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Abstract

A continuously monitored system is considered, which is subject to accumu-

lating deterioration modeled as a gamma process. The system fails when its

degradation level exceeds a limit threshold. At failure, a delayed replacement

is performed. To shorten the down period, a condition-based maintenance

strategy is applied, with imperfect repair. Mimicking virtual age models used

for recurrent events, imperfect repair actions are assumed to lower the system

degradation through a first-order arithmetic reduction of age model. Under

these assumptions, Markov renewal equations are obtained for several reliability

indicators. Numerical examples illustrate the behavior of the system.
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1. Introduction

Most of the systems suffer a physical degradation before the failure. A classical

stochastic model to describe a non-decreasing accumulated random degradation is the

gamma process. A gamma process is a stochastic process with independent, non-
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negative and gamma distributed increments with common scale parameter. This

process is suitable to model gradual damage monotonically accumulating over time

in a sequence of tiny increments, such as wear, fatigue, corrosion, crack growth, etc.

[15].

For deteriorating systems, when the degradation level reaches a certain level, the

system is no longer able to function satisfactorily. Since it is generally less costly

to replace a system before it has failed, maintenance policies based on the system

condition are usually proposed, aiming at preventing failures. It has been proved that

such maintenance strategies minimize the maintenance cost, improve operational safety

and reduce the quantity and severity of in-service system failures, see [2, 9, 11] e.g..

Condition-based maintenance is based on data collected online through continuous

monitoring or inspections. Based on the information data, different maintenance

actions are programmed. The condition of the system after a maintenance action

depends on the maintenance effi ciency considering two extreme cases: a minimal repair,

where the condition of the system after the repair is just the same as before (As Bad As

Old: ABAO), and a perfect repair, when the condition of the system after the repair is

the same as if it were new (As Good As New: AGAN). Reality lies between these two

extreme cases [7]. Since Chaudhuri and Sahu [6] considered the concept of imperfect

maintenance, many models have been analyzed (see Pham and Wang [8] and Castro

[5] for a review on imperfect maintenance models).

In the literature, several optimization models for a system subject to an accumulated

degradation and under an imperfect maintenance scheme have been proposed. Newby

and Baker [13], using the concept of partial repair given by Stadje and Zuckerman

[17], described the maintenance process for a system whose state is described using a

bivariate stochastic process. Castanier et al. [4] proposed a condition-based mainte-

nance model where the effect of the imperfect maintenance is a random function of

the observed deterioration of the system. Nicolai et al. [14] implemented different

imperfect maintenance actions in systems whose degradation is modelled by a non-

stationary gamma process. The effect of the maintenance action is twofold: on the

one hand, to reduce the system degradation by a random amount and, on the other

hand, to modify the structural parameters of the degradation process. The analysis

of the model proposed by Nicolai et al. [14] is performed assuming that the effect of
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the imperfect maintenance actions annihilates the overshoot of the gamma process,

whereas the present study takes it into account.

The modelling assumptions of the present paper are inspired by [2, 11], where the

reader may find practical justifications for them: a system is considered, subject

to a cumulative gradual random deterioration modelled as an homogeneous gamma

process. A perfect and continuous monitoring controls the deterioration of the system.

The system fails when its degradation level exceeds the threshold L and a signal is

immediately sent to the maintenance team. They take τ units of time to arrive on

site, and next perform a corrrective replacement. Compared to τ , this corrective

replacement is short and it is considered as instantaneous. To reduce the system

downtime, a preventive maintenance policy is proposed. Under this maintenance

strategy, the signal is sent to the maintenance team as soon as the degradation level

exceeds a preventive threshold M (0 < M < L). It takes the same delay τ for the

maintenance team to arrive, and maintenance actions are assumed to be instantaneous

too. A major difference between the present study and [2, 11] is that all repairs are

assumed to be perfect (AGAN) in the quoted papers. We here consider that it depends

on the deterioration level at maintenance times: if the system is found failed or too

degraded, a perfect corrective or preventive replacement is performed, accordingly.

Otherwise, an imperfect repair is applied. Unlike most of maintenance models that

combine degradation processes and imperfect maintenance actions, the maintenance

effect is here modelled through a first-order Arithmetic Reduction of Age, mimicking

an ARA1 model for recurrent events [7]. The maintenance effi ciency is hence controlled

through an Euclidian parameter ρ, allowing all situations from perfect (AGAN) to

minimal (ABAO) repairs. Within such a setting, the objective of the paper is to

analyze the transient behavior of the system, which is done in the framework of semi-

regenerative processes with continuous space state.

The paper is structured as follows. In Section 2, the functioning of the initial system

is described and the preventive maintenance policy is showed. Section 3 develops

the mathematical formulation that describes the functioning of the system under the

preventive maintenance policy explained in the previous section. Section 4 and 5 are

focused on the calculus of different transient reliability measures, which are proved

to fulfill Markov renewal equations. Section 6 shows some numerical results for these
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reliability measures. Note that, due to the complexity of the Markov renewal equations

obtained previously, all numerical computations are here performed through Monte-

Carlo simulations. Section 7 concludes.

2. Description of the system and of the maintenance strategy

As we explain before, this section describes the initial functioning of the system

and the introduction of a maintenance strategy to try to improve some performance

measures of the system.

2.1. The initial system

An unitary system is considered, with intrinsic deterioration modelled by a gamma

process (Xt)t≥0, where Xt is gamma distributed Γ (αt, β) with probability distribution

function (p.d.f.)

ft (x) =
βαt

Γ (αt)
xαt−1e−βx1R+ (x) ,

where 1{} stands for the indicator function and α, β > 0. The cumulative distribution

function (c.d.f.) and survival function (s.f.) of Xt are denoted by Ft and F̄t in the

following, respectively. A gamma process also is a Lévy process, with Lévy measure

given by µ (ds) = α e
−βs

s 1R∗+ (s) ds.

