical results show the
capability of a full 3D model based on the Navier-Stokes
equations at satisfactorily capturing the hyperbolic be-
havior of water waves while showing non-hydrostatic fea-
tures that are not present in most reduced models. The

non-hydrostatic features of the full 3D modeling of dam
breaks flows could be investigated on the basis of these
numerical experiments.

Such computational results can thus be very useful to
policy makers when delimiting flooding areas and draw-
ing flooding maps, as well as to the hydraulic engineers
that are constantly looking for more accurate numerical
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results of dam break flows (an everlasting major chal-
lenge in the hydraulic engineering community). Further
work includes the application of the numerical method
presented in this article to other practical problems in
hydraulic situations, such as the modeling and assess-
ment of spillways discharge capacity or that of the sedi-
ment transport.
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