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This paper, that deals with the modelling of crowd dynamics, is the first one of a project
finalized to develop a mathematical theory refereing to the modelling of the complex sys-
tems constituted by several interacting individuals in bounded and unbounded domains.
The first part of the paper is devoted to scaling and related representation problems,
then the macroscopic scale is selected and a variety of models are proposed according to
different approximations of the pedestrian strategies and interactions. The second part of
the paper deals with a qualitative analysis of the models with the aim of analyzing their
properties. Finally, a critical analysis is proposed in view of further development of the
modelling approach. Additional reasonings are devoted to understanding the conceptual
differences between crowd and swarm modelling.
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1. Introduction

In the recent years, the interest in complex systems, i.e. systems of several indi-

viduals interacting in a nonlinear manner, is greatly increased. These systems are

difficult to model or understand at a global level based only on the description of

the dynamics of individual elements.

This interest is due to a rising awareness that many systems in nature are of

this kind and cannot be successfully modelled by traditional methods developed for

inert matter. Moreover, an increasing number of applications in engineering and
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social sciences resemble such systems, given the high number of elements and the

complex interactions among them, especially in fields such as transportation and

communication networks, social and economic networks.

Complex systems may differ greatly in their nature, but they share one common

aspect: the behavior of the system is difficult to understand no matter how simple

the behavior of its parts, even though a global pattern or structure certainly occurs.

Sometimes this behavior corresponds to the movement of the system in an appro-

priate abstract configuration space (as, for example, in neural networks). In other

cases, the system takes different shapes in a two- or three-dimensional space, and

the formation and evolution of characteristic and complex patterns can be observed.

This latter possibility, where the configurations of the system may be interpreted

geometrically, is very interesting, because it allows a graphic representation of the

evolution of the system, which can be extremely useful to identify some of the

relevant characteristics. For instance in crowd dynamics, architects are interested in

understanding how crowds move into buildings to find optimality criteria for space

design. Transportation engineers face the problem of integration of transportation

facilities, with particular emphasis on safety issues for pedestrians. Recent tragic

events have increased the interest for modelling pedestrians’ movements. In this

spirit, it is important to define mathematical models based on specific (and context-

dependent) behavioral assumptions, tested by means of proper statistical methods.

This paper deals with the modelling of crowd dynamics in bounded domains,

with the aim of developing a general mathematical theory by an approach which

includes the ability of the interacting individuals to follow specific strategies also

generated by their interaction with the outer environment. The dynamics is remark-

ably influenced by environmental conditions, for instance by the onset of panic

situations. Modifications of these conditions can substantially change the rules of

interactions.

It is a fascinating, however difficult topic, in which applied mathematicians

and physicists are increasingly interested. However, despite this phenomenon only

preliminary results are available in papers unlike those pertaining to similar systems

such as vehicular traffic on roads and network of roads. According to the above

reasoning, it is worth identifying a few additional complexifying aspects. Among

various others:

(i) the dynamics is in two or three space dimensions, while traffic flow is in one

space dimension;

(ii) all drivers have approximately the same strategy, which is not consistently

modified by outer conditions, while, in crowds, the dynamics of the interactions

and the overall strategy is modified according to specific situations, for instance

the presence of panic may change them consistently.

Some papers are available mainly concerning modelling issues at the microscopic

and macroscopic scales, among others, Henderson13,;14 Helbing15,;16 Helbing and

coworkers17–;19 Hoogendoorn and Bovy;21 Coscia and Canavesio.7 Recent papers
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by Hughes,22,23 which deal with macroscopic type modelling, put clearly in evidence

that the modelling can be developed only if the thinking ability of interacting indi-

viduals is often carefully taken into account. In modelling dynamics of crowds moti-

vation is also related to the control of panic situations or engineering structural

safety as documented in the paper by Venuti et al.30

The contents of this paper in some ways related to traffic flow modelling docu-

mented in the review papers, by Helbing,20 Bellomo et al.,5 Klar et al.,24 which is

far more developed than that of crowds and swarms dynamics. Some recent papers

on vehicular traffic flow modelling by kinetic theory with discrete velocities,8,11

provide useful modelling of microscopic interactions that can be used also at the

macroscopic level as well as to model pedestrian flows.

This paper is the first one of series finalized to develop the various aspects

of crowd modelling from scaling to derivation and simulations of models at the

various scales. The analysis is mainly focused on modelling crowd dynamics by

hydrodynamic equations, while the additional technical difficulties in the modelling

of swarms are subsequently put in evidence. The contents are developed through

five more sections as follows.

Section 2 deals with the first step of the modelling process, namely the identi-

fication of the observation scales to represent the system. As we shall see, it is not

naively claimed that the selection of a scale among those that are reported in the

section is fully satisfactory as various criticisms can be raised due to the complexity

of the system.

Section 3 initiates the modelling approach by assessing the mathematical frame-

work suitable to act as a background structure for the derivation of specific models.

The framework consists in the equations of conservation of mass and equilibrium of

linear momentum characterized by an acceleration term to be properly modelled.

Section 4 completes the modelling process by offering different types of accel-

eration terms, that generate different models corresponding to increasing levels of

accuracy to capture the essence of crowd dynamics.

Section 5 proposes a qualitative analysis of the various models offered in Sec. 4,

focused on the hyperbolicity analysis to characterize the qualitative behavior of the

solutions. Numerical simulations, that will appear in Ref. 12, visualize the dynamics

of the crowds also referred to some of the calculations reported in this section.

Section 6 deals with critical analysis concerning various aspects of the modelling

of crowd dynamics regarded as research perspectives. Specifically, this section deals

with the modelling of boundary conditions, with the analysis of the transition from

normal to panic conditions, and of the conceptual differences between crowd and

swarms modelling.

It is worth stressing that, although this paper deals with the approach by meth-

ods of continuum mechanics, the authors are aware that the selection of the macro-

scopic scale may not even be the most appropriate way to describe the system under

consideration. Possibly, different scales and hybrid modelling approaches have to

be developed. This paper refers to the project of developing a general theory where



1320 N. Bellomo & C. Dogbé

different mathematical methods are developed for each scale with respect to the

other is linked to specific applications.

2. Scaling and Representation of Crowd Dynamics

The first step in modelling real systems is the identification of the observation and

modelling scales. Subsequently, for each scale one has to identify the parameters

and the variables to be used toward modelling. Although, this paper deals with the

modelling only by macroscopic hydrodynamic equations, it is worth dealing with

the above issue in view of further developments. Classically, the following types of

description can be considered:

Microscopic description: All pedestrians, regarded as particles, are individually

identified. Position and velocity, regarded as dependent variables of time, of all

individuals define the state of the whole system.

Kinetic description: The state of the system is identified by a suitable probability

distribution over the microscopic state of the test individual representative of the

whole system.

Macroscopic description: The state is described by locally averaged quantities,

namely density, mass velocity and energy, regarded as dependent variables of time

and space.

In details, let us consider a large system of individuals, regarded as active par-

ticles, over a two-dimensional domain Ω ∈ R
2, which may be either bounded or

unbounded. The following parameters can be used toward the identification of

dimensionless independent and dependent variables at the various scale:

• ℓ is a characteristic length of the system. If Ω is bounded, ℓ is the largest dimen-

sion; if Ω is unbounded, then ℓ is the largest dimension of the domain containing

the initial localization of the crowd.