Recalling that L is the failure threshold, with L > 0, the time to failure of the

system is the reaching time of level L :

σL = inf (t > 0 : Xt > L) .

At time σL, a signal is sent to the maintenance team which arrives at time σL + τ and

instantaneously replaces the out-of-order system by an identical new one. The system

is hence replaced by a new one at time σL + τ and the system is unavailable from σL

up to σL + τ .

2.2. The preventive maintenance policy

As we exposed in the introduction, an alert signal is preventively sent to the mainte-

nance team as soon as the system reaches a preventive maintenance levelM (0 ≤M ≤

L), namely at time σM . At time σM + τ , the maintenance team is ready to operate

and tries to adjust the system (Preventive Maintenance action). Just as in an ARA1
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model for recurrent events [7], a Preventive Maintenance (PM) action is considered to

remove only some part (ρ per cent) of the age accumulated by the system since the

last PM action (or since time t = 0), where ρ ∈ (0, 1). The PM action tends to be

perfect when ρ goes to 1 (As Good As New repair) and to have no effect when ρ goes

to 0 (As Bad As Old repair). In the present situation and because of possible large

jumps for a gamma process (XσM ∈ (M,+∞[ almost surely), such a PM action may

however be unsuffi cient to bring the system back to a lower level thanM (details in the

following). In that case and according to the previously described PM policy, a second

PM action should immediately be planned, which is not coherent. We consequently

consider that, in case the system deterioration level remains beyond the PM level M

after a PM adjustment, the system is too deteriorated and it is preventively replaced

(PR). To sum up, there consequently are three possible actions at maintenance times:

• a corrective replacement (CR) if the system is failed when the maintenance team

arrives,

• a single preventive maintenance action (PM) if this PM action brings the system

deterioration level below M ,

• a PM action + a Preventive Replacement (PR) if the PM action does not succeed

in bringing the system deterioration level below M .

All the maintenance actions are considered as instantaneous.

To specifically describe the PM policy, we shall make use of independent copies of

(Xt)t≥0, denoted by
(
X

(n)
t

)
t≥0

for n = 1, 2, ... Corresponding reaching times of the

threshold L (resp. M) are denoted by σ(n)
L (resp. σ(n)

M ) for n = 1, 2, ... and we set

(Yt)t≥0 to be the process describing the evolution of the maintained system.

Let U1 = S1 = σ
(1)
M + τ be the time of the first maintenance action. We then have

Yt = X
(1)
t for all t < S1. At time S1, different cases are possible:

• If X(1)
U1

> L : the system failed before S1. An instantaneous corrective replace-

ment (CR) takes place at time S1 = σ
(1)
M + τ . We then set: YS1 = 0.

• If X(1)
U1
≤ L : a PM action puts the system back to its deterioration level at time

(1− ρ)U1, which is X
(1)
(1−ρ)U1 .

• if X(1)
(1−ρ)U1 > M : the system is considered to be unmaintainable and it is
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replaced by a new one (PR action) at time S1, hence YS1 = 0.

• if X(1)
(1−ρ)U1 ≤ M : the system deterioration level after the PM action is

YS1 = X
(1)
(1−ρ)U1 .

Starting from YS1 after the first maintenance action, the evolution of the system is

assumed to be independent of (Yt)t<S1 and is modelled by
(
X

(2)
t

)
t≥0

up to the second

maintenance action. The reaching time of level M then is

inf
(
t > S1 : YS1 +X

(2)
t−S1 > M

)
= S1 + σ

(2)
M−YS1

.

A second maintenance action is then planned at time S2 = S1 + U2, with U2 =

σ
(2)
M−YS1

+ τ .

More generally, assume S1, ..., Sn−1 and (Yt)t≤Sn−1 to be constructed, with n ≥ 2.

Let Un = σ
(n)
M−YSn−1

+ τ and Sn = Sn−1 + Un. We first set Yt = YSn−1 +X
(1)
t−Sn−1 for

all Sn−1 < t < Sn, and consequently: YS−n = YSn−1 +X
(n)
Un

(almost surely).

• If YS−n > L : the system failed before Sn, hence YSn = 0.

• If YS−n ≤ L : a PM action puts the system back to the deterioration level YSn−1 +

X
(n)
(1−ρ)Un .

• if YSn−1 +X
(n)
(1−ρ)Un > M : the system is unmaintainable and it is replaced

by a new one at time Sn, hence YSn = 0,

• if YSn−1 + X
(n)
(1−ρ)Un < M :, the system deterioration level after the PM

action is YSn = YSn−1 +X
(n)
(1−ρ)Un .

A new maintenance action is next planned at time Sn+1 = Sn +Un+1, with Un+1 =

σ
(n+1)
M−YSn

+ τ . After a maintenance action at time Sn, the future evolution of the

maintained system (Yt)t≥Sn depends on the past (Yt)t≤Sn only through YSn and the

process (Yt)t≥0 appears as a semi-regenerative process with underlying Markov renewal

process (Sn, YSn)n∈N and inter-arrival times the Un’s, see [1]. Note that the sequence(
Sn,

(
YSn , YS−n

))
n∈N

also is a Markov renewal process, which will be used later on for

obtaining the Markov renewal equations for both reliability and cost functions.

This age-based maintenance policy is illustrated in Figure 1: at the end of the first

semi-cycle, a PM action puts the system back to YS1 = X
(1)
(1−ρ)U1 < M . At the end

of the second semi-cycle, the system is failed and a corrective replacement leads to
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YS2 = 0. At the end of the third semi-cycle, a PM action puts the system back to

YS2 +X
(3)
(1−ρ)U3 ≥M and a preventive replacement leads to YS3 = 0.

