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Abstract: We introduce a new approach to find the Tomita–Takesaki modular flow for
multi-component regions in general chiral conformal field theory. Our method is based
on locality and analyticity of primary fields as well as the so-called Kubo–Martin–
Schwinger (KMS) condition. These features can be used to transform the problem to
a Riemann–Hilbert problem on a covering of the complex plane cut along the regions,
which is equivalent to an integral equation for the matrix elements of the modular
Hamiltonian. Examples are considered.

1. Introduction

The reduced density matrix of a subsystem induces an intrinsic internal dynamics
called the “modular flow”. The flow is non-trivial only for non-commuting observable
algebras—i.e., in quantum theory—and depends on both the subsystem and the given
state of the total system. It has been subject to much attention in theoretical physics in
recent times because it is closely related to information theoretic concepts. As examples
for some topics such as Bekenstein bounds, QuantumFocussing Conjecture, c-theorems,
holographywemention [1–5]. Inmathematics, themodular flow has played an important
role in the study of operator algebras through the work of Connes, Takesaki and others,
see [6] for an encyclopedic account.

It has been known almost from the beginning that the modular flow has a geometric
nature in local quantum field theory when the subsystem is defined by a spacetime region
of a simple shape such as an interval in chiral conformal field theory (CFT) [7–9]: it is
the 1-parameter group of Möbius transformations leaving the interval fixed. For more
complicated regions, important progress was made only much later in a pioneering work
by Casini et al. [10], who were able to determine the flow for multi-component regions
for a chiral half of free massless fermions in two dimensions. Recently in [11] they have
generalized theirmethod to the conformal theory of a chiralU (1)-current. Unfortunately,
themethod by [10,11], aswell as all other concretemethods known to the author, is based
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in an essential way on special properties of free quantum field theories. The purpose of
this paper is to develop methods that could give a handle on the problem in general chiral
CFTs, i.e. the left-moving half of a CFT on a (compactified) lightray in 1+1 dimensional
Minkowski spacetime, and to make some of the constructions in the literature rigorous
by our alternative method.

Consider a (possibly mixed) state in the chiral CFT, described by a density matrix
ρ. Typical states of interest are the vacuum ρ = |�0〉〈�0|, or a thermal state ρ =
e−βL0/Tr e−βL0 . Given a union A = ∪ j (a j , b j ) of intervals of the (compactified)
lightray, we can consider its reduced density matrix TrA′ ρ = ρA, where A′ is the
complement of A. For the purposes of this discussion, we restrict to the vacuum state,
although in the main part, thermal states will play a major role as well. If φ(x) is a
primary field localized at x ∈ A, the “modular flow” is the Heisenberg time evolution
ρi t
Aφ(x)ρ−i tA . The object ρA is not actually well-defined in quantum field theory, but

the modular flow is. Below we will use the rigorous framework of Tomita–Takesaki
theory in our construction, but for pedagogical purposes, we here pretend that ρA exists.
Formally, the Hilbert spaceH splits asHA⊗HA′ and if ρ is pure, then ρA is formally a
densitymatrix onHA. Its – equally formal—logarithm HA = ln ρA is called themodular
Hamiltonian in the physics literature.

In mathematical terms, the quantity which is well defined is the operator � = ρA ⊗
ρ−1A′ . For x ∈ A, we can then also write ρi t

Aφ(x)ρ−i tA = �i tφ(x)�−i t and ln� =
HA ⊗ 1A′ − 1A ⊗ HA′ . Furthermore, one can write

Tr(φ(x)ρi t
Aφ(y)ρ1−i t

A ) = 〈�0|φ(x)�i tφ(y)�0〉, (1)

and since the conformal primaries generate the full Hilbert space (mathematically, the
Reeh-Schlieder theorem), we see that we knowledge of this quantity for all primaries
φ suffices, in principle, to determine all matrix elements of �i t , hence the operator
itself, hence the flow. Alternatively, to know the generator of the flow, it suffices to know
〈�0|φ(x)(ln�)φ(y)�0〉. It is those types of quantities which wewill study in this paper.

Our main innovation is the following trick and it variants. For s > 0 and fixed y ∈ A,
define a function of x on the complex plane cut along the intervals A,

F(s, x, y) =
{
〈�0|φ(x)[1− es(1−�)−1]−1φ(y)�0〉 if �(x) < 0,
〈�0|φ(y)[1− es(1−�−1)−1]−1φ(x)�0〉 if �(x) > 0.