• nM is the maximum density of the crowd corresponding to their admissible

packing;

• VM is the maximum admissible mean velocity of crowd which may be reached,

in average, in free flow conditions, while the maximum admissible velocity for an

isolated individual, may be larger that VM is denoted by (1 + µ)VM , µ > 0.

The above quantities allow the assessment of the following independent

variables:

• t = tr/TC, where tr is the real time, is the dimensionless time variable referred

to the critical time TC = VM/ℓ.

• x = xr/ℓ, and y = yr/ℓ which are the dimensionless space variables obtained

referring to the real space variables xr and yr to ℓ.

After the above preliminary definitions, it is possible to assess the variables to

represent the system at the various scales.
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The microscopic representation is defined by the following variables:

xi = {x, y}i, which identifies, for i = 1, . . . , N , the position in Ω of each ith indi-

vidual of a crowd of N individuals;

Vi = {Vx, Vy}i, which identifies the dimensionless (being referred to VM , velocity

of each ith individual of the crowd.

Mathematical models are generally stated as a system of N ordinary differential

equations where vi and xi are the dependent variables, that are normalized with

respect to VM and ℓ, respectively.

The kinetic (statistical ) representation of a system constituted by a large number

of interacting individuals is defined by the statistical distribution of their position

and velocity:

f = f(t,x,V) = f(t, x, y, Vx, Vy), (2.1)

where, if f is locally integrable, f(t,x,V)dxdV denotes the number of individuals,

which, at the time t, are in the elementary domain of the microscopic states [x, x+

dx] × [y, y + dy] × [Vx, Vx + dVx] × [Vy , Vy + dVy ].

The distribution function f can be normalized with respect to nM , while also

in this case the microscopic variables are normalized with respect to VM and ℓ,

respectively. Therefore, all derived variables can be given in a dimensionless form.

Macroscopic observable quantities can be obtained, under suitable integrability

assumptions, by moments of the distribution. In particular, the dimensionless local

density is given by

ρ(t,x) =

∫ 1+µ

0

∫ 1+µ

0

f(t,x,V)dV. (2.2)

The total number of individuals in Ω, at time t, is given by

N(t) =

∫

Ω

ρ(t,x)dx. (2.3)

Analogously, the mean velocity can be computed as follows:

�v(t,x) = E[V](t,x) =
1

ρ(t, x)

∫ 1+µ

0

∫ 1+µ

0

Vf(t,x,V)dV, (2.4)

and similarly the speed variance

σ(t,x) =
1

ρ(t,x)

∫ 1+µ

0

∫ 1+µ

0

[V− E[V](t,x)]2f(t,x,V)dV, (2.5)

where the speed variance provides a measure of the stochastic behavior of the system

with respect to the deterministic macroscopic description.

Mathematical models obtained, in the framework of the kinetic theory, by evo-

lution equations for the above defined distribution function obtained by number

density balance in the elementary volume of the space of the microscopic states.

Inflows and outflows into and from such a volume are determined by interactions

between the test individual and the field ones.
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The mathematical kinetic theory for active particles, see Ref. 2, suggests adding

to the modelling of the microscopic state an additional activity variable suitable to

describe the strategy of each individual regarded as an active particle.

The macroscopic representation of a system constituted by a large number of inter-

acting individuals concerns groups of pedestrians rather than the individual units.

Macroscopic representation may be selected for high density, large scale systems in

which the local behavior of groups is sufficient.

In details, the macroscopic representation is defined by the following variables:

ρ = ρ(t, x, y) which is the dimensionless density referred the local number density

n = n(t, x, y) to the maximum admissible density nM ;

�v = �v(t, x, y) that is the dimensionless mean velocity, referred to VM , that, in two

space dimensions, expressed by the unit vectors denoted by (�i,�j), writes:

�v(t, x, y) = vx(t, x, y)�i + vy(t, x, y)�j. (2.6)

The relationship between the flow rate, the mean velocity and the pedestrian

density is given, in dimensionless form, as follows: �q = ρ�v.

3. Macroscopic Frameworks Toward Modelling

This section deals with the derivation of the mathematical framework suitable to

act as a general paradigm for the derivation of specific models. Classically, equation

of conservation of mass and equilibrium of linear momentum can be used. The main

conceptual difficulty consists in modelling the closure of momentum equation by

suitable phenomenological models of the acceleration applied to individuals in the

elementary volume dx = dx dy.

Pedestrian movement shows characteristics different from those of cars or other

vehicles. Pedestrians have more flexibility to move in two dimensions, as well as

more flexibility to stop and go within the full range of admissible velocities, that is

not the case of vehicles. This is due to the wide domain of visibility area controlled

by them. However, the hydrodynamic approach refers to locally averaged quantities,

therefore local fluctuations in the velocity are not modelled explicitly.

Bearing all the above in mind, let us consider the modelling approach offered

by continuum mechanics that approximates the system under consideration as a

continuum flow. Therefore, if the distances between the crowds are assumed to be

negligible. According to Sec. 2, the state of the system, in two space dimensions,

is described by density of the crowd and the average speed: ρ = ρ(t, x, y) and

�v = �v(t, x, y), while the local flow is given by:

�q = �q(t, x, y) = ρ(t, v, y)�v(t, v, y),

where, according to the continuum approach, the above quantities are supposed to

be differentiable with respect to the dependent variables.
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Fig. 1. Geometry of the domain occupied by the crowd.

Referring to Fig. 1, let us consider, the crowd in a bounded domain Ω ⊂ R
2,

where ∂Ω is its boundary. The overall description of the system is delivered by the

equation of conservation of mass and equilibrium of linear momentum defined by

the following system of partial differential equations:
{

∂tρ + ∇x · (ρ�v ) = 0,

∂t�v + �v (∇x · �v ) = �F [ρ,�v ],
(3.1)

where �F models the average acceleration that acts over the elementary block of

individuals in volume dx dy. Here ∂t stands for the partial time derivative. The

notation (·)φ = ∂(·)
∂φ

will be used here after. The first equation being pedestrian

conservation and the second speed dynamics; brackets are used to indicate that in

Eq. (3.1), �F = {Fx, Fy} can be, in specific models, a functional of its arguments,

for instance it can be a function not only from ρ and �v but also of their space

derivative.

Remark 3.1. The above system acts as the general framework for the derivation

of specific models which can be classified as first-order models if only the mass

conservation equation is used and is properly closed by a phenomenological model

linking the velocity to the local density conditions (including density gradients),

while second-order models refer to the whole system and are obtained by closing

the linear momentum equation by a phenomenological model of the term �F .

An example of a first-order model has been recently proposed in a paper.7

Additional studies in one space dimension for crowds in on platforms have been

given in the paper by Venuti et al.30 The remaining part of this paper is devoted

to the derivation and analysis of second-order models. Some preliminary remarks

are given below in view of the detailed modelling proposed in the next section.

Remark 3.2. �F is not the real physical force applied by an external field; it char-

acterizes the internal driving force or motivation of the pedestrian. That is why, we
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talk about acceleration, considering that using the term “force” is not appropriate

for a system in which the “mass” cannot be properly defined.

Remark 3.3. Acceleration in models of crowds is a basic element that must be

represented for three reasons. First, acceleration has a direct effect on movement:

people in a crowd can be pushed around. Second, acceleration is a perceptible

input to the cognitive system and a major source of information in an information-

starved situation. Third, acceleration carries the consequences of dangerous crowd

scenarios: injuries.

