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SUMMARY

This paper presents a formal framework of a distributed computation based on a publish/subscribe system.
The framework abstracts the system through two delays, namely the subscription/unsubscription delay
and the diffusion delay. This abstraction allows one to model concurrent execution of publication and
subscription operations without waiting for the stability of the system state and to define a Liveness property
which gives the conditions for the presence of a notification event in the global history of the system.
This formal framework allows us to analytically define a measure of the effectiveness of a publish/subscribe
system, which reflects the percentage of notifications guaranteed by the system to subscribers. A simulation
study confirms the validity of the analytical measurements. Copyright c© 2005 John Wiley & Sons, Ltd.

KEY WORDS: publish/subscribe; event-based middleware

1. INTRODUCTION

Communication systems following the publish/subscribe (pub/sub) paradigm have experienced a
relevant gain in popularity during the last few years. Each participant in a pub/sub system can take
on the role of a publisher or a subscriber of information. Publishers produce information (in the form
of notifications), which is consumed by subscribers. The basic characterization of pub/sub derives
from the way notifications flow from senders to receivers: receivers are not directly targeted by
the publisher, but rather they are indirectly addressed through the content of notifications. That is,
subscribers express their interest by issuing subscriptions for specific notifications, independently
from the publishers that produce them, and then they are asynchronously notified for all notifications,
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submitted by any publisher, that match their subscriptions. Both subscriptions and notifications are
managed by a logically centralized entity, namely the Notification Service, which creates a complete
decoupling among the participants.

Since pub/sub has been largely recognized as an effective approach for information diffusion,
lots of pub/sub-based systems, both research contributions [1–6] and commercial products [7], have
been presented and are actually used in several application contexts. From the research side, a lot
of work has been done in this field by the software engineering community, focusing on scalability,
efficient information delivery or efficient and expressive information matching. However, only a few
contributions exist [8] that define, for example, the computational model underlying a pub/sub system
and, most importantly, the safety and Liveness properties that a pub/sub system must ensure in the
underlying computation with respect to publish and notification events. This step is necessary for
carrying out, for example, an analytical study of the performance of a pub/sub system which is the
base of a rigorous QoS policy. The lack of this rigorous approach is currently one of the main pitfalls
of the pub/sub paradigm, which limits its applicability, for example, to mission critical systems.

In this paper we propose a computational model based on a Notification Service that is
abstracted as a box connecting all participants to the computation and the operations done by
this box (i.e. subscription/unsubscription storage and publication diffusion) are modelled by two
delays: the subscription delay and the diffusion delay, which characterize, respectively, (i) the non-
atomicity of the subscription/unsubscription storage and (ii) the non-instantaneous diffusion of a
notification. These delays depend, of course, on the implementation of the Notification Service itself
(e.g. centralized, network of brokers, etc.).

This model produces a global history of the computation for which we give two simple, safety
basic properties, namely legality (i.e. a history contains only notify events included in a matching
subscription interval) and validity (i.e. a notify event implies the presence in the system of a prior
corresponding event of publishing). These properties are independent of the delays. Then we propose
a Liveness property which states when a notify event belongs to the history: this is affected by the
interval when a subscription is ‘active’ and by the two delays which act as a filter for the generation of
the notify events after the execution of a publishment‡. In other words, our Liveness property gives a
timing condition implying, given a publish event, the presence of a corresponding notify event in the
global history. Note that the opposite is not true, i.e. there could be a notify event in the history even
though the condition is not verified.

This Liveness condition gives us the opportunity to define a measure of the effectiveness of a
Notification Service in which publications are notified to the set of interested subscribers. In particular,
we provide a probabilistic model for measuring the effectiveness of a Notification Service, in which
we evaluate the probability d that a publication x issued at time t will be notified to each subscriber
matching x, provided that the subscription was active t . Therefore, the system behaves ideally if this
probability is equal to 1. We study this probability as a function of the subscription delay and of
the diffusion delay. A simulation study, carried out on a real pub/sub implementation, validates the
analytical model by confirming the results of the evaluations.

‡We would like to remark that usually in distributed computing liveness means ‘something good eventually happens’ in this
dynamic context where (i) participants can subscribe and unsubscribe dynamically and (ii) there are operations which take time
to take effect, this sentence should be reworded as follows ‘under some timing conditions something good happens’.
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Figure 1. A pub/sub system interaction.

Even though the granularity of this model is quite coarse, we believe that it could be very useful for
the designer of a Notification Service, in that it can predict the probability of delivering notifications,
only by estimating the two delays. Furthermore, more refined analysis (such as simulation studies)
must take into account so many parameters (from network to application), which makes it very hard
to have an overall and precise performance assessment in a practical setting because of the dynamic
nature of the pub/sub paradigm and of the underlying network.

The paper is structured as follows: Section 2 introduces the formal framework, Section 3 presents the
analytical probabilistic model for performance evaluation, Section 4 presents the experimental results
and a comparison with the analytical ones, and finally, Section 5 surveys the related work.

2. A FRAMEWORK FOR PUBLISH/SUBSCRIBE

We consider a distributed system composed of a set of processes � = {p1, . . . , pn} that communicate
by exchanging information in a pub/sub communication system. Processes are decoupled in the sense
that they never communicate directly with each other but only through a common Notification Service
(NS). Processes can act both as producers and consumers of information, taking on the role of
publishers and subscribers, respectively (Figure 1).

On the subscribers’ side, interest in specific information is expressed through subscriptions.
A subscription is a pair σ = (φ, p), where p ∈ � is the subscriber which is interested in all
publications declared through the filter φ. A filter φ is a query expression composed of a set of
constraints. The constraints, depending on the attribute type, can comprise equality, comparison,
substring, etc. and can be joined inside filters through AND/OR expressions.

We say a notification x matches the filter φ if each attribute in x satisfies all the constraints in φ.
The task of verifying whenever information x matches a filter φ is called matching (x � φ). We say
that x matches a subscription σ if it matches σ.φ (x � σ.φ).
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2.1. Process–NS interaction

The execution of a pub/sub system comprises both process-side operations, started by subscribers and
publishers, and NS-side operations, started by the NS. More specifically, any process pi is able to
register (and cancel) a subscription or to publish a notification in the system, but it is actually the NS
that has the role of notifying a matching occurrence to interested subscribers.