(2)

Then not only do the usual properties of CFTs imply that this function is holomorphic
on the mutliply cut plane, but we also know its jumps across the cuts, given by the
functional equation

(1− es)F(s, x − i0, y)− F(s, x + i0, y) = 〈�0|[φ(x), φ(y)]�0〉. (3)

The commutator on the right side is given by a sum of δ-functions and their derivatives
by locality. We also prove certain further general properties of this function such as the
degree of divergences as x approaches y or any boundary of a cut which depend on
the conformal dimension of φ. Using this functional equation and a standard contour
argument appearing frequently in the study of Riemann–Hilbert type problems, we then
obtain a linear integral equation for F of Cauchy-type. The desired matrix elements of
the modular Hamiltonian are related by the integral

〈�0|φ(x)(ln�)φ(y)�0〉 =
∫ ∞

0
ds F(s, x, y). (4)
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A variant of this method also works for fermionic fields and for thermal states where
the corresponding function F lives on a torus cut along A and satisfies a corresponding
integral equation.

The basis of our method is an old observation in quantum statistical mechanics.
Consider a statistical operator ρ. The expectation functional acting an observable X
is ω(X) = Tr(Xρ) and the modular flow acting on an observable X is, by defi-
nition, σ t (X) = ρi t Xρ−i t . For observables X,Y , consider the function ϕX,Y (t) =
ω(Xσ t (Y )) = Tr(Xρi t Yρ1−i t ). Since ρ is a positive operator, one expects this function
to be analytic inside the strip {t ∈ C|−1 < �(t) < 0}. The values at the two boundaries
of the strip are evidently related by the functional equation

ϕX,Y (t − i) = ϕY,X (−t). (5)

This functional equation is called the “KMS-condition” [12]. In our case, things are set
up in such away that theKMS condition gives (3) and its variants, fromwhich everything
else follows.

Our main results which go beyond the existing literature are the integral equations in
cors. 1, 2 which in principle give a way to go beyond free bosonic or fermionic CFTs.
In the case of free field theories, the explicit formula in Theorem 1 is a new result, as
are for instance the (still somewhat implicit) expressions for the modular hamiltonian
of free bosons on a torus given in Sect. 5.4. These results, and similar ones for free
fermions on the torus in Sect. 5.2 are also important because they relate our general
method to a method, valid for free bosons and fermions, due to [13,14], and therefore
give full mathematical justification of these general formulas in the case of type III
representations studied here.

This paper is organized as follows. In Sects. 2 and 3, we review basic notions from
operator algebras, Tomita–Takesaki theory, and the operator algebraic approach to CFT
(conformal nets) in order tomake the paper self-contained. In Sects. 4 and 5we introduce
our method and study several examples. We conclude in Sect. 6. Some conventions for
elliptic functions are described in the appendix.

Notations and conventions:Gothic lettersA,M, . . . denote ∗-algebras, usually v. Neu-
mann algebras. Calligraphic letters H,K, . . . denote linear spaces, always assumed
to be separable. The inverse temperature β and modular parameter τ are related by
−2π iτ = β. The branches of ln z and zα are taken along the negative real axis.
S = {z ∈ C | |z| = 1} denotes the unit circle, D

± its interior/exterior.

Note added in proof: After this preprint was submitted, it was pointed out to us by the
authors of [15] that one of our calculations related to thermal states contained an error,
creating a tension between some of our results and those by [15], see also [16]. We are
grateful to these authors for making us aware of this issue, which has been fixed in the
current version.

2. Review of Modular Theory

2.1. Modular flow. For the convenience of the unfamiliar reader we review the basic
elements of modular (= Tomita–Takesaki-) theory; detailed references are [6,17,18].
Connections to quantum information theory are described in [19]. An exposition directed
towards a theoretical physics audience is [20].

The notion of modular flow is embedded into the theory of v. Neumann algebras.
Such an algebra, M, can be defined as a complex linear space of bounded operators on



788 S. Hollands

some Hilbert space1 H that is closed under taking products, adjoints (denoted by ∗).
Such limits are understood in the so called “weak” topology, i.e. convergence of matrix
elements. It is common to denote byM′ the commutant, defined as the set of all bounded
operators on H commuting with all operators inM.