L

M

x

t0
0

τ τ τ

σ
(1)
M S1 + σ

(2)
M−YS1

(1− ρ)U1 S2 + σ
(3)
M−YS2

S1 S2 S3
YS2, YS3,

YS−2

YS1

YS−1

YS−3

CR

PR

PM

S2 + (1− ρ)U3

Figure 1: The condition-based maintenance policy

In case M goes to 0+, the signal is immediately sent to the maintenance team

after a maintenance action. The next maintenance action is hence always performed

after the same delay τ . Besides, at each maintenance time the system is either failed

or unmaintainable. Maintenance policy is hence reduced to periodic (corrective or

preventive) replacements of the system with period τ .

IfM tends to L−, maintenance policy is reduced to perform corrective replacements

actions after a delay τ .

Finally, when ρ tends to 0+, the As Bad As Old maintenance operation leads to a

system replacement and therefore leads to an As Good As New repair.
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3. Markov renewal process

The aim of this section is to obtain the kernel of the Markov renewal process(
Sn,

(
YSn , YS−n

))
n∈N

, namely the kernel (q (x, ds, dy, dz))x∈[0,M ] defined by:

q (x, ds, dy, dz) = P
(
S1 ∈ ds, YS1 ∈ dy, YS−1 ∈ dz|Y0 = x

)
= Px

(
S1 ∈ ds, YS1 ∈ dy, YS−1 ∈ dz

)
,

for all x ∈ [0,M ], where Px stands for the conditional probability given Y0 = x (and

Ex the conditional expectation). With this notation, we recall that:

P
(
Sn ∈ ds, YSn ∈ dy, YS−n ∈ dz|σ

(
S1, ..., Sn−1, YS1 , ..., YSn−1

))
= P

(
Sn ∈ ds, YSn ∈ dy, YS−n ∈ dz|YSn−1

)
= q

(
YSn−1 , ds, dy, dz

)
for all n ≥ 1, where σ (A) stands for the σ-field generated by A, where A is any set

of random variables. To obtain the kernel, firstly, we deal with the probability density

function (p.d.f.) of
(
S1, X(1−ρ)S1 , XS1

)
.

Proposition 1. The p.d.f. of
(
S1, X(1−ρ)S1 , XS1

)
is uM (t, u, v) where:

• if τ < t < τ
ρ and M < u < v :

uM (t, u, v) = fρt (v − u)

∫ +∞

M

fτ−ρt (u− w)

(∫ +∞

w−M
ft−τ (w − s)µ (ds)

)
dw,

(1)

• if t > τ
ρ and u < M < v :

uM (t, u, v) = f(1−ρ)t (u)

∫ +∞

M−u
fτ (v − u− w)

(∫ +∞

w−(M−u)

fρt−τ (w − s)µ (ds)

)
dw,

(2)

• uM (t, u, v) = 0 elsewhere.

Proof. Setting ϕ to be any measurable and non negative function, we have to

compute

E
[
ϕ
(
S1, X(1−ρ)S1 , XS1

)]
= E

[
ϕ
(
σM + τ,X(1−ρ)(σM+τ), XσM+τ

)]
.
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We first divide this expression according to whether (1− ρ) (σM + τ) is greater or

smaller than σM , or equivalently according to whether (1− ρ) τ is greater or smaller

than ρ σM , and we write:

E
[
ϕ
(
S1, X(1−ρ)S1 , XS1

)]
= I1 (ϕ) + I2 (ϕ)

with

I1 (ϕ) = E
[
ϕ
(
σM + τ,X(1−ρ)(σM+τ), XσM+τ

)
1{(1−ρ)τ>ρ σM}

]
,

I2 (ϕ) = E
[
ϕ
(
σM + τ,X(1−ρ)(σM+τ), XσM+τ

)
1{(1−ρ)τ<ρ σM}

]
.

The first term is equal to:

I1 (ϕ) =
∑
r≥0

1{(1−ρ)τ>ρ r}E
[
ϕ
(
r + τ,X(1−ρ)(r+τ), Xr+τ

)
1{Xr−≤M<Xr}

]
. (3)

Setting Fu = σ (Xs, 0 ≤ s ≤ u) for all u ≥ 0, let us first note that {Xr− ≤M < Xr}

belongs to F(1−ρ)(r+τ) for each r such that (1− ρ) τ > ρ r (because (1− ρ) (r + τ) > r).

By conditionning on F(1−ρ)(r+τ), writing Xr+τ = X(1−ρ)(r+τ) +
(
Xr+τ −X(1−ρ)(r+τ)

)
and using the Markov property and the independent and homogeneous increments of

(Xt)t≥0, we get :

E
[
ϕ
(
r + τ,X(1−ρ)(r+τ), Xr+τ

)
1{Xr−≤M<Xr}

]
= E

[
1{Xr−≤M<Xr}g

(
X(1−ρ)(r+τ)

)]
where

g (x) = E
[
ϕ
(
r + τ, x, x+Xr+τ −X(1−ρ)(r+τ)

)]
= E

[
ϕ
(
r + τ, x, x+Xρ(r+τ)

)]
=

∫
R+
ϕ (r + τ, x, x+ z) fρ(r+τ) (z) dz.

This provides:

E
[
ϕ
(
r + τ,X(1−ρ)(r+τ), Xr+τ

)
1{Xr−≤M<Xr}

]
=

∫
R+
E
[
1{Xr−≤M<Xr}ϕ

(
r + τ,X(1−ρ)(r+τ), X(1−ρ)(r+τ) + z

)]
fρ(r+τ) (z) dz. (4)
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Conditionning on Fr and writing X(1−ρ)(r+τ) = Xr +
(
X(1−ρ)(r+τ) −Xr

)
, we derive:

E
[
1{Xr−≤M<Xr}ϕ

(
r + τ,X(1−ρ)(r+τ), X(1−ρ)(r+τ) + z

)]
=

∫
R+
E
[
1{Xr−≤M<Xr}ϕ (r + τ,Xr + y,Xr + y + z)

]
f(1−ρ)τ−ρr (y) dy

in the same way, noting that X(1−ρ)(r+τ)−Xr is identically distributed as X(1−ρ)τ−ρr.