We denote as op = {sub(σ ), usub(σ ), pub(x), ntfy(x)} the operations of registration of a
subscription σ , cancellation of a subscription σ , publication of a notification x and issue of the
notification of x, respectively. Then, the operations sub(σ ), usub(σ ), pub(x) are issued by a process
and executed by the NS, while ntfy(x) is issued by the NS on a process pi and then executed
by pi . The ntfy(x) issue occurs after (i) the pub(x) execution and (ii) a matching operation executed
within the NS. Note that the NS issues ntfy(x) on the set of processes computed after the matching
operation.

2.2. Computational model

To simplify the presentation, we assume the existence of a discrete global clock whose range T is
the set of natural numbers. We stress the fact that this is only a fictional, abstract device to which the
processes do not have access. We will use it only for convenience of specification.

The first modelling step is the representation of the execution of each process. Through an abstract
representation of the processes’ computation, we describe which global computations are allowed in a
NS by specifying properties that characterize them.

We assume either the issue of an operation op = {pub(x), sub(σ ), usub(σ )} at time t at a process pi

or the execution of op = ntfy(x) at pi at time t produces an event ei(op, t) at process pi
§. We denote

then the local history of a process pi as the set of events occurring at pi and ordered by their occurrence
time hi = {ei(op, t1), ei(op, t2), . . . ei (op, tm)} (with t1 < t2 < · · · < tm). The global computation
is then the global history H = 〈h1, h2, . . . , hn〉, i.e. a collection of local histories, one for each
process.

Any two successive events, ei(sub(σ ), s) and ei(usub(σ ), u) (s < u), define a subscription interval
of pi for the subscription σ , denoted by I (σ ). Such a subscription interval includes all events ei(op, t)

s.t. s ≤ t ≤ u. Therefore, to univocally identify each subscription issued in the system by the
same process, a generic subscription σ becomes a triple (φ, p, s) where σ.s indicates the time in
which the subscription is issued. The time between s and u actually represents the time in which
the subscription σ is active from the subscriber view-point. We denote such a time interval as TON(σ ).
A subscription interval is also defined by those sub events that have no corresponding usub. In this
case the interval will include all events that occur after the sub and TON will consequently be infinite.
Figure 2 shows an example of the global history of three processes, with two subscription intervals
I (σ ), I (σ ′) and their corresponding TON.

§In this section we use the term ‘event’ only in referring to events belonging to the internal computation of processes. Pieces of
information produced by publishers are always referred to as ‘notifications’.
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Figure 2. Global history respecting safety.

2.2.1. Safety properties

Safety properties pose constraints on which global histories are not allowable in a NS. The first property
has to state the basic semantics of the system: a subscriber cannot be notified of information it is not
interested in. Formally,

∀ei(ntfy(x), t) ∈ H ⇒ ei(ntfy(x), t) ∈ I (σ ) s.t. x � σ.φ ∧ σ.p = i

P1: Legality

In Figure 2 a generic computation satisfying Legality is shown: supposing that x and y match σ , then
both notify events of x and y in pi fall in the subscription interval I (σ ) of pi . While Legality states
that a notify event belongs to H only if it is included in a subscription interval matching that event, we
need a property ensuring that the notify events are not invented by a process. This is taken into account
by the Validity property which states

∀ei(ntfy(x), t) ∈ H ⇒ ∃ej (pub(x), t ′) ∈ H s.t. t ′ < t

P2: Validity

The computation in Figure 2 also respects Validity: both notify events, ei(ntfy(x), t2) and ei(ntfy(y), t4)

follow the corresponding publications, ei(pub(x), t1) and ei(pub(x), t3), as t1 ≤ t2 and t3 ≤ t4.
Once safety properties have been defined, it is interesting to ascertain under which condition a

notify event should be generated, i.e. to define a Liveness property. As already mentioned, the global
history in Figure 2 satisfies safety. However supposing x ′ matches σ ′, should we expect that the NS
system generates a computation with the notify event for x ′ in I (σ ′)? To answer this question it is first
essential to make some considerations about how a NS is physically built. This is actually the aim of
the following section.
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2.3. NS implementation parameters

Basically, we can say that the NS has two main tasks:

• store and manage subscriptions from processes caused by the issue of subscribe/unsubscribe
operations;

• diffuse a notification x to the interested subscribers after a publish operation was issued by a
process.

Obviously, behind this abstract and informal description of a NS there exists an actual NS physical
implementation (e.g. centralized, distributed, network of brokers, etc.) that performs the desired
functionality. In order to capture the behaviour of any NS implementation we define two parameters
that respectively take into account (i) non-instantaneous effects of subscribe/unsubscribe operations
and (ii) the non-instantaneous diffusion of a notification x to interested subscribers after a publish
operation issued by a process. These parameters model the time required for the internal processing
at the NS and the network delay elapsed to route subscriptions and notifications in a distributed
implementation. Let us finally assume that any message sent by a process of a NS implementation
uses reliable channels.

2.3.1. Subscription/unsubscription delays

When a process issues a subscribe/unsubscribe operation, the NS is not immediately aware of the
occurred event. In other words, at an abstract level, the registration (respectively cancellation) of
a subscription takes a certain amount of time to be stored in the NS. This time encompasses, for
example, the update of the internal data structures of the NS and the network delay due to the routing
of the subscription among all the entities constituting the NS. To consider such non-instantaneous
operations, we define a maximum acceptable threshold of time (implementation dependent) after
which a subscribe/unsubscribe operation is surely stored in the NS. As an example, in a distributed
implementation of a NS, this means each entity implementing the NS after this threshold of time is
aware of the registration/cancellation operation.

We denote such a delay as Tsub for subscribe operations and Tusub for unsubscribe operations.
Therefore, if a subscribe operation is issued at time s, then it takes effect at a time t , such that
s < t ≤ s + Tsub

¶. The same holds for unsubscribe operations, i.e. an unsubscribe operation, issued at
time u, takes effect at a time t ′ such that u < t ′ ≤ u + Tusub.