To define the objects of main interest of the theory, one has to assume that M is in
“standard form”,meaing:H contains a “cyclic and separating” vector forM, that is, a unit
vector |�〉 such that the set consisting of X |�〉, X ∈M is a dense subspace ofH, and such
that X |�〉 = 0 implies X = 0 for any X ∈M. The point is that one can then consistently
define the anti-linear Tomita operator S on the domainD(S) = {X |�〉 | X ∈M} by the
formula

SX |�〉 = X∗|�〉. (6)

The cyclic property is needed in order that S is densely defined, whereas without the
separating property the definition would not be self-consistent. One can show that S is a
closable operator. This technical property guarantees that S has a polar decomposition. It

is customarily denoted by S = J�
1
2 , where J anti-linear and unitary and � self-adjoint

and non-negative. Tomita–Takesaki theory is about the interplay between the operators
�, J and the algebras M,M′. The basic theorem is:
(i) J exchanges M with the commutant in the sense that JMJ = M′. Furthermore,

J 2 = 1, J�J = �−1.
(ii) The modular flow σ t (X) = �i t X�−i t leaves M and M′ invariant for all t ∈ R.
(iii) From the vector |�〉, one can define the state functional ω(X) = 〈�|X�〉, ω :

M → C. It is positive and normalized (meaning ω(X∗X) � 0 ∀X ∈ M, ω(1) =
1), and invariant under the modular flow in the sense that ω ◦ σ t = ω for all t ∈ R.
The KMS-condition holds: for all X,Y ∈M, the bounded function

t �→ ϕX,Y (t) = ω(Xσ t (Y )) ≡ 〈�|X�i t Y�〉 (7)

has an analytic continuation to the strip {z ∈ C | −1 < �z < 0} with the property
that its boundary value for �z →−1+ exists and is equal to

ϕX,Y (t − i) = ω(σ t (Y )X). (8)

A partial converse to (iii) is: If ω′ is a normal (i.e. continuous in the weak∗-topology)
positive linear functional on M, then it has a unique vector representative |�′〉 in the
natural cone P� := {X j (X)|�〉 | X ∈ M}, where j (X) = J X J ; in other words
ω′(X) = 〈�′|X�′〉 for all X ∈M.

The objects J,�,P� depend on the algebra M and the state |�〉.
Example 0: Even tough Tomita–Takesaki theory ismost interesting in the case of infinite
dimensional v. Neumann algebras of types II, III, it helps with intuition to have in mind
the finite dimensional case, i.e. the type In’ (algebra of n by n matrices). In this case,
M = Mn(C) ⊗ 1n , which acts on the Hilbert space H = C

n ⊗ C
n . Evidently, the

commutant is M′ = 1n ⊗ Mn(C). A vector |�〉 in this Hilbert space is cyclic and
separating if |�〉 = ∑n

j=1
√
p j | j〉 ⊗ | j〉 in some ON basis {| j〉} and iff all p j > 0,∑n

j=1 p j = 1. The state functional ω can be written in this example in terms of the
“reduced density matrix”

ρω =
n∑
j=1

p j | j〉〈 j |, ω(X) = TrCn (Xρω) (X ∈M). (9)

1 We always assume that H is separable.
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In fact, any positive normalized state functional ω′ arises from a unique reduced density
matrix ρω′ in this way. It is easy to go through the definition of �, J via S giving for
instance that

�
1
2 = ρ

1
2
ω ⊗ ρ

− 1
2

ω . (10)

Therefore, the modular flow is σ t (X) = ρi t
ω Xρ−i tω . The “modular Hamiltonian” is

defined as the self-adjoint operator ln�. In our example, therefore, ln� = ln ρω⊗1n−
1n ⊗ ln ρω, where the first term belongs to M and the second to M′. It is important to
stress that the split of ln� into a part fromM and one fromM′ is impossible for general
v. Neumann algebras, in particular for the type III1-factors appearing in quantum field
theories.2 Therefore, apart from trivial cases, the object ln ρω, hence the reduced density
operator ρω itself, does not exist. On the other and, ln� and ω always exist. We will
make sure to work with these well-defined objects in our setting.

Sometimes, a state ω is only given as an abstract (weakly continuous) expectation
functional on an abstract3 v. Neumann algebra M. Then one can perform the basic but
very important GNS construction in order to obtain a Hilbert space in which the state
is represented by a vector.

