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On the Modelling of Zero Impedance Branches

for Power Flow Analysis
Federico Milano, Senior Member, IEEE

Abstract— This letter compares three models of zero impedance
branches for power system analysis and proposes a new, simple yet
reliable model of such a component based on a steady-state droop control

approach. The proposed model proves to be numerically robust and
allows representing both short lines as well as the internal electrical
nodes that compose substations. Parallel and lossy zero impedance
branches can also be straightforwardly defined. A detailed discussion

of the features and numerical performance of all models considered in
this letter is carried out by means of the a 21,177-bus model of the
European ENTSO-E transmission.

Index Terms— Zero impedance branch, admittance matrix, power flow

analysis.

I. POWER FLOW MODELS OF ZERO IMPEDANCE BRANCHES

T
HE problem of the modelling of zero or small impedance

branches arises in power flow analysis [1] and state estimation

[2]. While zero impedance branches are often neglected and col-

lapsed into a unique node, structural changes that power systems

are undergoing in the last decade and the increasing interaction

between transmission and distribution systems stress the need for

an accurate modelling of every aspect of the power grid. Switching

branches within a substation and short transmission lines connecting,

for example, networks with different owners, are among these.

This letter focuses on the modelling of zero impedance branches

for power flow analysis. This section presents a taxonomy of the

models available in the literature as well as the proposed model based

on power injections and a steady-state droop control approach.

Model A – Small Impedance Model

The conventional approach to model of zero impedance branches is

based on approximating the the connection using a small impedance

jǫx (see Fig. 1.a) and including such impedance into the network

admittance matrix [1]. The resulting active and reactive power

injections of the branch are thus dependent on the inverse of ǫx.

For example, the injections at bus h are:

ph =
vhvk
ǫx

sin(θh − θk) ∝
1

ǫx
(1)

qh =
v2h
ǫx

−
vhvk
ǫx

cos(θh − θk) ∝
1

ǫx

The expression for pk and qk can be obtained from (1) by swapping

h and k subindices. Due to the dependency on the inverse of ǫx, this

approach shows intrinsic numerical instabilities, e.g., collinearity, as

small impedance values increase the condition number of the power

flow Jacobian matrix and to lead to ill-conditioned cases.

Model B – Two Fictitious Reactance Model

Another approach consists in using a series of two fictitious

impedances with equal magnitude but opposite sign [3]. This solution

introduces also an additional fictitious bus per each zero impedance

branch, as shown in Fig. 1.b. Recently, a similar approach but applied

to small-impedance distribution transformers has been discussed in

[4] and other papers by the same first author cited therein. The power

injections at the fictitious bus are:

0 = pi =
vivh
x

sin(θi − θh)−
vivk
x

sin(θi − θk) (2)

0 = qi =−
vivh
x

cos(θi − θh) +
vivk
x

cos(θi − θk)
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Fig. 1. Different models of zero impedance branches: (a) small reactance
jǫx; (b) series of two reactances jx and −jx; and (c) power injection model.

and, after simplifying common terms:

0 = vh sin(θi − θh)− vk sin(θi − θk) (3)

0 = vh cos(θi − θh)− vk cos(θi − θk)

Note that, while θh = θk and vh = vk is a solution of (2) and (3),

this solution is not unique as (2) and (3) as well as the expression

of the active and reactive power injections at buses h and k, are

nonlinear. Moreover, to provide a feasible solution, the power flow

across the branch must satisfy the condition |ph| < pmax
h = vhvi/x.

Model C – Short-circuit Power Injection Model

A conceptually different approach can be found in works related

to state estimation. Pioneering work has been done in [2] and [5].

Then, based on the aforementioned references, a zero impedance

model for power flow analysis is proposed in [6]. This model defines

two short-circuit constraints:

0 = θh − θk , 0 = vh − vk (4)

and active and reactive power injections at nodes h and k through

two additional variables, namely, p and q (see Fig. 1.c), as follows:

ph = p , pk = −p , qh = q , qk = −q (5)

Model D – Proposed Droop-based Power Injection Model

The proposed model consists in defining power injections at

sending and receiving ends, i.e., (5), and two constraints based on a

steady-state droop control, as follows:

0 = θh − θk − dpp , 0 = vh − vk − dqq (6)

where dp and dq are small positive coefficients whose effect is similar

to that of steady-state droop controllers. The terms dpp and dqq
introduce, in fact, a negative-slope mismatch of the voltage phasors

of nodes h and k. Note that, if dp = dq = 0, (6) reduce to (4).

Model C above is a particular case of the proposed model.

The proposed model shows some advantages with respect to the

previous models, as discussed below and summarized in Table I.

1) Linearity: Equations (5) and (6) are linear and, hence, Model D

can be expected to be numerically robust (see the case study below).

Model C is also linear, while Models A and B are not. It can be

useful to note that Model D is not a linearization of Model A but,

rather, a generalization of Model C, which is formally equivalent to

a steady-state integral controller.

2) Parallel branches: Parallel zero-impedance branches can be

modelled without any additional effort as the coefficients dp and dq
unequivocally define the distribution of power flows in the parallel

branches. Equations (6), in fact, are both formally similar to a

resistive dipole where the droop coefficients dp and dq are the

fictitious resistances. Parallel branches can be also implemented

using Model A and B, but not Model C. In Model C, in fact, each
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TABLE I

FEATURES OF ZERO IMPEDANCE MODELS

Model Variables Linearity Parallel Branches Losses

A – no yes yes
B vi, θi no yes yes
C p, q yes no no
D p, q yes yes yes

parallel branch introduces two sets of (5), with two unknowns each,

but only one set of (4) can be defined. Hence, the powers flowing

in parallel branches are undetermined if Model C is used.