To model this effect on the NS, we consider the NS characterized by a subscription configuration sc

composed of a set of subscriptions. In particular, we define sc(t) = {σ1, σ2, . . . , σm} to be the set
of all subscriptions stored in the NS at time t . We assume the initial configuration sc(t0) = ∅.
Therefore, if a subscribe (respectively unsubscribe) operation for a subscription σ takes effect at time t

(respectively t ′) then σ ∈ sc(t) (respectively σ ∈ sc(t ′)). As a consequence, even though t and t ′
are a priori unknown, we can state with certainty that σ ∈ sc(s + Tsub) and σ ∈ sc(u + Tusub).
For example, in Figure 3, σ ∈ sc(t1) and σ ∈ sc(t2), but in both [s, t1], [u, t2] time intervals there is
uncertainty whenever σ ∈ sc or not.

¶In our framework we reasonably assume for each subscription σ we have TON(σ ) > Tsub.
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Figure 3. Subscription/unsubcription delays.

At an abstract level each subscription of the NS state at time t ∈ T can therefore be stable (i.e. it
surely belongs to NS state) or non-stable. A subscription σ is stable with certainty at time t , iff
s + Tsub ≤ t ≤ s + TON(σ ).

2.3.2. Diffusion delay

As soon as a publication is issued, the NS performs a diffusion of the information: it performs
a matching to compute the set of interested subscribers and sends the notification to them.
Note that, depending on the NS implementation, the diffusion can be performed in several ways
(for example, through an application-level network of brokers [1–3] or by leveraging an overlay
network infrastructure [9–12]). Without entering implementation details, we can say that this operation
takes a certain amount of time during which the NS computes and issues notify operations to interested
subscribers, i.e. diffusion takes a non-zero period of time. Let us suppose that a publication of a
notification x is made at a given time t , and there is a matched subscription σ that is stable at time t ,
i.e. σ ∈ sc(t). Then the NS starts the diffusion to notify x to σ.p = pi . We denote as �i the time
elapsed in order to complete the diffusion of x to pi . An event ei(ntfy(x), t ′) can be generated only
at time t ′ ≤ t + �i . After the completion of the diffusion, the notification x disappears from the NS,
i.e. a further notify event can no longer be generated.

Note that in the worst case scenario, the set of subscribers to be notified and the whole set of
processes coincides. In this case the diffusion takes the maximum time among {�1,�2, . . . ,�n}.
We define such maximum delay as diffusion delay, denoted as Tdiff.

To clarify the meaning of the diffusion delay, see Figure 4. For the sake of simplicity and without
loss of generality, we assume that the communication delay between a process and the NS is zero.
This implies that (i) a notification published by a process immediately gets the NS, and (ii) if the
NS issues a notify operation on a process pi , the corresponding local event at pi is immediately
generated. Immediately after the publication of the notification x at the time t1, the NS, during Tdiff,
notifies the interested subscribers. Supposing that {pj , pk, ph} is the set of interested subscribers, then
Tdiff = max {�j,�k,�h} = �h. Let us remark that each generic interested subscriber pi is notified
in a specific instant of time (t + �i ), but �i is not a priori known.

It is important to point out that the set of interested subscribers is clearly computed on the basis of
the configuration of NS. However, how and when the state is considered is implementation dependent.
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Figure 4. Example of diffusion.

Moreover, the configuration can change during the diffusion. In the following these aspects will be
clarified.

2.4. Liveness property

The concept of ‘interested subscriber’ has been considered quite intuitively until this point.
The desirable NS behaviour is the following: once a notification is published (i.e. ej (pub(x), t) is
generated in H ), x is notified to each interested subscriber; but what is an interested subscriber?
Ideally it is a process pi that expresses its interest for x through a subscription σ s.t. x � σ.φ and
σ.s ≤ t ≤ σ.s+TON(σ ). However, the NS system is surely aware of the subscription σ by pi only when
the subscription becomes stable, i.e. at time σ.s + Tsub. Then, at first check, an interested subscriber
seems to be a process whereby subscription is stable (i.e. belonging to the NS state), at the moment in
which the matching information is published, i.e. σ.s + Tsub ≤ t ≤ σ.s + TON(σ ).

However, as (i) the interest of a subscriber is a dynamic dimension and (ii) a notify can be issued to a
subscriber at any time during the diffusion interval of the corresponding publication, it is still difficult
to characterize the exact behaviour of the system. Let us demonstrate this with an example. Let pi be
a process producing a subscription σ and pj be a process producing an event ej (pub(x), t), such that
x � σ.φ and σ.s + Tsub ≤ t ≤ σ.s + TON(σ ). However, if NS is able to notify x at pi only at a time
t ′ = t + �i such that t ′ > σ.s + TON(σ ), then pi will discard x as it is no longer interested in x.

Then, the definition of a Liveness property, which states exactly to which subscribers a publication
is notified to, must be necessarily defined considering both the subscription/unsubscription delays and
the diffusion delay. Given a subscription interval I (σ )

.= [σ.s + Tsub, σ.s + TON(σ )], this property can
be given as follows:

∀(ej (pub(x), t) ∧ (I (σ ) ∈ H s.t. I (σ ) ⊃ [t, t + Tdiff])) ⇒ ∃eσ.p(ntfy(x), t ′′) ∈ H

P3: Liveness
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Figure 5. Global history with unexpected notify events.

This property states that the delivery of a notification can be guaranteed only for those subscribers
that maintain stable subscriptions for the entire time taken by notification diffusion (diffusion delay).
In other words, the Liveness property defines the NS system condition under which a notify event
belongs to the global history. However, a notify event can also belong to the history even though this
system condition is not verified. This is due to the uncertainty of the system state and on the diffusion
time of information through the NS, as shown in the example depicted in Figure 5.