Plugging this expression successively into (4) and next into (3), we get:

I1 (ϕ) =

∫∫
R2+

dy dz
∑
r≥0

f(1−ρ)τ−ρr (y) fρ(r+τ) (z)

× 1{(1−ρ)τ>ρ r}E
[
1{Xr−≤M<Xr}ϕ (r + τ,Xr + y,Xr + y + z)

]
.

Following arguments of Proposition 2 page 76 of [3] and setting ∆Xr = Xr −Xr− , we

obtain:

I1 (ϕ) =

∫∫
R2+

dy dz
∑
r≥0

1{(1−ρ)τ>ρ r}f(1−ρ)τ−ρr (y) fρ(r+τ) (z)

× E
[
1{Xr−≤M<Xr−+∆Xr}ϕ (r + τ,Xr− + ∆Xr + y,Xr− + ∆Xr + y + z)

]
=

∫ 1−ρ
ρ τ

0

dr

∫∫∫
R3+

dy dz µ (ds) f(1−ρ)τ−ρr (y) fρ(r+τ) (z)

× E
[
1{Xr−≤M<Xr−+s}ϕ (r + τ,Xr− + s+ y,Xr− + s+ y + z)

]
due to the compensation formula. Almost sure continuity of (Xr)r≥0 allows to substi-

tute Xr to Xr− into the previous formula. This provides:

I1 (ϕ) =

∫ 1−ρ
ρ τ

0

dr

∫∫∫∫
R4+

dx dy dz µ (ds) 1{x≤M<x+s}

× ϕ (r + τ, x+ s+ y, x+ s+ y + z) f(1−ρ)τ−ρr (y) fρ(r+τ) (z) fr (x)

and next:

I1 (ϕ) =

∫ τ
ρ

τ

dt

∫∫∫∫
R4+

dx du dv µ (ds) 1{w−s≤M<w}

× ϕ (t, u, v) fτ−ρt (u− w) fρt (v − u) ft−τ (w − s)
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setting t = r+ τ , u = x+ s+ y, v = x+ s+ y+ z, w = x+ s and keeping s unchanged.

This gives formula (1) for uM (t, u, v) in case τ < t < τ
ρ (and M < u < v). As for the

second term, we have:

I2 (ϕ) =
∑
r≥0

1{(1−ρ)τ<ρr}E
[
ϕ
(
r + τ,X(1−ρ)(r+τ), Xr+τ

)
1{Xr−≤M<Xr}

]
.

Conditionning on Fr in the expectation and writing Xr+τ = Xr + (Xr+τ −Xr), we

get:

I2 (ϕ) =

∫
R+
fτ (z) dz

×
∑
r≥0

1{(1−ρ)τ<ρr}E
[
ϕ
(
r + τ,X(1−ρ)(r+τ), Xr + z

)
1{Xr−≤M<Xr}

]
because (1− ρ) (r + τ) < r. Setting Xr = Xr− +∆Xr, using the compensation formula

and substituting Xr− by Xr in a next step, we obtain:

I2 (ϕ) =

∫∫
R2+

fτ (z) dz µ (ds)

∫ +∞

1−ρ
ρ τ

dr

× E
[
ϕ
(
r + τ,X(1−ρ)(r+τ), Xr + s+ z

)
1{Xr≤M<Xr+s}

]
.

Conditionning on F(1−ρ)(r+τ), writing Xr = X(1−ρ)(r+τ) +
(
Xr −X(1−ρ)(r+τ)

)
and

using the fact that Xr −X(1−ρ)(r+τ) is identically distributed as Xρr−(1−ρ)τ , we get:

I2 (ϕ) =

∫∫∫∫
R4+

fτ (z) dz µ (ds) du dy

∫ +∞

1−ρ
ρ τ

dr

× ϕ (r + τ, u, u+ y + s+ z)1{u+y≤M<u+y+s}f(1−ρ)(r+τ) (u) fρr−(1−ρ)τ (y)

=

∫∫∫∫
R4+

fτ (v − u− w) dw µ (ds) du dv

∫ +∞

τ
ρ

dt

× ϕ (t, u, v)1{w−s≤M−u<w}f(1−ρ)t (u) fρt−τ (w − s)

with t = r + τ , v = u + y + s + z, w = y + s and (u, s) unchanged. This provides

formula (2) for uM (t, u, v) in case t > τ
ρ (and u < M < v).

Remark 1. Using the fact that the p.d.f. of (σM , XσM ) is

f(σM ,XσM ) (u, y) =

∫ +∞

y−M
fu (y − s)µ (ds) (5)
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for all y > M and all u > 0 (see [3]), the function uM (t, u, v) may be written as

uM (t, u, v) = fρt (v − u)

∫ +∞

M

fτ−ρt (u− w) f(σM ,XσM ) (t− τ, w) dw

if τ < t < τ
ρ and M < u < v. This corresponds to some kind of intuitive result:

roughly speaking, at time σM = t−τ , the process (Xr)r≥0 reaches level w > M . Next,

on the time interval (t− τ, (1− ρ) t] with length τ − ρt, the level is increased of u−w

units and the process reaches level u at time (1− ρ) t. Finally, on the time interval

((1− ρ) t, t] with length ρt, the level is increased of v−u units and the process reaches

level v at time t. In case t > τ
ρ and u < M < v, we get

uM (t, u, v) = f(1−ρ)t (u)

∫ +∞

M−u
fτ (v − u− w) f(σM−u,XσM−u) (ρt− τ, w) dw

which may be interpreted in the same way: on the interval (0, (1− ρ) t], the level is

increased of u units (with u < M). Next, starting from level u, it takes ρt − τ time

units for the process to exceed level M − u with a level increment of w units in the

meantime (and w > M −u). At time (1− ρ) t+ρt− τ = t− τ , the level hence is u+w.