Remark 3.4. A preliminary observation, still waiting for the derivation of models,

is that pedestrians have a target to reach, for instance a point T of the boundary

corresponding to the exit. Therefore, given a point P = {x, y} inside Ω is useful,

for the calculations developed in the next section, defining the unit vector from P

to the target T as shown in Fig. 1.

The calculation of the unit vector �ν0, according to the geometry of the system,

is simply as follows:

�ν0(x, y) = �νx0(x, y) + �νy0(x, y), (3.2)

where

�νx0(x, y) =
x − xT

√

(x − xT )2 + (y − yT )2
�i , (3.3)

and

�νy0(x, y) =
y − yT

√

(x − xT )2 + (y − yT )2
�j , (3.4)

where the direction of the vector is simply identified by the coordinates of the points

P and T .

Of course, pedestrians may have a target inside the domain Ω, simple technical

modifications are needed to consider this case. The statement of mathematical

problems needs suitable boundary conditions unless the modelling refers to crowds

in unbounded domains. However, it is still reasonable for the crowd to have a target.

4. Second-Order Models

This section deals with the derivation of second-order models, namely models with

accelerations. All models consist of two equations given in a 2D system of partial

differential equations (3.1) with a phenomenological relation that describes the

average 2D acceleration by which the crowd modifies its own speed: �F = {Fx, Fy},

where the components of �F may depend on the local density, density gradients,

velocity and position of the crowd: �F = �F [ρ,�v, ν0], where square brackets denote

functional dependence.

Different classes of models can be identified according to different ways of mod-

elling the aforementioned acceleration. Specifically, two classes of models here are
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considered simply identified by the way pedestrian select their direction of motion.

In details:

Class I: The first class refers to systems where the pedestrians move along straight

lines toward the target objective.

Class II: The second class of models refers to walkers that still move toward the

target objective, but are also attracted by paths with small density gradients.

Class III: The third class of models contains a “pressure” term which enables the

momentum equation to predict the expect response of crowd behavior as time and

space changes.

The following two subsections deal with modelling issues related to the above

classification, while the third subsection reports about some technical developments

involving a modification of the conservation equation. For instance, according to

the some natural development of the Aw and Rascle model1 which use, as we shall

see, a different dependent variable.

Remark 4.1. The above classification simply takes into account the direction fol-

lowed by pedestrians, while different expression of the acceleration along such a

direction can be proposed, as we shall see, according to their specific phenomeno-

logical behaviors.

Remark 4.2. The modelling is proposed in normal flow conditions. The dynamics

in panic conditions is analyzed in the last section. The presentation of the various

models follows the same guidelines: the fundamental assumptions that generate

each class of models is stated, subsequently the mathematical framework is derived,

and finally same specific models are derived based on suitable phenomenological

assumptions concerning the acceleration term.

4.1. Class I

Let us consider, referring to Fig. 1, a class of models derived according to the

following hypothesis:

Assumption 1. Pedestrians seek to minimize their (accurately) estimated travel

time but temper their velocity according to local density. Specifically, in each

point P = {xP , yP } of the domain, individuals move toward a given objective

along the direction �ν0(x, y). Moreover, their acceleration consists of two contribu-

tions: the first one corresponding to a trend and to equilibrium velocity depending

on the local density, directed toward �ν0(x, y), and the second term to the action of

the density gradients toward �ν0. In particular, negative values increase the acceler-

ation, while positive values decrease it.
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The formal structure of the system corresponding to mass conservation and

linear momentum equilibrium is as follows:










∂tρ + ∂x(ρvx) + ∂y(ρvy) = 0,

∂tvx + vx∂xvx + vy∂yvx = F1x(x, ρ, �v ) + F2x(x, ρ,∇ν0
ρ),

∂tvy + vx∂xvy + vy∂yvy = F1y(x, ρ, �v ) + F2y(x, ρ,∇ν0
ρ), (4.1)

where the first term corresponds to the adaptation to the velocity �ve, which depends

on the local density, while the second term corresponds to the influence of local

density gradients.

The above acceleration terms can be specialized as follows:

�F1 = α (ve(ρ)�ν0 − �v ), (4.2)

where α is a constant representing the inverse of the relaxation time of �v toward

the generalized equilibrium velocity v(ρ)�ν0 and

�F2 = −
K2(ρ)

ρ
∇ν0

ρ. (4.3)

Inserting the above formal expression into (4.1) generates the following vector

system:






∂tρ + ∇x · (ρ�v ) = 0,

∂t�v + (�v · ∇x)�v = α(ve(ρ)�ν0 − �v ) −
K2(ρ)

ρ
∇ν0

ρ.
(4.4)

Different specific models can be derived in agreement with (4.4) according to

different specific models (4.2) and (4.3). In particular, various models have been

proposed in the mathematical literature for vehicular traffic flow to describe the

trend defined in (4.2). The simplest model is based on the assumption of a linear

decay: ve(ρ) = 1− ρ. However, this extremely simple model does not take properly

into account as the quality of the environment, as the decay with respect to density

depends on its quality. It may be less steepest when the quality of the environment

is good. The model proposed in Ref. 5 to stimulate equilibrium vehicular traffic

flow is as follows:

ve(ρ) = exp

(

−c1
ρ

1 − ρ

)

, (4.5)

while the so-called Kladek model reported in Ref. 30 refers specifically to pedestrian

flow:

ve(ρ) = 1 − exp

(

−c2
1 − ρ

ρ

)

. (4.6)

Various models can be derived by using different expressions of K2(ρ). For

instance:

(1) with K2(ρ) = 0

∂t�v + (�v · ∇ν0
)�v = α (ve(ρ)�ν0 − �v );
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(2) for K2(ρ) = β2
1 , we deduce

∂t�v + (�v · ∇ν0
)�v = α (ve(ρ)�ν0 − �v ) −

β2
1

ρ
∇ν0

ρ;

(3) as in analogy to the traffic vehicular,25 we have K2(ρ) = β2
2 ρ2(‖�ve‖

2) which

generates

∂t�v + (�v · ∇ν0
)�v = α (ve(ρ)�ν0 − �v ) − β2

2 ρ(‖�ve‖
2)∇ν0

ρ

as in models by Zhang31,;32

(4) the choice of K2(ρ) = β2
3α‖�ve‖ yields

∂t�v + (�v · ∇ν0
)�v = α(ve(ρ)�ν0 − �v ) − β2

3 ρ‖�ve‖∇ν0
ρ

as in the model by Payne;28

(5) the use of the relation K2(ρ) = −ρ‖�ve‖e
α‖�ve−�v‖ generates:

∂t�v + (�v · ∇ν0
)�v = α(ve(ρ)�ν0 − �v ) − ‖�ve‖e

α‖�ve−�v‖∇ν0
ρ

as in the model by Del Castillo and Benitez.10

The above class of models can be further refined by taking the gradients along

the local mean velocity. It is however a technical difference that does not introduce

significant additional improvements.

4.2. Class II

The class of models proposed in the preceding subsection is such that pedestrians

direct their motion, from any point P of the domain Ω, to the target T . On the other

hand, the direction of motion generally takes into account the fact that pedestrians

attempt to avoid zones with higher density, while the selection of optimal paths

occurs only in their visibility zone. The reasoning has some analogy with that used

in the modelling of pedestrian flow by first-order models.7

Conservation equations (4.1) or (4.4) are still used however the direction identi-

fied by the unit vector ν0 must be substituted by a new one that takes into account

the above phenomena. Specifically, referring to Figs. 1 and 2, the following assump-

tion is proposed:

Assumption 2. Pedestrians seek to join the objective by undervalying their time

if possible and at the same time while seeking to avoid the zones with high density.