The starting point of this construction is the simple observation that the algebra M
itself, as a linear space, always forms a representation π by left multiplication, i.e.
π(X)Y ≡ XY . To equip this representation with a Hilbert space structure, it is natural
to define 〈X |Y 〉 = ω(X∗Y ), but this will in general lead to non-zero vectors with
vanishing norm, unless ω is separating. Introduce Jω = {X ∈ M | ω(X∗X) = 0}. By
the Cauchy-Schwarz inequality, |ω(X∗Y )| � ω(X∗X)1/2ω(Y ∗Y )1/2, we have Jω =
{X ∈M | ∀Y ∈M, ω(Y ∗X) = 0}, so it is a closed linear subspace and a left ideal ofM
containing precisely the null vectors.We can then defineHω =M/Jω and complete it in
the induced inner product. The left representation induces a representation onHω which
is called πω. It is the desired GNS-representation. The vector |�ω〉 ∈ Hω representing
ω is simply the equivalence class of the unit operator, 1. It is by construction “cyclic”
in the sense that the set πω(M)|�ω〉 is dense in Hω. The vector is standard if ω(X∗X)

implies X = 0 (meaning Jω = {0}), in which case we say that it is faithful.

3. Review of Chiral CFTs

3.1. Conformal nets on the real line (lightray). One way to formalize the structure
of chiral conformal quantum field theories (CFTs) is via nets of operator algebras. A
chiral conformal field theory is associated with one lightray. It is given abstractly by an
assignment of an algebra of operators A(I ) with each open interval I = (a, b) ⊂ R of
the this lightray.

This assignment is called a conformal net if it obeys the following rules (see [21] for
a general introdution to algebraic quantum field theory and e.g. [22,23] for conformal
nets):

a1) (Isotony) The algebras A(I ) are v. Neumann algebras acting on a common Hilbert
space H. If I ⊂ J are intervals, then A(I ) ⊂ A(J ).

2 The possibility of making the split implies that σ t is inner, i.e. can be written as σ t (X) = U (t)XU (t)∗
for unitaries U (t) inM. One characterization of type I I I v. Neumann algebras is that σ t precisely cannot be
inner for any normal state ω.

3 We mean a C∗-algebra with a preferred “folium” of normal states, see [6]. In particular, it is not assumed
that M is a priori represented by bounded linear operators on some Hilbert space.
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a2) (Causality) Setting I ′ = R \ [a, b] if I = (a, b), we have A(I ′) ⊂ A(I )′, i.e.
observables from disjoint intervals commute.

a3) (Covariance) On H, there is a unitary representation g �→ U (g) of the group

SL(2, R)/{±1}. If we let elements g =
(
a b
c d

)
of this group act locally on R by

fractional transformations g(x) = ax+b
dx+c , then it is assumed thatU (g)A(I )U (g)∗ =

A(g(I )) for all intervals I and g ∈ SL(2, R) such that g(x) is well defined for all
x ∈ I . We also use the notation

αg(X) = AdU (g)(X) ≡ U (g)XU (g)∗. (11)

a4) (Spectrum) The representation g �→ U (g) is strongly continuous. The infinitesimal
generator P of translations trat (x) = x + t , i.e. P = −i d

dt U (trat )|t=0 has non-
negative spectrum.

a5) (Vacuum) There is a unique (unit) vector |�0〉 ∈ H such that U (g)|�0〉 = |�0〉.
The corresponding state functional will be called ω0(X) = 〈�0|X�0〉 throughout.
The vacuum should be cyclic for

∨
I A(I ), the v. Neumann algebra generated by

all intervals.

The algebra of observables associated with the union of p open intervals with disjoint
closures,

A =
p⋃

j=1
(a j , b j ) ⊂ R or S below, (12)

where each I j = (a j , b j ) is an interval of R (or arc of the circle S below), is defined to
be

A(A) =
p∨

i=1
A(Ii ), (13)

where the symbol ∨means the v. Neumann algebra that is generated by the algebras for
the individual arcs/intervals.