Finally, on the time interval (t− τ, t] with length τ , the level is increased of v − u−w

units and the process reaches level v at time t.

We are now able to provide the kernel of the Markov renewal process
(
Sn,

(
YSn , YS−n

))
n∈N

.

Theorem 1. The kernel (q (x, ds, dy, dz))x∈[0,M ] of the Markov renewal process(
Sn,

(
YSn , YS−n

))
n∈N

is provided by

q (x, ds, dy, dz) = 1{s>τ}1{y≤M<z≤L} u
M−x (s, y − x, z − x) dy dz ds

+ 1{s>τ}qx (s, z) δ0 (dy) dz ds (6)

for all x ∈ [0,M ], where uM is provided by Proposition 1 and where

qx (s, z) = 1{L<z}

(∫ z−x

0

uM−x (s, w, z − x) dw

)
+ 1{M<z≤L}

(∫ z−x

M−x
uM−x (s, w, z − x) dw

)
. (7)

The first term in the right hand of (6) stands for the PM case, and the two terms in

the right hand of (7) for the CR and PR cases, respectively.
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Proof. Given that Y0 = x, we set Sx = S1 = τ+σM−x. This provides YS−1 = x+XSx

and

YS1 =


0 if XSx > L− x

0 if XSx ≤ L− x and X(1−ρ)Sx > M − x

x+X(1−ρ)Sx if XSx ≤ L− x and X(1−ρ)Sx ≤M − x.

For all ϕ measurable and non negative, we hence have:

Ex
(
ϕ
(
S1, YS1 , YS−1

))
= J1 (x) + J2 (x)

with

J1 (x) = E
[
ϕ
(
Sx, x+X(1−ρ)Sx , x+XSx

)
1{XSx≤L−x,X(1−ρ)Sx≤M−x}

]
,

J2 (x) = E
[
ϕ (Sx, 0, x+XSx)

(
1{XSx>L−x} + 1{XSx≤L−x,M−x<X(1−ρ)Sx}

)]
.

Using Proposition 1 with M substituted by M − x, we derive:

J1 (x) =

∫∫∫
R3+

ϕ (s, x+ u, x+ v)uM−x (s, u, v)1{v≤L−x,u≤M−x} du dv ds

=

∫∫∫
R3+

ϕ (s, y, z)1{y≤M<z≤L}u
M−x (s, y − x, z − x) dy dz ds

where y = x+ u, z = x+ v, and

J2 (x) =

∫∫∫
R3+

ϕ (s, 0, x+ v)uM−x (s, u, v)
(
1{L−x<v} + 1{v≤L−x,M−x<u}

)
du dv ds

=

∫∫
R2+

ϕ (s, 0, z)1{L<z}

(∫ z

x

uM−x (s, y − x, z − x) dy

)
dz ds

+

∫∫
R2+

ϕ (s, 0, z)1{M<z≤L}

(∫ z

M

uM−x (s, y − x, z − x) dy

)
dz ds,

which provides the result.

We finally derive the kernel of the Markov renewal process (Sn, YSn)n∈N.

Corollary 1. The kernel (q̄ (x, ds, dy))x∈[0,M ] of the Markov renewal process (Sn, YSn)n∈N

is provided by

q̄ (x, ds, dy) = 1{s>τ}ds
{
1{y≤M} Hx (s, y) dy + δ0 (dy) (Ix (s) +Dx (s))

}



14 S. Mercier, I.T. Castro

for all x ∈ [0,M ], where

Hx (s, y) =

∫ L−x

M−x
uM−x (s, y − x, v) dv (PM case), (8)

Dx (s) =

∫ +∞

L−x
dz

(∫ z

0

uM−x (s, w, z) dw

)
(CR case), (9)

Ix (s) =

∫ L−x

M−x
dz

(∫ z

M−x
uM−x (s, y, z) dy

)
(PR case). (10)

Proof. We have:

q̄ (x, ds, dy) =

∫
q (x, ds, dy, dz)

= 1{s>τ}1{y≤M}ds dy

∫ L

M

uM−x (s, y − x, z − x) dz + 1{s>τ} δ0 (dy) ds

∫ +∞

M

qx (s, z) dz

= 1{s>τ}ds

{
1{y≤M}Hx (s, y) dy + δ0 (dy)

∫ +∞

M

qx (s, z) dz

}
with∫ +∞

M

qx (s, z) dz =

∫ L

M

dz

(∫ z

M

uM−x (s, w − x, z − x) dw

)
+

∫ +∞

L

dz

(∫ z

x

uM−x (s, w − x, z − x) dw

)
= Ix (s) +Dx (s)

and the result holds.

4. The reliability and availability functions

Let Rx (t) be the reliability function of the maintained system at time t, namely the

conditional probability that the system has been functionning from time t = 0 up to

time t without any interruption given that it started from Y0 = x with x ∈ [0,M ] :

Rx (t) = Px (T > t)

where T is the time to failure of the maintained system and t ∈ R+.

As S1 = τ + σM−x > τ , let us first remark that, if t ≤ τ , then t < S1 and there is

no maintenance action on [0, t]. In that case, Yu = Xu on [0, t] and we simply get:

Rx (t) = P (σL−x > t) = P (Xt < L− x) = Ft (L− x)

for all t ≤ τ . We next envision the case where t > τ .
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Theorem 2. The reliability function fulfills the following Markov renewal equation:

Rx (t) = Gx (t) +

∫ t

τ

∫ M

0

Ry (t− s)Hx (s, y) ds dy +

∫ t

τ

R0 (t− s) Ix (s) ds (11)

= Gx (t) +

∫ t

τ

∫ M

0

Ry (t− s) νx (ds, dy)

for all t > τ , x ∈ [0,M ], where

Gx (t) =

∫ M−x

0

ft−τ (y)Fτ (L− x− y) dy, (12)

for all t > τ , x ∈ [0,M ] and

νx (ds, dy) = [Hx (s, y) dy + Ix (s) δ0 (dy)] ds. (13)

with Hx and Ix as in (8, 10).