Pedestrians do not have a global vision of the situation, but their perception of the

density is limited visual field.

The formalization of the above assumption into mathematical terms needs the

identification of the path-direction ν and of the visibility zone, bearing in mind that

the above two quantities are technically related.

Bearing all above in mind let us define by

γ = arctan

(

ν0y

ν0x

)
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Fig. 2. Target and visibility zone.

the angle which characterizes the direction of the vector �ν0, and by θv the maximum

angle of visibility of the pedestrian (in average), one can define a “visual range”

interval:

Rv = [γ − θv, γ + θv]

to the inside of which the direction toward which heading is chosen. Therefore, let

us define the following quantity

I = {�ξ cosα�i + sin α�j | α ∈ Rv},

and by �µm = �µm(P ) the minimal direction of the directional derivative

min
�ξ∈I

[∇xρ(P ) · �ξ],

and �µM = �µM (P ) the direction of maximum of the directional derivative

max
�ξ∈I

[∇xρ(P ) · �ξ],

where I is the domain of the path directions on Rv.

The direction of the motion of pedestrians can be defined, given a density field,

as follows:

�ν(P ) = �ν0(P ) + �ν1(P ), (4.7)

where ν0 has been defined in Sec. 3 and the corrective term is given by

�ν1(P ) = η �µm(P ), (4.8)

where η is a positive small parameter introduced to model a corrective term related

to the attraction toward small density gradients.

Remark 4.3. The above modelling refers to normal flow conditions, while the

situation of panic condition is analyzed in the last section.
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Mathematical models are then related to the following structure:






∂tρ + ∇x · (ρ�v ) = 0

∂t�v + (�v · ∇x)�v = �F [ρ,�v ] = α(ve(ρ)�ν − �v ) −
K2(ρ)

ρ
∇�νρ,

(4.9)

that uses, with respect to (4.7), the direction ν instead of ν0.

Specific models are obtained, as in Sec. 4.1, by adopting suitable expressions of

the terms ve and K2(ρ). Although technically more complex, the above modelling

method has the advantage of leading, as we shall see in the sequel, to an immediate

modelling approach of panic conditions.

It is worth stressing that further developments can be obtained by taking into

account additional phenomena in the modelling of the acceleration term �F [ρ,�v ]

for instance, a linear velocity diffusion term corresponding to a viscous dissipa-

tion in fluid dynamical framework can be added. Consequently, the acceleration of

pedestrians will be given by three contributions: the first corresponds to a trend

to equilibrium, the second to the action of the density gradient and the third to a

dissipative velocity diffusion

�F [ρ,�v ] = �F1[ρ,�v ] + �F2[ρ,�v ] + �F3[ρ,�v ] = c1(�ve − �v ) −
1

ρ
∇xp +

ǫ

ρ
∆�v, (4.10)

where ǫ is a parameter positive which represents in the case of the fluids, the

viscosity.

Technical calculations to obtain specific models can be, subsequently, obtained

as we have seen above.

4.3. Class III

The various models proposed in the preceding section have been obtained by using

conservation of mass and linear momentum. The analysis of traffic flow modelling

has shown that it can be useful a modelling approach based on the conservation of

different quantities such as the total pressure. Our model of Class III is based on a

1D traffic flow model proposed by Aw and Rascle.1

The first equation is the two-dimensional conservation law equation given by

∂tρ + ∂x(ρvx) + ∂y(ρvy) = 0. (4.11)

The second equation is obtained by applying the convective derivative on the

pressure terms for the 2D case and it is given by

∂t(vx + P1(ρ, vx)�ν0) + vx∂x(vx + P1(ρ, vx)νx0
)

+ vy∂y(vx + P1(ρ, vx)νx0
) = ρA1[ρ,�v ], (4.12)

∂t(vy + P2(ρ, vy)�νy0
) + vx∂x(vy + P2(ρ, vy)νy0

)

+ vy∂y(vy + P2(ρ, vy)νy0
) = ρA2[ρ,�v ], (4.13)
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where P (ρ,�v ) is a proposed function given by

P (ρ,�v) =
ργ+1

β − ργ+1
�v (4.14)

and valid for γ > 0 is a dimensionless constant and β > ργ+1
m with ρm means the

maximum density and

A1[ρ,�v ] = α(ve(ρ)νx0
− vx); A2[ρ,�v ] = α(ve(ρ)νy0

− vy).

In a more compact form, the system of Class III can be written as follows:
{

∂tρ + ∇x · (ρ�v ) = 0,

∂t (�v + P (ρ,�v )�ν0) + (�v · ∇x) (�v + P (ρ,�v )�ν0) = �A [ρ,�v ],
(4.15)

while, in dimensionless variables, Eq. (4.15) is as follows:


































∂tρ + ρ(∂xvx + ∂yvy) + vx∂xρ + vy∂yρ = 0,

∂t (vx + P1(ρ, vx)νx0
) + vx∂x (vx + P1(ρ, vx)νx0

)

+ vy∂y (vx + P1(ρ, vx)νx0
) = A1[ρ,�v ],

∂t (vy + P2(ρ, vy)νy0
) + vx∂x (vy + P2(ρ, vy)νy0

)

+ vy∂y (vy + P2(ρ, vy)νy0
) = A2[ρ,�v ],

(4.16)

supplemented by initial conditions ρ(0, x, y) ≥ 0, vx(0, x) ≤ |v1x| and vy(0, y) ≤

|v2y|. Here v1x and v2y are the free flow speed.

An additional alternative is obtained by using for the first equation the two-

dimensional conservation of continuity that conserve mass (pedestrians) given by

∂tρ + ∂x(ρvx) + ∂y(ρvy) = 0. (4.17)

The flux flow rate in both directions is represented by ρvx and ρvy. The second

equation is similar to the momentum equations in 2D for compressible flow with

some manipulations to mimic crowd dynamics and it is given by

∂tvx + vx∂xvx + vy∂yvx + ρv′e(ρ)νx0
[∂xvx + ∂yvy] = A1[ρ,�v ], (4.18)

∂tvy + vx∂xvy + vy∂yvy + ρv′e(ρ)νy0
[∂xvy + ∂yvy] = A2[ρ,�v ], (4.19)

where ρv′e(ρ) and ρv′e(ρ) are the traffic sound speed at which small traffic distur-

bances are propagated relative to the moving crowd stream. Here, the prime ‘′’ is

a short-hand notation for total derivative d/d·. This model will be classified as a

crowd flow nonlinear, time varying, hyperbolic system of two partial differential

equations.

The above modelling approach can be further developed by following the

remarks below.

Remark 4.4. The influence of local gradients can be included analogously to what

we have seen for the II-type models. Therefore, the treatment of panic conditions

is again as stated in Remark 4.3.
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Remark 4.5. A recent paper by Degond and Delitala9 has shown that an appro-

priate modelling of the invariant, corresponding to momentum and pseudo-pressure,

leads to a dynamics with a trend to an equilibrium velocity, versus density, that

corresponds to the velocity diagram that is experimentally observed. This avoids

introducing artificially such a trend. This approach needs to be properly adapted

to modelling also crowd dynamics without using the artificial terms A1,2.