3.2. Conformal nets on the circle (compactified lightray). If we want to insist on a
global action of the Möbuis group SL(2, R)/{±1} on the net, we must pass from the
light ray to a compactified lightray, i.e. the circle. The compactification proceeds via the
Caley transformation C : S \ {+1} → R,C(x) = −i(x + 1)/(x − 1), and under this
transformation intervals getmapped to arcs of the circle. TheCaley transform intertwines
the action of SL(2, R)/{±1} on the lightray with the action z �→ g(z) = αz+β

β̄z+ᾱ
of

SU(1, 1)/{±1} on the circle, where g now corresponds to the matrix

(
α β

β̄ ᾱ

)
∈ SU(1, 1)

under the standard isomorphism between the groups SL(2, R) and SU(1, 1).
The axioms for a conformal field theory, i.e. net of operator algebras, on the circle are

completely analogous to those for the lightray. In the circle picture, it is more standard
and natural to use the generators of SU(1, 1) called L0, L±1, where L0 is the generator
of rotations z → eit z, t ∈ R. The requirement a4) is equivalent to the requirement
that L0 has non-negative spectrum. From a net on the circle, we may via the Caley
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transform always get a net on the lightray such that P has non-negative spectrum, but
not necessarily vice versa since the point at infinity is missing from the lightray. For the
rest of the paper, we will assume the axioms on the circle. In Sect. 5, we will also need:

a6) (Finite trace) Tr e−βL0 < ∞ for β > 0.

The above axioms (including the trace condition just mentioned) have a number of
well-known consequences which are of interest for this paper:

1. For each interval A(I )′ = A(I ′) (Haag duality [9]).
2. For each interval, the linear subspace A(I )|�0〉 is dense in H (Reeh-Schlieder the-

orem). As a consequence, the vector |�0〉 is cyclic and separating for each local
algebra A(I ), and we can apply Tomita–Takesaki theory to the pair (A(I ), |�0〉).

3. The modular operator � associated with an open arc I = (a, b) acts geometrically
in the sense that

�i t = U (gt ), gt (z) = a(b − z)e−2π t + b(z − a)

(b − z)e−2π t + (z − a)
, (14)

(Hislop–Longo-theorem [9]).
4. Each algebra A(I ) has in its central decomposition only hyperfinite type III1 factors

[24,25].
5.
⋃

I A(I ) = B(H) (irreducibility [26]).

Most of these axioms and results have a more or less obvious counterpart for graded
local, i.e. “fermionic”, theories, see e.g. [27].

Example 4: (Virasoro-net) The Virasoro algebra is the Lie-algebra with generators
{Ln, κ}n∈Z obeying

[Ln, Lm] = (n − m)Ln+m +
κ

12
n(n2 − 1)δn,−m, [Ln, κ] = 0. (15)

A positive energy representation on a Hilbert space H is a representation such that (i)
L∗n = L−n (unitarity), (ii) L0 is diagonalizable with non-negative eigenvalues, and (iii)
the central element is represented by κ = c1. From now, we assume a positive energy
representation. We assume that H contains a vacuum vector |�0〉 which is annihilated
by L−1, L0, L1, (sl(2, R)-invariance) and which is a highest weight vector (of weight
0), i.e. Ln|�0〉 = 0 for all n > 0. One has the bound [23,28–30]

‖(1 + L0)
k Ln�‖ �

√
c/2(|n| + 1)k+3/2‖(1 + L0)

k+1�‖ (16)

for |�〉 ∈ V ≡⋂k�0 D(Lk
0) ⊂ H and any natural number k.

One next defines from the Virasoro algebra the stress tensor on the unit circle S,
identified with points z = e2π iu, u ∈ R in C. The stress tensor is an operator valued
distribution on H defined in the sense of distributions by the series

T (z) = − 1

2π

∞∑
n=−∞

Lnz
−n−2. (17)

More precisely, for a test function f ∈ C∞(S) on the circle, it follows from (16) that
the corresponding smeared field

T ( f ) =
∫
S

T (z) f (z)dz := − 1

2π

∞∑
n=−∞

(∫
S

z−n−2 f (z)dz
)
Ln (18)
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is an operator defined e.g. on the dense invariant domain V = ⋂k�0 D(Lk
0) ⊂ H

(which can be shown to be a common core for the operators T ( f )) and the assignment
f �→ T ( f )|ψ〉 is continuous in the topologies on C∞(S) and H for any vector in this
domain. Letting � be the anti-linear involution

� f (z) = −z2 f (z), (19)

the smeared stress tensor is a self-adjoint operator on D(L0) for f obeying the reality
condition � f = f , and one has T ( f )∗ = T (� f ) in general. It can be shown that the
operators eiT ( f ) for real f form a unitary projective representation of the (covering of
the) group of orientation preserving diffeomorphisms (whose generators are the vector
fields f (z)d/dz) on the circle. The Virasoro net is then defined by

AVir(I ) = {eiT ( f ) | f ∈ C∞(I ), � f = f }′′ (20)

where the double prime means the v. Neumann closure. The generators of this algebra
hence correspond to diffeomorphisms acting trivially outside the arc I ⊂ S.