Proof. Let t > τ . We have:

Rx (t) = Px (T > t, S1 > t) + Px (T > t, S1 ≤ t) (14)

with

Px (T > t, S1 > t) = P (Xt ≤ L− x, τ + σM−x > t)

= P (Xt ≤ L− x,Xt−τ ≤M − x)

=

∫ M−x

0

ft−τ (y)Fτ (L− x− y) dy

= Gx (t) , (15)

by conditioning with respect of Xt−τ . We also have:

Px (T > t, S1 ≤ t) = Ex
[
1{S1≤t}1{T>S1}Ex

(
1{T>t}|σ (Yt, t ≤ S1)

)]
= Ex

[
1{S1≤t}1

{
Y −
S1
≤L
}RYS1 (t− S1)

]
=

∫∫
[τ,t]×[0,M ]

Ry (t− s)
∫ z=L

z=0

q (x, ds, dy, dz) (16)

where q (x, ds, dy, dz) is given in Theorem 1. Besides, using similar arguments as for

the proof of Corollary 1, we get:∫ z=L

z=0

q (x, ds, dy, dz) =
{
1{y≤M} Hx (s, y) dy + δ0 (dy) Ix (s)

}
ds, (17)

which provides the result by plugging (17) into (16), and next (15− 16) into (14).
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We now deal with the availability function of the maintained system at time t,

namely with the conditional probability that the system is working at time t given

that it started from Y0 = x, with x ∈ [0,M ] :

Ax(t) = Px(Yt < L).

In case t ≤ τ (≤ S1), both reliability and availability functions coincide:

Ax (t) = Rx (t) = Ft (L− x)

for all t ≤ τ . In case t > τ , we may write

Ax(t) = Px(Yt < L,S1 > t) + Ex
[
1{S1≤t}AYS1 (t− S1)

]
in a similar way to Theorem 2, which provides the following Corollary.

Corollary 2. The availability function fulfills the following Markov renewal equation

Ax(t) = Gx(t) +

∫ t

τ

∫ M

0

Ay(t− s)q̄(x, ds, dy),

for all t > τ , all x ∈ [0,M ], where Gx(t) is given by (12) and q̄ by Corollary 1.

5. The expected cost function

Let cx (t) be the mean cumulated cost on ]0, t] given that Y0 = x with x ∈ [0,M ],

that is,

cx(t) = Ex [C (]0, t])] .

where C (]0, t]) denotes the maintenance cost in ]0, t]. We calculate cx(t) taking

into account the following costs for the different maintenance actions: cCR corrective

replacement cost, cPR preventive replacement cost, cPM preventive maintenance cost

and cd downtime cost per unit time.

For t ≤ τ , using again Yu = Xu in [0, t], we get:

cx (t) = cdE
[
(t− σL−x)

+
]

= cd

∫ t

0

P (t− u > σL−x) du

= cd

∫ t

0

F̄t−u (L− x) du,
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where (t− σL−x)
+

= max (t− σL−x, 0) stands for the (possible) down-time on [0, t].

We next envision the case where t > τ and we consider

cx (t) = Ex
[
C (]0, t])1{S1>t}

]
+ Ex

[
C (]0, t])1{S1≤t}

]
. (18)

The first term in (18) is dealt with in the following lemma.

Lemma 1. For t > τ , we have:

Ex
[
C (]0, t])1{S1>t}

]
= cd Kx (t)

for all x ∈ [0,M ], with

Kx (t) =

∫ τ

0

α (t− τ, t− u,M − x, L− x) du, all x ∈ [0,M ] , (19)

α (t1, t2,M,L) =

∫ M

0

fmin(t1,t2) (z) F̄|t1−t2| (L− z) dz, all t1, t2 ≥ 0. (20)

Proof. Using a similar method as in Proposition 3 of [12], we have:

Ex
[
C (]0, t])1{S1>t}

]
= cdE

[
(t− σL−x)

+
1{σM−x+τ>t}

]
= cdE

[
1{σM−x+τ>t}

∫ +∞

0

1{(t−σL−x)+>u}du
]

= cd

∫ τ

0

P [σM−x > t− τ, t− u > σL−x] du

because σM−x > t−τ and t−u > σL−x imply u ≤ τ . Now, for u ≤ τ , by conditionning

with respect of σ (Xs, s ≤ t− τ), we get:

P [σM−x > t− τ, t− u > σL−x] = P [Xt−τ < M − x,Xt−u ≥ L− x]

=

∫ M−x

0

ft−τ (y) F̄τ−u (L− x− y) dy

= α (t− τ, t− u,M − x, L− x)

which provides the result.

For the calculus of the second part of (18), we shall need the following technical

lemma.

Lemma 2. For fixed t > τ , in case S1 ≤ t, the conditional expected downtime given

Y0 = x on the first semi-cycle is

Ex
[
(S1 − σL)

+
1{S1≤t}

]
= Wx(t)
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for all x ∈ [0,M ], where Wx(t) is given by

Wx(t) = W1,x(t)1{t<2τ} +W2,x(t)1{t≥2τ},

for t > τ and x ∈ [0,M ], with

W1,x(t) =

∫ t−τ

0

F̄v(L− x) dv +

∫ τ

t−τ
β(v, t− τ,M − x, L− x) dv

+

∫ t

τ

∫ M−x

0

fv−τ (y)β(t− v, τ,M − x− y, L− x− y) dy dv,

W2,x(t) =

∫ τ

0

F̄v(L− x) dv +

∫ t−τ

τ

α (v − τ, v,M − x, L− x) dv

+

∫ t

t−τ
dv

∫ M−x

0

fv−τ (y) β(τ, t− v,M − x− y, L− x− y) dy,

where function β (t1, t2,M,L) is given by

β (t1, t2,M,L) =

∫ +∞

M

fmin(t1,t2) (z) F̄|t1−t2| (L− z) dz, (21)

for all t1, t2 ≥ 0 and α (t1, t2,M,L) is provided in (20).