5. Hyperbolicity Analysis of Crowd Dynamic Models

Our exposition is completed, in this section, by a qualitative analysis of the par-

tial differential equations (PDEs) used in the modelling approach. Specifically, one

should expect models characterized by finite propagation velocity.

Accordingly, suitable basic notions are introduced. Let us consider the scalar

equation in two dimension:

∂tρ + ∂xf(ρ) + ∂yg(ρ) = 0, t > 0, (x, y) ∈ R
2, (5.1)

ρ(0, ·) = ρ0 (5.2)

for given functions f, g, and ρ. For systems in two dimensions, let Q ∈ R
n, then

the scalar equations (5.1) and (5.2) become a system of PDEs for two dimension

given by

∂tQ + ∂xF (Q) + ∂yG(Q) = 0 in R
+ × R

2, (5.3)

Q(·, 0) = Q0 in R
n. (5.4)

Moreover, let us introduce the following definition.

Definition 5.1. The system is called (strictly) hyperbolic system if all eigenvalues

of δ1F
′(Q) + δ2G

′(Q) are real (and distinct) for all δ1, δ2 ∈ R, Q ∈ R
n.

These eigenvalues also known as characteristic speeds, not only enable us to

determine the hyperbolicity of the systems (5.1)–(5.2), but also to obtain informa-

tion on the movement of the crowd.

5.1. Qualitative properties of the model of Class I

The class of models under consideration consists in a nonlinear, time-varying hyper-

bolic PDE system. Therefore, no analytical solution for this kind of systems is

available, and it is known that for hyperbolic PDEs one has discontinuous solu-

tions, namely, more than one solution at some point in time and space (for more

details on hyperbolic PDEs see Ref. 26). Therefore, the model has to be written in

a form that can be solved numerically to provide results that are consistent with

the observed behavior.

Bearing all above in mind, the conservation form of the model (4.9) is derived,

and using this form, it is proven that the hyperbolic property of the system and its

isotropic nature by finding the system roots.
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Specifically, the model (4.4) is written as follows:


























∂tρ + ∂x(ρvx) + ∂y(ρvy) = 0,

∂tvx + vx∂xvx + vy∂yvx = α(ve(ρ)νx0
− vx) −

K2(ρ)

ρ
∂xρ νx0

,

∂tvy + vy∂xvy + vy∂yvy = α(ve(ρ)νy0
− vy) −

K2(ρ)

ρ
∂yρ νy0

,

(5.5)

which can also be rewritten as










∂tρ + ∂x(ρvx) + ∂x(ρvx) = 0,

ρ∂tvx + ρ [vx∂xvx + vy∂yvx] + K2(ρ)∂xρνx0
= ρA1[ρ,�v ],

ρ∂tvy + ρ [vy∂xvy + vy∂yvy ] + K2(ρ)∂yρνy0
= ρA2[ρ,�v ].

(5.6)

Some technical manipulations of (5.6) lead to the following conservation form:

∂t(ρvx) + ∂x

(

ρv2
x + ρK2

)

+ ∂y (ρvxvy) = ρA1[ρ,�v ], (5.7)

∂t (ρvy) + ∂x (ρvxvy) + ∂y

(

ρv2
y + ρK2

)

= ρA2[ρ,�v ]. (5.8)

Let us now look for the solution to the Riemann problem and let us write the

system in the conservation form

∂tQ + ∂xF (Q) + ∂yG(Q) = S, (5.9)

where Q is the conservative variables, F and G are the fluxes in the two space

dimension, while S is considered as the source term. These are given by

Q =







ρ

ρvx

ρvy






, F (Q) =









ρvx

ρv2
x + K2ρ

ρvxvy









,

G(Q) =









ρvy

ρvxvy

ρv2
y + K2ρ









, S =







0

ρA1

ρA2






.

(5.10)

Next, the system is written in the quasi-linear form, while, by setting the relax-

ation terms to zero, the homogeneous hyperbolic partial differential equation in

vector form is as follows:

∂tQ + A(Q)∂xQ + B(Q)∂yQ = 0, (5.11)

where the flux Jacobian matrices A(Q) and B(Q) can be found from the partial

derivative of the fluxes given by

A :=
∂F

∂Q
=









0 1 0

K2 − v2
v 2vx 0

−vxvy vy vx









, B :=
∂G

∂Q
=









0 0 1

−vxvy vy vx

K2 − v2
y 0 2vy









. (5.12)
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This quasi-linear matrix form of the governing equations was used to explore

the characteristic structure of the system. The eigenvalues of the matrices A and

B are found from the flux Jacobian matrices roots by solving the characteristic

equation

|A(Q) − λI| = 0,

that gives the eigenvalues

λ1A = vx − K, λ2A = vx, λ3A = vx + K,

and the corresponding eigenvectors

ϑ1A =







1

vx − K

vy






, ϑ2A =







0

0

1






, ϑ3A =







1

vx + K

vy






.

Referring now to the matrix B, the solution of the eigenvalues equation

|B(Q) − λI| = 0,

yields

λ1B = vy − K, λ2B = vy, λ3B = vy + K,

while the corresponding eigenvectors

ϑ1B =







1

vx

vy − K






, ϑ2B =







0

1

0






, ϑ3B =







1

vx

vy + K






.

Considering that the problem is in two dimensions, the overall system eigen-

values are obtained from the roots of the combined Jacobian matrices satisfying

Definition 5.1. By using this information, it can be deduced that the crowd dynamic

model (5.5) eigenvalues are given by

λ̃1 = ṽ − K(δ1 − δ2), λ̃2 = ṽ, λ̃3 = ṽ − K(δ1 + δ2),

where ṽ = δ1vx + δ2vy. The corresponding eigenvectors are

ϑ1Ã =







1

vx − δ1K

vy − δ2K






, ϑ2Ã =







0

−δ2

δ1






, ϑ3Ã =







1

vx + δ1K

vy + δ2K






.

The eigenvalues are real and distinct, and their corresponding eigenvectors are

linearly independent, hence the model (4.4) is strictly hyperbolic. Finally, it can be

observed that λ1 < λ3, therefore the system preserves its isotropic nature.

5.2. Qualitative properties of the Model (4.16)

Let us now consider the system in the conservation form to find its eigenval-

ues. Moreover, let us focus on the derivation of the x-component only, since the
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y-component can be obtained by the same procedure. By multiplying the second

equation of (4.16) by ρ yields

ρ∂t (vx + P1(ρ, vx)νx0
) + ρ vx∂x (vx + P1(ρ, vx)νx0

)

+ ρ vy∂y (vx + P1(ρ, vx)νx0
) = 0. (5.13)

Moreover, we drop (ρ, vx) from P1(ρ, vx) for convenience for the rest of this

subsection. It is known, from the product rule of partial differentiation, that

∂t (ρ(vx + P1νx0
)) = (vx + P1νx0

) ∂tρ + ρ∂t (vx + P1νx0
) ,

∂x (ρvx(vx + P1νx0
)) = (vx + P1νx0

) ∂x(ρvx) + (ρvx)∂x (vx + P1νx0
) ,

∂y (ρvy(vx + P1νy0
)) = (vx + P1νy0

) ∂y(ρvy) + (ρvy)∂y (vy + P1νy0
) .