From application of the Liveness property, the only notify events guaranteed to be in the global
history are ek(ntfy(x), t2) and ek(ntfy(y), t5), as, pk has a subscription (matched by both x and y)
stable during the whole diffusion of x and y. However, the global history also contains eh(ntfy(x), t3).
This depends on the fact that: (i) the subscribe operation for subscription σ2 has taken effect before the
σ2.s + Tsub; (ii) the NS has made the diffusion relying on a state containing σ2; and (iii) the diffusion
to ph has completed before t1 + Tdiff. Note that such ‘lucky’ conditions may occur but the probability
of their occurrence is not equal to one.

2.5. Persistent notifications

The Liveness property introduced above can be extended by considering the possibility of the NS
persistently storing notifications for a finite, non-zero amount of time. Persistence is usually exploited
in distributed NS implementations to provide reliable delivery of notifications to processes: periodically
processes request from each other a list of notifications they have sent and if a process cannot find a
particular notification it requests its retransmission.

However, persistence can strongly influence the semantics of delivery if we assume that while the
notification is maintained in the NS it can be delivered to processes that subscribe after it has been
published. In particular, let us introduce a persistence interval TON(x), representing the time interval a
notification x is stored in the NS after it has been published by a process. If x is published at time tx , all
subscribers whose subscription becomes stable after tx have to be notified. This behaviour is expressed
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by the following extended definition of the Liveness property:

∀(ej (pub(x), t) ∧ (I (σ ) ∈ H s.t. (I (σ ) ⊃ [t, t + Tdiff] ∨ I (σ ) ∩ [t + Tdiff, t + TON(x)] = ∅)))

⇒ ∃eσ.p(ntfy(x), t ′′) ∈ H

P3a: Liveness (with persistent notifications)

In contrast to the previous definition of Liveness, in this case for the issue of a notification x to be
guaranteed to a process p with a matching subscription σ , the subscription has to be maintained for
an interval that (i) entirely contains the diffusion interval of x (as in P3) or (ii) intersects the interval
during which x is persistently stored in the system.

As pointed out above, depending on the value of TON(x), the semantics of the NS can be radically
altered. In particular, we can consider three representative cases.

0-persistence: each published notification x expires as soon as it becomes available. Only a processes
whose subscription matches x at the very moment of its publication are guaranteed for
notification. This implementation scheme is very undemanding since it does not require storing
notifications. However, it is subject to runs between concurrent pub and sub events, i.e. a
subscriber may miss a notification x if its subscription is even slightly delayed with respect
to the publication.

�-persistence: each published notification x expires after � > 0 from the instant it becomes
available. Garbage collection is performed by the pub/sub system on all expired notifications.
This is more resilient to runs between the publisher and subscribers: a subscriber whose
subscription ‘is seen’ in the system after � since x is available can still be satisfied. On the
other hand, high values for � may provoke undesirable out-of-date notifications.

∞-persistence: each published notification x remains available in the pub/sub system for an
indefinitely long time. When a subscriber installs a new subscription σ it will receive all the
previously published and already available notifications that match σ . This implementation style
obviously requires an ideal infinite memory to store all the notifications, since no notification is
ever garbage collected.

This classification can be related to the non-deterministic behaviour deriving from the decoupling
time between participants, which is one peculiar feature of the pub/sub paradigm. In general, the
more an information item remains available in the system, the less non-determinism is experienced
(for example, the effect of runs between publications and subscriptions is limited). Reduction of non-
determinism increases the probability that an intended receiver gets the information. If the information
is stored in a persistent way, non-determinism is completely removed and this probability goes to
one [12]. Of course, this impacts on the size of the memory necessary within the system.

The three classes feature decreasing levels of non-determinism requiring increasing memory.
However, we point out that this is not the case where a single class can be identified to be absolutely
better than the others, as each class is suited to meet different application requirements. Hence we give
examples of applications that may belong to each class.

An example of a 0-persistent application is a stock exchange system. Notifications represent instant
values of stock quotes, expiring very quickly. Since the publication rate is high, missing notifications
due to runs pose no problem, since subscribers can get new information after a short time.
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An example of a �-persistent application is a daily news diffusion system. Each information item
represents the daily issue of the news, having a lifetime of 1 day. Suppose issues are published every
morning at 3 a.m., an issue will also be notified to processes submitting their subscription during the
day.

An example of an application based on ∞-available information is a digital library where catalog
updates are published as information items, kept available for future subscribers. A new subscriber will
receive all the previous notifications in order to build its local copy of the catalog.

2.6. On the Liveness specification in dynamic systems

As we pointed out in [13], understanding and comparing different pub/sub systems is quite a difficult
task due to informal and different semantics. From this stems the requirement of precisely defining
formal semantics in terms of Safety and Liveness properties as in any distributed system.

To our knowledge, the first step in this direction was done in [8], where the author defines
Safety properties which are actually similar to the ones defined in Section 2.2.1. However defining
‘no bad thing can happen’ is the easy part of the job in dynamic distributed systems (such as
pub/sub applications). The tricky part is defining a property of progress of the whole system (i.e. the
Liveness property) when processes behave independently and dynamically. In the classical (static)
distributed system, Liveness constrains a system to eventually make progress on the global computation
towards a certain target. Liveness is defined in [7] along this line: ‘If a notification matching a set
of active subscribers is published, then each subscriber will eventually be notified unless it cancels
its subscription’. In other words, if a subscriber never disconnects with a subscription matched by a
published notification, it eventually will be notified for that notification. Then nothing is guaranteed
if the subscriber remains connected only for a certain time (even though this is a very long time!).
Of course the assumption that a subscriber never disconnects is unrealistic in a pub/sub system.

Another example of the inadequacy of the Liveness property as defined in classical distributed
systems comes from the crash-prone model. In this setting, the verification of the Liveness property
ensures progress toward the termination of a computation. This usually requires assuming a minimum
number of correct processes in the system (i.e. processes that never fail). If we make a parallel with a
pub/sub system, this means making an assumption on the minimum number of subscribers that never
disconnect. It is clear that in pub/sub such an assumption does not make any sense‖. A disconnected
process is not a bad process as ‘disconnection’ is a matter of life in a pub/sub and not an undesirable
event to cope with. A Liveness specification for this dynamic context should capture this normal
behaviour.