Proof. We have:

Ex
[
(S1 − σL)

+
1{S1≤t}

]
= E

[
(σM−x + τ − σL−x)

+
1{σM−x+τ≤t}

]
= E

[∫
R
1{0<u<σM−x+τ−σL−x}1{σM−x+τ≤t}du

]
= E

[∫ +∞

0

1{σL−x<v<σM−x+τ}1{σM−x+τ≤t}dv

]
=

∫ t

0

λ (v, t, τ) dv

setting v = σM−x + τ − u and

λ (v, t, τ) = P [σL−x < v, v − τ < σM−x ≤ t− τ ]

= P
(
L− x < Xv, X(v−τ)+ ≤M − x < Xt−τ

)
for all 0 ≤ v ≤ t and all t > τ . We next have to envision different cases to compute

λ (v, t, τ) according to the respective ordering of v and t − τ , and of v and τ . Firstly,

if t − τ < τ then t < 2τ . For t < 2τ if v ≤ τ , we consider the cases v < t − τ and

v ≥ t− τ . If v < t− τ , then

λ(v, t, τ) = P(L− x < Xv) = F̄v(L− x).
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And, if v ≥ t− τ , we have

λ(v, t, τ) = P(L− x < Xv,M − x < Xt−τ )

=

∫ ∞
M−x

ft−τ (y)F̄v−(t−τ)(L− x− y) dy

= β(t− τ, v,M − x, L− x),

where β(t1, t2,M,L) is given by (21). For v > τ

λ(v, t, τ) = P(L− x < Xv, Xv−τ < M − x < Xt−τ )

=

∫ M−x

0

fv−τ (y)

∫ ∞
M−x−y

ft−v(w)F̄τ−(t−v)(L− x− y − w) dy dw

=

∫ M−x

0

fv−τ (y)β(t− v, τ,M − x− y, L− x− y) dy.

Hence

Wx(t) =

∫ t−τ

0

F̄v(L− x) dv +

∫ τ

t−τ
β(v, t− τ,M − x, L− x) dv

+

∫ t

τ

∫ M−x

0

fv−τ (y)β(t− v, τ,M − x− y, L− x− y) dy dv,

for t < 2τ and x ∈ [0,M ]. For t > 2τ , we have

λ(v, t, τ) = P(L− x < Xv) = F̄v(L− x)

for v < τ . For v ≥ τ , we consider two cases, that is, v < t − τ and v ≥ t − τ . For

v < t− τ , we have

λ(v, t, τ) = P(L− x < Xv, Xv−τ ≤M − x)

=

∫ M−x

0

fv−τ (y)F̄τ (L− x− y) dy

= α (v − τ, v,M − x, L− x) .

Finally, for v ≥ t− τ , we have

λ(v, t, τ) = P(L− x < Xv, Xv−τ ≤M − x < Xt−τ )

=

∫ M−x

0

fv−τ (y) dy

∫ ∞
M−x−y

ft−v(w)F̄τ−(t−v)(L− x− y − w) dw

=

∫ M−x

0

fv−τ (y)β(t− v, τ,M − x− y, L− x− y) dy.

This provides the result for t > 2τ and ends the proof.
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With the previous lemmas, the following result holds.

Theorem 3. The expected cost function at time t with Y0 = x fulfills the following

Markov renewal equation

cx(t) = Bx(t) +

∫ t

τ

∫ M

0

cy(t− s) q̄ (x, ds, dy) ,

with x ∈ [0,M ], where Bx(t) is given by

Bx(t) = cd [Kx (t) +Wx(t)] + cCRZx(t) + (cPR + cPM )Qx(t) + cPMJx(t),

with Kx (t) and Wx(t) provided in Lemmas 1 and 2, and

Zx (t) =

∫ t

τ

Dx (s) ds,

Qx(t) =

∫ t

τ

Ix (s) ds,

Jx(t) =

∫ t

τ

∫ M

0

Hx (s, y) ds dy

where Hx (s, y), Dx (s), Ix (s) are defined in (8− 10).

Proof. Starting from (18), we have that

cx(t) = Ex
[
C (]0, t])1{S1>t}

]
+ Ex

[
C (]0, S1])1{S1≤t}

]
+ Ex

[
C (]S1, t])1{S1≤t}

]
(22)

where the first right-hand term has been computed in Lemma 1. The second term is:

Ex
[
C (]0, S1])1{S1≤t}

]
= cdWx(t) + cCRZx(t) + (cPM + cPR)Qx(t) + cPMJx(t)

where Wx (t) is provided in Lemma 2 and where:

Zx(t) = Px
(
S1 ≤ t, YS−1 > L

)
,

Qx(t) = Ex

[
1{S1≤t}1

{
Y
S
−
1
≤L
}1{YS1>M}

]
,

Jx(t) = Ex

[
1{S1≤t}1

{
Y
S
−
1
≤L
}1{YS1≤M}

]
.
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Due to Corollary 1, we get:

Zx (t) =

∫∫∫
[τ,t]×[0,M ]×[L,+∞[

q (x, ds, dy, dz) =

∫ t

τ

Dx (s) ds,

Qx(t) =

∫∫∫
[τ,t]×[M,+∞[×[0,L]

q (x, ds, dy, dz) =

∫ t

τ

Ix (s) ds,

Jx(t) =

∫∫∫
[τ,t]×[0,M ]×[0,L]

q (x, ds, dy, dz) =

∫ t

τ

∫ M

0

Hx (s, y) ds dy.

As for last term of (22), by conditionning on σ (YS1 , S1), we have:

Ex
[
C(]S1, t])1{S1≤t}

]
= Ex

[
cYS1 (t− S1)1{S1≤t}

]
=

∫∫
R2+

cy(t− s)1{s≤t}q̄(x, ds, dy),

which ends this proof.