Therefore, substituting the above terms in (5.13) and using the continuity equa-

tion to write the model in conservation form (follow same steps for the y-component

using P2), yields

∂tρ + ∂x(ρvx) + ∂y(ρvy) = 0, (5.14)

∂t (ρ(vx + P1νx0
)) + ∂x (ρvx(vx + P1νx0

)) + ∂y (ρvy(vx + P1νx0
)) = ρA1[ρ,�v ],

(5.15)

∂t (ρ(vy + P2νy0
)) + ∂x (ρvx(vy + P2νy0

)) + ∂y (ρvy(vy + P2νy0
)) = ρA2[ρ,�v ].

(5.16)

These equations are also supplemented by initial conditions ρ(0, x, y) ≥ 0 and

vx(0, x) ≤ |v1x| and vy(0, y) ≤ |v2y |. Next is to write the system in two-dimensional

vector form (5.9) where Q is the conservative variables, and F and G are the fluxes

in the x and y-directions, respectively.

The system can be written in vector form as follows:

∂t







ρ

ρ(vx + P1νx0
)

ρ(vy + P2νy0
)






+ ∂x







ρvx

ρvx(vx + P1νx0
)

ρvx(vy + P2νy0
)






+ ∂y







ρvy

ρvy(vx + P1νy0
)

ρvy(vy + P2νy0
)






=







0

ρA1

ρA2






.

(5.17)

The eigenvalue problem can be solved by finding the flux Jacobian matrices A

and B from the quasi-linear form (5.11). In order to get A and B, let us state

Q = (ρ, ζ, ̺)T , ζ = ρ(vx + P1νx0
), ̺ = ρ(vy + P2νy0

).

Substituting the new states in the fluxes yields

F (Q) =









ζ − ρP1νx0

ζ2

ρ
− ζP1νx0

ζ̺
ρ
− ̺P1νx0









, G(Q) =









̺ − ρP2νy0

ζ̺
ρ
− ζP2νy0

̺2

ρ
− ̺P2νy0









,
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while the Jacobian matrices can be written as follows:

A(Q) =











−P1νx0
− ρP1ρνx0

1 − ρP1ζνx0
0

− ζ2

ρ2 − ζP1ρνx0
2 ζ

ρ
− P1νx0

− ̺P1ζνx0
0

− ζ̺
ρ2 − ̺P1ρνx0

̺
ρ
− ̺P1ζνx0

ζ
ρ
− P1νx0











,

B(Q) =











−P2νy0
− ρP2ρνy0

0 1 − ρP2̺νx0

− ζ̺
ρ2 − ζP2ρνy0

̺
ρ
− P2νy0

ζ
ρ
− ζP2̺νy0

− ̺2

ρ2 − ̺P2ρνy0
0 2 ̺

ρ
− P2νy0

− ̺P2̺νy0











.

Therefore, a lengthy and careful calculation of the real distinct eigenvalues of A

gives

λ1A = vx − (γ + 1)P1νx0
; λ2A = λ3A = vx.

Consequently, the corresponding right eigenvectors are

ϑ1A =









β−ργ+1

βvy

vx

vy

1









, ϑ2A =









(β−ργ+1)2

βvx(β+γργ+1)

1

0









, ϑ3A =







0

0

1






.

Referring to the B(Q) matrix, analogous technical calculations give the following

eigenvalues:

λ1B = vy − (γ + 1)P2νy0
; λ2B = λ3B = vy,

while the eigenvectors are given by

ϑ1B =









β−ργ+1

βvx

1
vy

vx









, ϑ2B =







0

1

0






, ϑ3B =









(β−ργ+1)2

βvy(β+γργ+1)

0

1









.

The eigenvalues can be computed by solving the combined Jacobian matrices

satisfying definition (5.1). Specifically, the eigenvalues are found to be

λ̃1 = ṽx − (γ + 1)P1νx0
, λ̃2 = λ̃3 = ṽx,

while their corresponding eigenvectors are given by

ϑ1Ã =









β−ργ+1

βvy

vx

vy

1









, ϑ2Ã =









δ1
(β−ργ+1)2

βṽx(β+γργ+1)

1

0









, ϑ3Ã =









δ2
(β−ργ+1)2

βṽx(β+γργ+1)

0

1









.

These eigenvalues are real and two of them repeated. Nevertheless, we are able

to find linearly independent eigenvectors, and therefore the crowd dynamic model

obtained is a nonlinear hyperbolic system of partial differential equation. In addi-

tion, the pressure term is an increasing function of density, and from the eigenvalue



1336 N. Bellomo & C. Dogbé

λ̃1, we are sure to have the maximum wave speed to be ṽ. Thus, the model has the

desired anisotropic property.

5.3. Qualitative properties of the model of Class III: (4.17)–(4.19)

The conservation form is derived by expanding the derivatives in the first equation

of (4.1) as follows:

ρ(∂xvx + ∂yvy) = −(∂tρ + vx∂xρ + vy∂yρ), (5.18)

where for ve(ρ)νx0
, one has:

v′e(ρ)νx0
∂tρ = ∂tve(ρ) νx0

, v′e(ρ)νx0
∂xρ = ∂xve(ρ) νx0

,

v′e(ρ)νy0
∂yρ = ∂yve(ρ) νy0

.

Exploiting the above calculations for system (4.18), after having multiplied by ρ,

yields:

ρ∂t(vx − ve(ρ)νx0
) + ρvx∂x(vx − v′e(ρ)νx0

) + ρvy∂y(vx − v′e(ρ)νx0
) = ρA1. (5.19)

Moreover, using the product rules yields:

∂t(ρ(vx − ve(ρ)νx0
)) = ∂tρ(vx − ve(ρ)νx0

) + ρ∂t(vx − ve(ρ)νx0
),

∂x(ρvx(vx − ve(ρ)νx0
)) = ∂x(ρvx)(vx − ve(ρ)νx0

) + (ρvx)∂x(vx − ve(ρ)νx0
),

∂y(ρvy(vx − ve(ρ)νx0
)) = ∂x(ρvy)(vx − ve(ρ)νx0

) + (ρvy)∂y(vx − ve(ρ)νx0
).

Next, substituting in (5.19), and using the conservation law (4.11) leads, after

some manipulations, to the equation in conservative form as follows:

∂t(ρ(vx − ve(ρ)νx0
)) + ∂x(ρvx(vx − ve(ρ)νx0

))

+ ∂y(ρvy(vx − ve(ρ)νx0
)) = ρA1, (5.20)

∂t(ρ(vy − ve(ρ)νy0
)) + ∂x(ρvx(vy − ve(ρ)νy0

))

+ ∂y(ρvy(vy − ve(ρ)νy0
)) = ρA2, (5.21)

supplemented by initial conditions are ρ(0, x, y) ≥ 0 and vx(0, x) ≤ |v1x| and

vy(0, y) ≤ |v2y|.

Next, the system is written in the two-dimensional vector form (5.9), where Q

is the conservative variables, and F and G are the fluxes in the x- and y-directions

respectively, and S can be considered as the source term. The PDE system as

follows:

∂t







ρ

ρ(vx − ve(ρ)νx0
)

ρ(vy − ve(ρ)νy0
)






+ ∂x







ρvx

ρvx(vx − ve(ρ)νx0
)

ρvx(vy − ve(ρ)νy0
)






+ ∂y







ρvy

ρvy(vx − ve(ρ)νx0
)

ρvy(vy − ve(ρ)νy0
)






= S,

(5.22)

where S ≡ [0 ρA1 ρA2]
T denote the source vector.
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The eigenvalue problem can be solved by applying the same method as in the

previous subsection. Therefore, we rewrite the system into the conservative form

and compute the fluxes Jacobian matrices A and B. In order to do so, let us state:

ζ = ρ(vx + ve(ρ)νx0
), ̺ = ρ(vy + ve(ρ)νy0

).