Roughly speaking, our Liveness definition actually considers ‘each notify event’ as the target of
our computation and defines timing assumptions under which a notify event is in the global history
of the computation (i.e. this event has to be notified by the NS). This presence depends on three
delays (Tdiff, Tsub, Tusub), which abstract the dynamic behaviour of the computation and the NS
implementation. Thanks to the latter point, our Liveness condition can also be used to compare different
NS implementations. To explain this point, consider the following example. Suppose there are two

‖Defining a Liveness that gives guarantees if and only if a process never disconnects is the equivalent of not giving any guarantee.
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different NSs managing the same set of clients and the same type of subscriptions and notifications.
Moreover, suppose that:

1. a process publishes in both systems a notification matching an active subscription made by the
same subscriber (a subscriber connected to both systems);

2. the subscription will remain active for two days after the publication but will be notified only by
the first system.

In this scenario both systems satisfy Liveness as defined in [8], but are they equally good? It seems
that the latter is a ‘lazy’ system, while the former is more reactive and effective. In the next section we
show how this reactiveness can be measured to give an idea of the effectiveness of the implementation.

Let us finally remark that if Tdiff was infinite, our definition of Liveness would not guarantee anything
as the classical Liveness stated in [8]. However, in contrast to [8], when the three delays are finite
(typical practical case) some subscription (satisfying conditions stated in the Liveness property) must
be notified.

3. ANALYTICAL MODEL

The semantics identified through the abstract computational model allows us to reason on the practical
consequences of Tsub and Tdiff. Starting from the consideration that high values of the delay can prevent
some subscribers from receiving notifications that were issued during the publication time, the idea is to
take the probability that this could happen as a general performance parameter (namely the notification
loss) for the NS.

In this section we provide a simple and general analytical model for the computation of the
notification loss, given the implementation parameters Tsub, Tdiff. We also specialize the model
discussing how the practical deployment of a pub/sub system can influence such parameters and,
subsequently, the notification loss. In particular, we identify three operational parameters that
characterize the size of the system and the speed of the propagation of subscription and notifications.
These parameters can be measured experimentally, subsequently obtaining Tsub and Tdiff, hence the
notification loss.

3.1. Measuring notification loss

Let x be a notification issued at time t and p be a generic process that has a subscription at time t

matching x. We denote as d the probability that x is notified to p (notification probability). Therefore,
the notification loss is the probability that x is not notified to p (i.e. 1 − d), though p has a matching
subscription.

Our analysis rests on the following assumptions:

1. the process p issues the subscription σ for a period TON ≥ Tsub + Tdiff;
2. any other subscription can only be issued by p after Tusub from the last usub operation;
3. the time a publication matching σ is issued is a uniformly distributed random variable defined

over the subscription interval TON;
4. all publishers have the same probability to generate a notification matching σ ;
5. each notification is persistently stored in the NS for a time TON(x).
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The delay Tusub does not affect d because we assumed that a subscriber can issue a new subscription
only after Tusub and, by definition, σ has been cancelled from the NS’s configuration after this time
interval.

In the following we give two expressions for d respectively considering TON(x) = 0 (volatile
notifications) and TON(x) > 0 (persistent notifications).

3.1.1. Volatile notifications

Let tsub be the time the process p issues the sub operation, tusub the time when p issues the
corresponding usub operation and tpub the time the notification x is published. Then, the NS guarantees
the delivery of any publication occurring at a time tpub such that tsub + Tsub ≤ tpub ≤ tusub − Tdiff.
This means, in fact, that the publication was issued when the subscription was stable and there was
enough time for information diffusion to be completed. Moreover, for those publications such that
tsub < tpub < tsub + Tsub as well as for those with tusub − Tdiff < tpub < tusub, there is also some
probability of being notified.

For example, let us consider a distributed implementation of the NS as a network of brokers.
Then, roughly speaking, it is possible that x was published by some process ‘close’ to p so that, after
a delay t < Tsub, the portion of the NS involved in the diffusion of x towards p has already received
the updates for correctly notifying x, as suggested by our simulations.

To model this aspect, we denote with f (t) the probability density function that the NS notifies x

to p, given that x was issued at time tpub = tsub + τ , where 0 ≤ τ ≤ Tsub. Clearly, f (t) must
be a monotonically increasing function with f (0) = 0∗∗ and f (Tsub) = 1. In our experiments,
f (t) corresponds to the function plotted in Figure 11(a).

Also, g(t), where 0 ≤ τ ≤ Tdiff, is the probability density function that a notification published
at a time tpub = tusub − Tdiff + τ is notified to p. In a real implementation, this function captures
the probability that the notification x reaches p before it unsubscribes for σ . The function g(t)

must be a monotonically decreasing function with g(0) = 1 and g(Tdiff) = 0. In our experiments,
g(t) corresponds to the function plotted in Figure 11(b).

Figure 6 sketches the overall probability density function P(t) that a notification x matching σ ,
issued at a time t inside TON, is notified by the NS.

Due to assumption (iv), (1/TON) dt is the conditional probability that tpub ∈ [t, t + dt] (tsub ≤ t ≤
tusub), given that information was published during the subscription interval. Moreover, (P (t)/TON) dt

is the probability that an event is published in the interval [t, t + dt] and it is notified.
Applying the total probability theorem, we can thus evaluate d as follows:

d = 1

TON

( ∫ Tsub

0
f (t) dt +

∫ TON−Tdiff

Tsub

1 dt +
∫ Tdiff

0
g(t) dt

)

which can also be rewritten as

d = TON − Tdiff − Tsub

TON
+ 1

TON

( ∫ Tsub

0
f (t) dt +

∫ Tdiff

0
g(t) dt

)
(1)

∗∗Actually, the value is slightly higher than 0, because there is the probability that x is issued by p itself. We discuss this later.
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Figure 6. A sketch of P(t), volatile notifications.

Note that d is directly proportional to the area of the curve depicted in Figure 6. Clearly, if Tdiff =
Tsub = 0, then the NS behaves as an ideal system with d = 1 (all publications are immediately
notified).