3) Losses: While Models A and B can straightforwardly include

losses, Model C cannot. In Model D, losses can be implicitly taken

into account through the coefficients dp and dq , as follows. From (1)

and assuming v2h ≈ vh, vhvk cos(θh−θk) ≈ vk, and vhvk sin(θh−
θk) ≈ θh − θk, one obtains dp ≈ dq ≈ ǫx. In the same vein,

considering the detailed power flow equations and assuming that the

connection is characterized by a series impedance r + jx:

ph = v2hg − vhvk(g cos(θh − θk) + b sin(θh − θk)) (7)

qh = −v2hb− vhvk(g sin(θh − θk)− b cos(θh − θk))

and applying same approximations as above, active power losses

could be also approximated by means of the following expression:

0 = θh − θk − ǫxp− ǫrq (8)

0 = vh − vk − ǫxq + ǫrp

where g + jb = (r + jx)−1, and ǫx = −b

g2+b2
and ǫr = −g

g2+b2
.

II. CASE STUDY

In this case study, the properties and the performance of the four

zero impedance models discussed in the previous section are com-

pared through a steady-state model of the ENTSO-E transmission

system.1 The model includes 21,177 buses, 30,968 transmission lines

and transformers, 1,144 zero impedance branches, 15,756 loads, and

4,828 generators.

All simulations are obtained using a standard polar-coordinate flat-

start Newton method implemented in Dome [7]. The convergence

tolerance used in the case study is ε = 10−6. The Dome version

used for in this case study is based on Python 3.4.1, ATLAS 3.10.1,

CVXOPT 1.1.7, and KLU 1.3.2. Simulations were executed on a 64-

bit Linux Fedora 21 operating system running on a Intel i7 2.10 GHz

CPU, and 8 GB of RAM. CPU times shown in the remainder of this

section are computed as the average over ten simulations.

Results of the power flow analysis for the ENTSO-E transmission

system and considering all zero impedance models are shown in

Table II. As expected, Model A shows numerical issues if the value

of the branch impedance is too small. In particular, divergence occurs

for ǫx ≤ 10−10. The value at which divergence occurs depends on

several factors, for example, the topology of the system and the

computer representation of floating point numbers. Reference [1]

provides a method to define the minimum value of the impedance

that allows obtaining a solution with the Newton algorithm.

Two variants of Model B are considered. Model B.1 consists in

a bus and two lines with impedance jx and −jx, respectively. This

model increases the number of buses and connections. For example,

considering this model, the ENTSO-E system contains 22,321 buses

and a total of 33,256 branches. To avoid the system size increase,

which can slow down the power flow analysis, an alternative Model

B.2 is considered and is obtained by embedding (3) in a custom

branch model. Model B.2 defines two variables, namely vi and θi,
but no additional buses or lines are required and hence it can be

useful whenever it is needed to preserve the original topology of

the network. Table II shows results for Models B.1 and B.2 for a

1The data of the system has been licensed to the author by ENTSO-E.
Data can be requested through an on-line application at www.entsoe.eu.

TABLE II

COMPARISON OF THE PERFORMANCE OF ZERO IMPEDANCE MODELS

Model Parameters Iterations CPU time [s]

A ǫx = 10
−8 pu 7 0.3650

A ǫx = 10
−9 pu 9 0.4418

A ǫx = 10
−10 pu diverges –

B.1 x = 0.1 pu 7 0.3656
B.1 x = 1.00 pu 8 0.4023
B.1 x = 2.00 pu 13 0.6272

B.2 x = 0.1 pu 7 0.3501
B.2 x = 1.00 pu 13 0.6077
B.2 x = 2.00 pu 11 0.5321

C dp = dq = 0 7 0.3578

D dp = dq = 10
−8 7 0.3441

D dp = dq = 10
−12 7 0.3434

D dp = dq = 10
−18 7 0.3360

TABLE III

COMPARISON OF THE PERFORMANCE OF ZERO IMPEDANCE MODELS

WITH INCLUSION OF PARALLEL ZERO IMPEDANCE CONNECTIONS

Model Parameters Iterations CPU time [s]

A ǫx = 10
−8 pu 7 0.3630

B.1 x = 0.1 pu 7 0.3608
B.2 x = 0.1 pu 39 1.7760
C dp = dq = 0 diverges –

D dp = dq = 10
−8

7 0.3475

typical value of the branch reactance, i.e., x = 0.1 pu, as well as

for higher values, i.e., x = 1 and x = 2 pu, which are aimed to

emulate congestion. As it can be observed, these models show similar

numerical issues as |ph| approaches pmax
h . Note also that the extra

computational burden introduced by Model B.1 has a small effect

on CPU times. Finally, Table II shows that the performance and the

computational burden of Models C and D are similar, as expected.

Note that a sufficient condition to obtain an accurate solution through

Model D is that dp ≪ ε and dq ≪ ε. Note also that dp and dq must

not need to be equal.

A second test is carried out by including a small number, i.e., about

1% of the total, of parallel zero impedance connections. Results

obtained with the models discussed in this letter are shown in Table

III. As expected, Model C diverges, as parallel connections lead to an

underdetermined set of equations. Also Model B.2 shows numerical

difficulties. While it converges, the solution is reached after several

iterations during which the maximum mismatch shows an erratic

behaviour before decreasing quadratically as expected in a Newton

method.
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