Next, substituting the new states in the fluxes yields

F (Q) =









ζ + ρve(ρ)νx0

ζ2

ρ
+ ζρve(ρ)νx0

ζ̺
ρ

+ ̺ρve(ρ)νx0









, G(Q) =









̺ + ρve(ρ)νy0

ζ̺
ρ

+ ζve(ρ)νy0

̺2

ρ
+ ̺ve(ρ)νy0









.

Therefore, the Jacobian matrices are as follows:

A(Q) =









ve(ρ)νx0
+ ρve(ρ)νx0

1 0

− ζ2

ρ2 + ζve(ρ)νx0
2 ζ

ρ
+ ve(ρ)νx0

0

− ζ̺
ρ2 + ̺v′e(ρ)νx0

̺
ρ

ζ
ρ

+ ve(ρ)νx0









, (5.23)

B(Q) =









ve(ρ)νy0
+ ρv′e(ρ)νy0

0 1

− ζ̺
ρ2 + ζv′e(ρ)νy0

̺
ρ

+ ve(ρ)νy0

ζ
ρ

− ̺2

ρ2 + ζv′e(ρ)νy0
(ρ) 0 2 ̺

ρ
+ ve(ρ)νy0









. (5.24)

Computing the eigenvalues for the matrix A yields

λ1A = vx + ρv′e(ρ)νy0
, λ2A = λ3A = vx, (5.25)

while the eigenvectors are given by

ϑ1A =







1

vx − �ve

vy − ve(ρ)νy0






, ϑ2A =







1

vx − �ve − ρv′e(ρ)νx0

0






, ϑ3A =







0

0

1






.

Similarly for the matrix B, one has for the eigenvalues:

λ1B = vy − ρv′e(ρ)νy0
, λ2B = λ3B = vy ,

and for eigenvectors:

ϑ1B =







1

vx − ve(ρ)νx0

vy − ve(ρ)νy0






, ϑ2B =







0

1

0






, ϑ3B =







1

0

vy − ve(ρ)νy0
− ρv′e(ρ)νy0






.

Since the system involves two dimension, one needs to verify that it is hyperbolic,

that the eigenvalues found earlier are valid for any combination of the roots of the
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combined system as defined by Definition 5.1. The eigenvalues are computed as

follows:

λ1 = ṽx + ρṽ′e, λ2 = λ3 = ṽx, (5.26)

where ṽ = δ1vx + δ2vy and ṽ′e = δ1vx(ρ)νx0
+ δ2vy(ρ)νy0

. Considering that these

eigenvalues are real, it can be concluded that the model is hyperbolic, and that, con-

sidering that we also have repeated eigenvalues, the model is not strictly hyperbolic.

For each eigenvalue the corresponding eigenvectors are given by

ϑ1Ã =







1

vx − ve(ρ)νx0

vy − ve(ρ)νy0






, ϑ2Ã =









1
ṽ−ve(ρ)νx0

−ρṽe(ρ)νx0

δ1

0









, ϑ3Ã =







0

− δ1

δ2

1






.

5.4. Comparison between the models

The system (4.4), or equivalently the system (5.5), is strictly hyperbolic, because the

calculation of the eigenvalues based on the gradient computation of the flux matrices

gives three distinguished values. This result holds except for K = 0, where two

eigenvalues coalesce, and the matrices A and B cannot any longer be diagonalized.

Therefore, the solutions of (4.4) can be found, in this model no internal inconsis-

tency appears. Models of Class I are characterized by an isotropic nature since one

of the eigenvalues is always moving faster than the velocity itself. Consequently, the

partial differential system (4.9), implemented with proper initial/boundary data,

generates a well-posed mathematical problem.

The second class of models uses two-coupled PDEs with an anticipation term

K(ρ) and the relaxation terms A . These terms change the momentum equation

to mimic crowd dynamic flow. The anticipation factors role is to find the macro-

scopic response of pedestrian to traffic density, namely, its response when interac-

tion between pedestrians and obstacles are overlooked within their domain. By the

solution of an eigenvalue problem, one deduces that this model has an anisotropic

nature since one of its eigenvalues is always moving faster than the velocity itself.

The behavior of the systems (4.17)–(4.19) is qualitatively similar to those models

of Class I. In this class of models, we replace the relaxation term with a convective

derivative on the pressure term. The class of model has three real and two repeated

eigenvalues. The system is hyperbolic and shows an anisotropic nature that is evi-

dent from its eigenvalues, where λ1 ≤ λ2 = λ3 for both velocity directions. This

means that all information moves at a speed equal or less than the velocity of the

corresponding state.

All above results are summarized in Table 1.

6. Additional Analysis

The contents of this paper, after a preliminary analysis of scaling and representation

problems, has been focused on modelling crowd dynamics at the macroscopic scale.

This final section aims at developing a critical analysis toward further developments

of the modelling approach. In details, the following topics, selected among several
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Table 1. On the consistency of the class of models.

Models

Characteristic Class I Class III.A Class III.B

Conservative variables Q ρ, ρvx, ρvy ρ, ρ(vx + P1νx0
), ρ, ρ(vx − ρv′eνx0

),
ρ(vy + P2νy0

) ρ(vy − ρv′eνx0
),

“Pressure” term P ρK(ρ) = ρK2

0

�vργ+1

β−ργ+1 ,
γ > 0

β > ρmγ+1
−ρv′e(ρ)νx0

= ρvx

ρm

X-direction F (Q) eigenvalues
λ1 vx − K0 vx − (γ + 1)P1νx0

vx + ρv′eνx0

λ2 vx vx vx

λ3 vx + K0 vx vx

Y -direction G(Q) eigenvalues
λ1 vy − K0 vy − (γ + 1)P2νy0

vy + ρv′eνy0

λ2 vy vy vy

λ3 vy + K0 vy vy

PDE type Strictly Hyperbolic Hyperbolic Hyperbolic

Isotropic Yes No No

Antisotropic No Yes Yes

conceivable ones, are treated in the subsections below: statement of mathematical

problems, transition from normal to panic situations, modelling swarms, and finally

a critical analysis related to development of multiscale methods. Each of the above

issues are dealt with at an introductory level, while a deeper analysis needs to be

properly developed within a suitable research plan.

6.1. Statement of mathematical problems

Let us consider, the statement of mathematical problems for the class of models

reported in the preceding sections. Typically, problems can be classified into ini-

tial value problems in unbounded domains and initial-boundary value problems in

bounded domains.

The initial value problem for models of crowd dynamics (3.1) is stated in

unbounded domains for active particles (individuals) who have the objective to

reach a point of the whole space. The statement is obtained by linking the models

to initial conditions for the density and velocity variables:

ρ0(x,v) = ρ(t = 0,x,v), �q0(x,v) = �q(t = 0,x,v), ∀x ∈ Dt0 ⊂ R
2, ∀v ∈ Dv,

where Dt0 is the domain of the space variable where the initial condition is localized,

see Fig. 3.