6. Numerical examples

In order to illustrate the analytical results, several numerical examples are here

considered. To make the numerical assesments, a possibility might have been to follow

[10] and use some integration scheme for integral equations with singular kernels [16]

e.g., for solving the Markov renewal equations developed in the paper. Unfortunately,

due to the complexity of our Markov kernel, this has not been possible. That is why

the numerical computations have finally been performed through Monte-Carlo (MC)

simulations. To shorten the large computing times induced by our intricate model, the

parallel computer EMPIRE of the University of Extremadura has been used.

For each of the following examples, the parameters of the gamma process measuring

the system intrinsic deterioration are α = 1.5 and β = 3. The system is assumed

to be new at time 0, that is Y0 = 0. The failure threshold is L = 10. The induced

approximated expected time to exceed level 10 is E (σL) ' 20.37 time units. The

maintenance effi ciency is provided by ρ = 0.5. The costs associated with the different

maintenance actions are cCR = 100 monetary units (m.u.), cPR = 60 m.u., cPM = 5

m.u. and cu = 2 m.u. per time unit. As for the delay time τ , different values are

envisionned in the following.
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In the first case, we take τ = 5 time units. Figure 2 shows the expected cost at

time t = 150 versus the preventive threshold M . The data have been obtained using

MC simulation for 50 values of M ranging from 0 to 10, with 4000 realizations in each

point.
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Figure 2: Expected cost at time t = 150 versus the preventive threshold M

Now, using Figure 2 we can find a value of M that minimizes c0,M (150), that is,

find some Mopt such that

c0,Mopt
(150) = inf {c0,M (150), 0 ≤M ≤ 10} ,

where c0,M (150) denotes the expected cost at time t = 150 for each value of M ,

starting from Y0 = 0. By inspection, the expected cost c0,M (150) just presents a

unique minimum and it is reached for Mopt ' 5.5102 with an expected cost of 423.9

monetary units.

Taking τ = 10 time units, Figure 3 and 4 show values of the availability A0,M (75)

and of the expected cost c0,M (75) at time t = 75 versus the preventive threshold M ,

respectively. These figures have been obtained using MC simulation for 100 values

from 2 to 10, and 40000 realizations in each point. Based on Figure 3, we can see that

the availability at time t = 75 reaches its minimum atM∗ ' 8.2222, with A0,M∗(75) '

0.5905. Hence, for any value of M , the probability that the system is working at
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time t = 75 exceeds or is equal to 59.05%. Based on Figure 4, we can see that

the cost function c0,M (75) reaches its minimum at M∗ ' 4.4242, with c0,M∗(75) '

316.0753 monetary units. Also, using both Figures 3 and 4, it is possible to find some

optimal M∗∗ minimizing the cost c0,M (75) under some availability constraint such as

A0,M (75) ≥ 0.99 e.g.. This provides M∗∗ ' 3.8586, with c0,M∗∗(75) ' 320.2977

monetary units and A0,M∗∗(75) = 0.9905. Symetrically, it also is possible to optimize

the availability function under some cost constraint.
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Figure 3: Availability at time t = 75 versus the preventive threshold M

Figure 5 shows the transient availability versus time for τ = 15 and M = 5. This

figure has been obtained using MC simulation for 350 values from 0 to 175 and 40000

realizations in each point. As can be observed in Figure 5, the availability function

shows some alternating decreasing and increasing periods with respect of time, which

can be explained by the following: at the beginning, there is no maintenance action

and the availability function decreases with time t until the first maintenance action

at time S1 is more likely to have been performed, namely until the probability that

t > S1 becomes larger. Indeed, we observe that A0,5(t) decreases up to t ' 22.5645,

to be compared with E (S1) = E (σM ) + τ ' 25.3111 time units (and E (σL) ' 20.3912

time units). After reaching its first minimum in t ' 22.5645, the availability function
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Figure 4: Expected cost at time t = 75 versus the preventive threshold M

increases along with the probability that a first maintence action has already been

performed at time t. After a while, the probability that the system fails increases with

the distance between t and the (nearly almost surely past) first maintenance action,

which leads to a decreasing period, and a second minimum at t ' 47.6361, and so on.

Note that the randomness of the maintenance times induces some attenuation in the

decreasingness and increasingness over time.

Figure 6 finally shows the transient reliability versus the degradation level M at

time t = 50 for τ = 15. This figure has been performed using 50 points from 0 to

10 and 20000 realizations in each point. As we can check, the transient reliability is

here decreasing against the preventive threshold M . This means that the shorter M

is, the larger the reliability is. In this way, if the point is to maximize the reliability

at time t = 50 with respect of M , the best is to take M = 0, namely perform periodic

replacements. Though it seems challenging to prove it from Theorem 2, it seems to be

coherent with intuition, because smallerM should involve more frequent replacements.

7. Conclusions and future extensions

In this work, the reliability of a system subject to a continuous degradation modelled

as a gamma process with imperfect delay repair is analyzed. The functioning of the



Imperfect repairs modelling for a gamma process through age reduction 25

0 20 40 60 80 100 120 140 160

0.4

0.5

0.6

0.7

0.8

0.9

1

t

A
0,

5
(t)

Figure 5: Transient availability versus time t given M = 5

system is described through a semi-regenerative process, obtaining that some transient

reliability measures fulfill Markov renewal equations. Numerical examples of these

reliability measures are showed. These numerical examples are obtained by Monte-

Carlo simulation of the process due to the complexity of the Markov renewal equations,

mainly caused by the overshoot of the gamma process and by the imperfect repair

nature that reduces the system age. It would be interesting to compare this model

(age-based repair) with a similar one where the imperfect repair would reduce the

system degradation itself instead of the system age, leading to some kind of virtual

degradation. This should be part of a future work.
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