3.1.2. Persistent notifications

The evaluation of d with persistent notification is basically the same as the method performed above
for volatile notifications, just considering the fact that when notifications are stored inside the NS for a
time TON(x) > 0††, a subscriber also receives notifications issued before its own matching subscription
was stable. More precisely, the NS guarantees the delivery of any notification occurring at a time tpub
such that (i) tsub + Tsub ≤ tpub ≤ tusub − Tdiff (as in the previous case) or (ii) tsub + Tsub − T x

ON ≤
tpub ≤ tsub. In particular, notifications satisfying the latter condition will be delivered because as the
subscription is surely stable at tsub + Tsub, it will get notifications issued up to a time T x

ON in the
past.

For notifications issued between tsub − T x
ON and tsub + Tsub − T x

ON, the probability of their
delivery is conditioned to the probability that the subscription σ is stable before a time T x

ON in the
future. Hence, the trend of P(t) will simply follow that of the function f (t). Finally, persistent
notifications do not have any influence on notifications published in proximity to the unsubscribe
of σ .

††We will use a simplified notation, writing T x
ON instead of TON(x).
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The analytical evaluation of d obviously resembles that obtained for volatile notifications, but with
an added term accounting for the probability of ‘past’ notifications:

d = 1

TON + T x
ON

(∫ Tsub

0
f (t) dt +

∫ Tsub+T x
ON

Tsub

1 dt +
∫ Tsub

0
f (t) dt +

∫ TON−Tdiff

Tsub

1 dt +
∫ Tdiff

0
g(t) dt

)

= 1

TON + T x
ON

(
TON − Tdiff − 2Tsub + T x

ON + 2
∫ Tsub

0
f (t) dt +

∫ Tdiff

0
g(t) dt

)

= 1 − 2Tsub + Tdiff

TON + T x
ON

+ 1

TON + T x
ON

(
2

∫ Tsub

0
f (t) dt +

∫ Tdiff

0
g(t) dt

)
(2)

This expression is valid for T x
ON > Tsub.

3.2. Analytical results

In order to provide an analytical expression for d , the two functions f and g have to be specified.
The shape of the curves will obviously be determined by the mechanisms used internally by the
NS for routing subscriptions and notifications. These mechanisms are dependent on three operative
parameters: N representing the size of the system in terms of the number of entities it is composed of;
s and r , respectively the subscription and the notification update rates, representing the efficiency of
the routing processes. In the following, we first consider a general distributed implementation for the
NS and give an analytical evaluation for the two functions in this case. Then, we investigate how the
operative parameters of the NS are related to the implementation parameters Tsub and Tdiff.

3.2.1. NS reference model

We consider a general case where a subscription routing algorithm is used to make all participants in
the system aware of each active subscription. Thus, a subscription is stable after its routing process is
terminated. That is, the subscription delay is the maximum convergence time of the subscription routing
algorithm. The f function should represent the variation over time in the number of NS participants
that received a subscription update. The maximum convergence time is obtained when all subscriptions
are flooded within the entire system, reaching all its participants.

Once the subscription is stable, the corresponding subscriber can be contacted when a matching
notification is published. A notification routing algorithm is then used to propagate the notification
among brokers in order to reach all the matching subscribers for such a notification. During the
routing process, a broker receiving a notification from another broker has the opportunity to issue
the notify operation to its local matching subscribers. Moreover, it can forward the notification to the
other brokers that can have some active subscription. Following the Liveness property we defined in
Section 2.2, the set of subscribers to be reached by a notification x must comprise all those subscribers
whose subscription matches x and is stable at publication time. Then, the diffusion delay is the
maximum time interval required to diffuse a notification from a broker serving the source publisher
to all the interested subscribers in the set. The g function should represent the variation over time of
the number of interested NS participants that received the notification. Again, the maximum diffusion
time is obtained when a notification is flooded through all the participants of the system.
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Considering naive flooding as a routing algorithm for subscriptions and notifications that is allowed
to be as general as possible in the derivation of the two functions. In other words, the described model
represents the worst-case scenario of a wide range of NS implementation solutions.

3.2.2. Expressing f(t) and g(t)

The probability that a broker receives a subscription/notification f (t) and g(t) can be represented as
the number of brokers in a NS that receive a subscription/notification, at time t . Message diffusion
through a flooding algorithm follows an epidemic-like behaviour, that is, each participant transmits
a subscription/notification only to a subset of other participants that in turn forward it to other
participants. Thus, the following analysis is inspired by the mathematical theory of epidemics [14],
often used in the context of a gossip-based multicast algorithm to predict the average percentage of
participants that will be reached by a multicast message [15].

Let f (t) be the number of NS participants that have received a subscription at time t and N the
overall number of brokers in the system. The variation in time of this function is proportional to the
number of brokers that have not received the subscription yet:

df (t)

dt
= α(t) (N − f (t))

The value of α(t) is at the same time proportional to f (t), because the more participants in the system
that are aware of the subscription, the faster it spreads. Hence,

df (t)

dt
= s

f (t)

N
(N − f (t))

We refer to the constant s as the subscription update rate, because it represent the speed of diffusion of
an update. s depends on parameters of the NS, such as the time required for a single update, the number
of participants updated by a single participant, the time required to process a subscription within each
participant.

Solving the above differential equation leads to the following solution:

f (t) = 1

1 + c e−st

where c is an arbitrary constant. Since at t = 0 only one broker is aware of the subscription (the one
that sends it), we can impose f (0) = 1 and subsequently obtain c = N − 1. The final expression for
f (t) is then

f (t) = 1

1 + (N − 1) e−st
(3)

Following a similar procedure, we obtain the following expression for g(t):

g(t) = 1 − 1

1 + (N − 1) e−rt
(4)

where r is the notification update rate. In general r = s because the different algorithms used for
routing subscriptions and notifications can result in different diffusion rates. The plots for f (t) and
g(t) are shown in Figure 7.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1471–1495



ON THE MODELLING OF PUBLISH/SUBSCRIBE COMMUNICATION SYSTEMS 1487

0

0,2

0,4

0,6

0,8

1

0 5 10 15 20 25

f(
t)

s=0,25
s=0.5
s=0.75
s=1

Time (s)

0

0,2

0,4

0,6

0,8

1

0 5 10 15 20 25

g
(t

)

r=0,25
r=0.5
r=0.75
r=1

Time (s)

(a) (b)

Figure 7. Analytical trends of f (t) and g(t).

s and r are two important parameters that significantly affect the behaviour of the system.
Unfortunately, an analytical evaluation is not a trivial task. From an experimental measure in a system
with 100 nodes configured in a dense topology where all nodes are all physically close to each other,
we obtained update rates of s = 0.98 and r = 1.2. Details are given in Section 4. From the analytical
study in Section 3.3, it turns out that a system with update rates greater than 1; 5 can be considered
‘fast’, in the sense that with average subscription intervals it can ensure at least 80% of the notification.