The solution to the above problem should provide the evolution Dt of the domain

occupied by the individuals starting from the domain Dt0 occupied at the initial

time. If individuals have a target to pursue, the problem is meaningful if the target

T does not belong to the domain of the initial conditions and until T is not included

in Dt0 .
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Fig. 3. Time evolution of the domain occupied by the crowd.

Fig. 4. Closed domain with inlet and outlet boundaries.

Let us now consider the statement of boundary conditions in a fixed domain Ω

with boundary ∂Ω. Moreover, let ΩT be the part of the boundary where particles

flow out, and ΩI be the part where the inlet of individuals occur. Finally, let us

denote by ∂Ωb the part of the boundary where no inlet or outlet occurs, see Fig. 4,

and assume that ∂Ωb is regular so that the normal to the surface �n can be defined.

The statement of the boundary conditions has to be considered for each of the

boundary domains T , I and Ωb.

The statement on ∂Ωb is obtained by assuming that the flow is equal to zero:

�q · �n = 0, ∀x ∈ ∂Ωp. (6.1)

For other parts of the boundary, it can be assumed that the flow is prescribed:
{

�q · �n = vI , ∀x ∈ ∂ΩI ,

�q · �n = vT , ∀x ∈ ∂ΩT ,
(6.2)

or that not gradients are allowed along the inlet or outlet zone:

∇�n(�q · �n) = 0, ∀x ∈ ∂ΩI , or ∀x ∈ ∂ΩT . (6.3)
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The above statement is reasonable in the case of normal flow, while it should

be properly adapted to the case of panic situations. Moreover, one has to take into

account unavoidable fluctuations. Therefore, it is very important to analyze the

sensitivity of the solution to the mathematical problem with respect to perturbation

in the data and the production terms.

6.2. Transition from regular to panic conditions

The behavior of crowds in panic situations appears to be substantially different from

that observed in normal flow conditions. In some cases panic behaviors generate

extremely dangerous situations which may possibly be avoided by suitable control of

the behavior of the pedestrians: their reaction to panic signals, and to the behavior

of surrounding individuals.

The analysis will be focused on models derived within the frameworks proposed

in the preceding sections referring both to the collective strategy and to individ-

ual interactions. As already mentioned, the topic is not treated extensively, but

some qualitative indications, focused on modelling panic conditions, are given with

research perspectives:

1. Individuals are not subject to the acceleration directed toward a precise objec-

tive, while they follow the presence of the other particles.

2. Interactions among individuals substantially differ from those in normal flow con-

ditions as attracting accelerations become predominant with respect to repulsive.

Moreover, their intensity becomes relatively greater.

3. The individual behavior tends to be the same for all individuals as all of them

are aware of the environmental situation, thus reducing behavioral differences

from individual to individual.

Some of the models proposed in Sec. 4 can be properly modified to take into

account the aforementioned behaviors. The first modification refers to modelling

the equilibrium velocity, as both expressions (4.5) and (4.6) need to be modified.

Specifically, VM substantially increased in panic conditions, while suitable experi-

ments (not yet available) should be developed to model ve in panic conditions.

The second modification refers to the attraction toward density gradients, that

changes sign in panic conditions. Namely, the crowd is attracted by positive density

gradients rather than negative. Therefore, a correction using �µM rather than �µm

should be used. Moreover, this effect becomes quantitatively relevant with respect

to the relaxation toward the equilibrium velocity.

The above considerations already provide some preliminary suggestions toward a

modelling approach although experiments, not yet available, appear to be necessary.

6.3. Modelling swarms

Modelling of swarms is an attractive research perspective which may be also moti-

vated by the observation of the beauty of the shapes formed by birds which appear
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in the sky during spring and autumn periods. The modelling process needs to be

related to the statement of mathematical problems which is an initial value problem,

while the domain containing the swarm evolves in time.

Generally, a swarm does not have a precise target to reach unless it has to escape

a danger signal appearing from the outer environment. However, one may expect

that paths of minimum density gradients are followed, while interactions at the

microscopic scale follow rules somehow similar to those of crowds. Moreover, the

behavior on the border of the swarm follows rules different from those of particles

well inside the swarm.

Bearing all above in mind, some guide lines will be given toward a modelling

project:

1. Mathematical problems are stated in unbounded domains with initial condi-

tions with compact support. The solution to those problems should provide the

evolution in time of the domain of the initial conditions.

2. Individuals are not subject to the acceleration directed toward a precise objec-

tive, while modelling of microscopic interactions should also take into account

the localization of the interacting pairs. The output of the interactions is different

from the border to the center of the swarm.

3. The swarm generally has one or more leading individuals so that the others are

attracted by leaders who may stochastically modify their trajectories.

Transferring the above ideas to a modelling approach is definitely a challeng-

ing problem that may even require adopting a representation at a different scale,

specifically the one offered by the kinetic theory.2 A hybrid approach, definitely

worth developing consists in adding to the macroscopic description a perturbation

induced by long-range interactions. In all cases with respect to crowd dynamics a

different self-organization ability has to be considered.

6.4. Scaling problems

The modelling approach proposed in this paper is based on the macroscopic descrip-

tion of mass and linear momentum equations properly closed by phenomenological

models of the acceleration acting on the crowd elementary volume in each point of

the space domain.

It is obvious that the system under consideration does not satisfy the classical

continuum assumption. Therefore, macroscopic models have to be considered as

an approximation of physical reality that in some cases, for instance low density

regimes, may not be satisfactory. Moreover, this is not the only drawback of the

macroscopic approach, as models are derived under the assumption that all individ-

uals behave in the same way, namely the system is not heterogeneous. Therefore,

the approach of this paper should be regarded as a first step to be followed by

additional analysis focused on different modelling methods.
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On the other hand, it is not naively claimed that the use of the other scales is

fully satisfactory. Various criticisms can be raised for each of the scales defined in

Sec. 2. For instance, models at the microscopic scale involve not only difficulties

in modelling individual behaviors, but also computational complexity induced by

the large number of differential equations and by the subsequent difficulty in devel-

oping the averaging process. The system under consideration is characterized by

complex dynamics, where microscopic interactions play the role, while macroscopic

information is needed to describe the overall behavior.

Methods of the generalized kinetic theory for active particles can be used.

This approach, documented in the book,2 includes an additional variable — called

activity — in the microscopic variable that models the individual behavior of the

interacting elements, called active particles. This approach has the advantage of

describing the statistical distribution of individual behavior, that may depend on

the local flow conditions. On the other hand, even in high density conditions the

number of individuals in the crowd is never large enough to justify the continuous

approximation of the distribution function. Two recent papers devoted to vehic-

ular traffic flow modelling,8,11 suggest to discretize the velocity space so that the

assumption of continuity over the velocity variable is technically relaxed. Of course,

the same reasoning should be applied to the space and activity variables.

On the other hand, macroscopic models should be considered as models which

are characterized by a lower computational complexity with respect to models

derived according to suitable developments of the kinetic theory. Indeed, these mod-

els allow quite immediate application as documented in the paper by Coscia and

Canavesio.7 However, previous studies in other fields of living sciences, e.g. cellular

dynamics in biology, can be properly developed to derive macroscopic equations

from the underlying microscopic description, delivered by kinetic type models, as

documented in papers 3 and 4.

The above reasonings about scaling problem, the suggestion to develop kinetic

type models in a discrete space of microscopic states, and to derive macroscopic

models from the kinetic theory description, can be extended also to modelling

swarms. Indeed, it appears to be an interesting research perspective.
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