3.2.3. Expressing d

The next step is substituting the above expressions into Equation (1) to obtain a general expression
for d that depends only on the external operative parameters of the NS.

First we calculate the integrals of f (t):
∫ Tsub

0
f (t) dt = s Tsub + 1

s
ln

1 + (N − 1) e−sTsub

N

With 1/(1 + (N − 1) e−sTsub) � 1, we obtain
∫ Tsub

0
f (t) dt = sTsub + 1

s
ln

1

N

Analogously, ∫ Tdiff

0
g(t) dt = (1 − r)Tdiff − 1

r
ln

1

N

Substituting this expression into Equation (1), results in the following expression for d:

d = 1 − (1 − s)Tsub + rTdiff

TON
+ 1

TON

(
1

s
− 1

r

)
ln

1

N
(5)
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Figure 8. Notification probability versus update rate.

From the above definitions of Tsub and Tdiff it is clear that it should be f (Tsub) = 1 and g(Tdiff) = 0.
These two values cannot be determined directly from the analytical expressions of f (t) and g(t)

because the functions only asymptotically tend to 1 and 0, respectively. However, considering the
meaning of the functions, representing the fraction of participants reached by a message, it makes
sense to assume only discrete values for them. In particular, the minimal value for the fraction can be
1/N , then Tsub and Tdiff can be chosen approximately as any values such that f (Tsub) ≥ 1 − 1/N and
g(Tdiff) ≥ 1/N . Considering equalities, we obtain the following approximate expressions:

Tdiff � 1

r
ln(N − 1)2

Tsub � 1

s
ln(N − 1)2

This allows us to rewrite d only in terms of s, r and N :

d � 1 − 1

TON

(
1

s
+ 1

r

)
ln N (6)

3.3. Discussion

In the following we discuss the analytical values obtained by the application of Equation (6), studying
the influence of the various operative parameters over the notification probability. We will consider, for
simplicity, a single parameter α for the update rates (i.e. α = r = s). Subsequently, we assume a single
stabilization time Tα for both subscriptions and notification.

Figure 8 plots the notification probability against the update rate, with different fixed values of TON
and N = 100. The sensitivity of the system to changing values of α strongly depends on the expected
value of TON. With long subscription times (TON > 500), a slowly responding system (α < 0.2) can
offer an acceptable level of performance (d > 0.9). On the other hand, rapidly changing subscriptions
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(T < 50) require a vary fast responding system. When α < 1, d follows a steep curve. This means
that small variations in α result in significant changes in d . However, the plot shows that with values
of TON starting from about 100 s, the system reaches relatively high values for d with α higher than
about 0.5.

This is more evident in the plot given in Figure 9, showing the notification probability against the
variation of TON, for different values of α and N = 100. Moreover, this plot demonstrates that the more
critical behaviour, independently of α, occurs when TON is lower than 60 s. In this case, the system is
highly unstable, requiring careful fixing to achieve acceptable values of d .

Finally, Figure 10 plots the influence of the number of participants N over the notification
probability, with different values of α (while TON is fixed at 150). This plot shows that for α higher
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than 1.5, the system can be considered ‘fast’ because on increasing the number of participants, the
notification probability is always higher than 0.9.

Overall, we can say that the analytical model presented in this section allows us to make important
high-level considerations about the general behaviour of a NS. However, a further step is required to
fully consider such results trustworthy, i.e. achieve an experimental confirmation. This is the subject of
the following section.

4. SIMULATION STUDY

In this section we present the experimental results derived from a simulation of the execution of a real
pub/sub system. The objective of the study is to evaluate the actual fraction of the delivered notifications
and compare it with the analytical result obtained from the model.

4.1. Simulation details

We carried out our experiments by implementing a prototype of a distributed NS made up of a set of
distributed brokers, communicating through point-to-point application-level connections. The system
is based on the content-based routing algorithm (CBR) for acyclic peer-to-peer topologies introduced
in SIENA [1]. The key idea is to diffuse subscriptions in order to build paths for routing events, so that
parts of the network with no interested subscribers are excluded from event diffusion. Simulations were
performed by running the NS prototype on top of the J-Sim [16] real-time network simulator. We give
a more detailed explanation both of the CBR algorithm and of our prototype implementation in the
following section.

Network-level topologies are generated using the Georgia Tech ITM topology generator [17].
All topologies follow the Transit-Stub model. The application-level network (i.e. the distribution of
the distributed brokers over the network nodes and the links between them) is self generated by our
prototype and follows a random topology that is not influenced by the underlying network topology.
This reproduces the typical shift between application level and network level that occurs in the real
deployment of overlay networks. Experiments featured 100 participants (brokers) deployed above
networks with 100, 250 and 500 nodes. We considered different deployment scenarios in order to
alter the values of the update rate.

4.2. Simulation results

4.2.1. Update rates

Figures 11(b) and 11(a) show the results of the experiments over subscription and event diffusion
times, with a 100-broker NS deployed over a 100-node network. In particular, Figure 11(b) plots the
fraction F(t) of brokers at time t that receive a new subscription issued at time 0, and Figure 11(a)
plots the fraction G(t) of brokers that have not received a notification issued at time 0. In practice,
these curves are the experimental results of the f (t) and g(t) functions, as defined in the previous
section. The shape of the curves coincides with those in Figure 7, confirming that epidemics models
are accurate at representing information diffusion processes.
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Figure 11. Experimental values of Tdiff and Tsub for 100 participants over a 100-node network.

Table I. Experimental values for update rates.

Network nodes s r Tsub Tdiff

100 0.97 1.21 12.20 9.95
250 0.62 0.80 19.06 14.03
500 0.47 0.58 25.44 20.44

Plots were obtained as follows (we consider only Tsub as the same can be applied for Tdiff). We let a
subscription start from a random broker and be delivered to all the other brokers. This is obviously the
worst case scenario that can be encountered for routing. In turn, each broker acts as the source for the
subscription. The maximum time required for all brokers to receive the subscription, considering all
the possible source brokers, corresponds to Tsub. Experiments were repeated five times over different
network topologies. The same experiments were carried out with networks of 250 and 500 nodes,
producing the same trends, though obviously with different values for Tsub and Tdiff.

The coincidence of the analytical and experimental curves allows us to evaluate the update rates
for subscriptions and notifications. These are the values of s (respectively r) that when substituted
into Equation (3) (respectively (4)) lead to a curve that has the same integral as the one obtained
experimentally. The results are reported in Table I.

Note the slight difference between the update rates for subscriptions and notifications. In other
words, notification routing turns out to be faster than subscription routing, though they both run on
the same topology and travel to all the brokers. This is due to the fact that at each hop, the subscription
routing algorithm has to update the local routing data structures, taking more time than the matching
operation performed by the notification routing to determine the next hop. Considering that, along its
execution, the NS is supposed to manage thousands of subscriptions, one can expect the update rate to
be subject to changes over time.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; 17:1471–1495



1492 R. BALDONI ET AL.

0

0,2

0,4

0,6

0,8

1

0 200 400 600 800 1000

Subscription interval, TON (s)

d
100 Nodes

250 Nodes

Figure 12. Experimental values of d .

4.2.2. Notification probability

Figure 12 shows the number of notifications actually achieved for notifications published at a broker
while another broker in the system has an active, matching subscription. These results were obtained
as follows: we generated a subscription on a randomly chosen broker, and after a time TON, a
corresponding unsubscription. During the subscription interval, a notification was produced in another
random broker. The exact publication time was randomly chosen and followed a uniform distribution
inside the subscription interval. We repeated this process over 250 different random subscriber–
publisher couples and executed five runs of the experiment, each on a different network topology.
The whole process was repeated for different values of TON and over 100 and 250 network nodes,
obtaining the curves depicted in Figure 12.

The number of notification losses surprisingly does not tend to 0, even for high values of
TON. This demonstrates that the notification loss phenomenon is an important issue in pub/sub
systems.

For a final validation of our analytical model, we have to compare the curve obtained experimentally
with the one resulting from Equation (1) by substituting the values for s and r obtained from a
previous experiment. The percentage error between the experimental curve and the analytical one
is shown in Figure 13. Negative values of the error mean that the analytical value is higher than
the experimental value. The plot shows that, excluding lower values of TON for which the system
unpredictability results in unstable error values, the error is within a low 6%. This confirms the overall
reliability of the analytical evaluations, except for the smallest values of TON that are more sensitive to
small variations in the results.

Thus, we have shown that our analytical model is able to predict the actual behaviour of a NS, with a
small percentage error. Application of the model with values of s and r that are derived experimentally
gives a general estimation of the probability of notification that accurately reproduces the experimental
results.
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5. RELATED WORK

To the best of our knowledge, the only other research contribution examining a formal definition of
the semantics of a pub/sub system has been given by Mühl in his PhD thesis [8]. The thesis presents
a framework for specifying a general pub/sub computation and for proving the formal correctness of
an important class of diffusion algorithms (content-based routing algorithms). Pub/sub computation is
abstracted by a sequence of global states interleaved by operations. The characterization of the correct
computations of the system is given with respect to the global state. At this level of abstraction, the
effect of the delay in the execution of operations is not represented: Safety and Liveness properties are
defined as if any subscription update and notification takes effect instantly.

When defining the framework for content-based routing, the author shows that the assumptions may
never be satisfied when more update processes occur concurrently. The Liveness property is then shown
to be guaranteed only for those subscriptions that have been propagated in the whole system (i.e. that
are stable, in our terminology).

Though the conclusions are obviously similar, our approach is quite different compared with [8].
First of all, the main objective of the work is different: we propose a model to analytically characterize
the ‘quality’ of a generic pub/sub system, while Mühl proposes a framework that formally shows the
correctness of a class of diffusion algorithms. Besides, our model presents two characterizing aspects:
(i) explicitly introducing the pub/sub system in the model; and (ii) considering the notion of time in the
specifications of the system. These two aspects allow us to point out the non-deterministic behaviour
of pub/sub systems at a specification level, i.e. independently from any specific implementation such
as the deployment type or the diffusion algorithm. On the other hand, we do not give any formal proof
but provide only a probabilistic analysis.

Concerning the mathematical analysis itself, it was inspired from the mathematical theory of
epidemics [14], recently applied to model information diffusion phenomena like probabilistic reliable
multicast [15,18,19] or mobile ad hoc networks [20].
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6. CONCLUSIONS

In this paper we presented a formal model for the general specification of a pub/sub system.
With respect to another similar research contribution [8], our model gives an implementation-
independent characterization of pub/sub semantics that points out the unpredictable behaviour deriving
from the inherent decoupling among participants.

Our model presents two characterizing aspects: (i) explicitly introducing the pub/sub system in the
model rather than considering only the semantics at processes; and (ii) considering the notion of time
in the specifications of the system. This characterization allows us to point out the non-determinism
of pub/sub systems at the specification level, i.e. independently from any implementation specific
issues such as the deployment type or the diffusion algorithm. On the other hand, we do not exploit
the specification to give formal proof of the pub/sub system algorithms but only provide a simple
probabilistic analysis.

In our opinion this analytical performance model can be used as a rule of thumb for users and
designers of a pub/sub system to predict the behaviour of their applications, easily identifying
the critical implementation aspects that influence the overall performance. This can represent a
more practical solution than other complex and time-consuming analyses (such as simulations)
that, due to the many dynamic aspects involved, are not guaranteed to give a precise performance
assessment.
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