3.3. Pointlike fields. The standard setup of CFT commonly used in the physics literature
is based on the use of pointlike fields rather than nets of algebras of bounded operators.
Here we will sketch the connection. In fact, the full mathematical details of this connec-
tion are not understood in general, although in many important classes of examples, see
[23].

On the circle, one typically postulates the existence of local fields having the “mode
expansions”

φ(z) = 1√
2π

∑
n∈Z

φnz
−n−h . (21)

h > 0 is called the conformal dimension of the field. The field is typically “energy
bounded” i.e. that the modes φn, n ∈ Z of the field are linear operators on H0, which
satisfy:

Assumption 1. The local fields have a mode expansion (21) such that:

1. an energy bound of the type ‖(1 + L0)
kφn�‖ � C(1 + |n|)k+h− 1

2 ‖(1 + L0)
k+h−1�‖

for all n ∈ N0, |�〉 ∈ H0, and for some k � 0, satisfying
2. the commutation relations [Lm, φn] = ((h − 1)m − n)φn+m for |m| � 1 where

L−1, L0, L1 are the generators of the action of SU(1, 1) on H0 and where h ∈ R is
called the conformal spin, satisfying

3. if |�0〉 ∈ H0 is the vacuum vector, then φn|�0〉 = 0 for n > −h, and satisfying
4. φ∗n = φ−n for a self-adjoint local field.
5. The fields φ( f ), supp( f ) ⊂ I should be affiliated with A(I ), i.e. there exists a

sequence Bn such that limn Bn|�〉 = φ( f )|�〉 for all � ∈ V = ∩kD(Lk
0).

These properties imply that the smeared fields are operator valued tempered distri-
butions on the domain V = ∩kD(Lk

0): Let |�〉 ∈ V . Then 1) gives, with φ( f ) :=∫
S
φ(z) f (z)dz,
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‖(1 + L0)
kφ( f )�‖ � C‖(1 + L0)

k+h−1�‖
∑
n∈Z

| f̂−n−h | (1 + |n|)h− 1
2

� C� sup
j�h

‖ f ( j)‖L∞ , (22)

because | f̂−n−h | goes to zero for |n| → ∞ faster than any inverse power. Thus, φ( f )
is an operator valued distribution on the dense invariant domain V , which is in fact a
common core for the operators φ( f ). By the same type of estimate the properties 1)
and 2) imply furthermore that φ(z)|�0〉 can be analytically continued to a H-valued
holomorphic function on D

+ with vector valued distributional boundary value on S. It
follows from the commutation relations 2) that H carries a strongly continuous unitary
representation U of SU(1, 1) generated by L0, L±1, and this representation satisfies
transformation law

i[Lm, φ(z)] = zm+1 d

dz
φ(z) + h(ρ)zmφ(z) or

U (g)φ(z)U (g)∗ = [g′(z)]hφ(g(z)), (23)

where g ∈ ˜SU(1, 1) is in the covering group of the Möbius group, and g(z) its action
on points z of the circle. For integer h ∈ N0, we get a representation of SU(1, 1)/{±1}.
The restriction of U to the invariant subspace span{φn|�0〉 = 0 | n � −h} is a discrete
series representation (see e.g. IX, para. 3 of [31]). It also follows that primary fields can
and will be normalized so that

〈�0|φ(x)φ(y)|�0〉 = e−iπh

2π (x − y)2h
. (24)

In particular, we see that the field can be local only if the dimension h is a natural number.
Fermionic fields are not local but satisfy a graded locality. In that case h ∈ 1

2N0.

Example 5: (Stress tensor) The stress tensor T (z) affiliated with the Virasoro net of
central charge c > 0 is a pointlike field of dimension h = 2 satisfying the above
assumptions.

Example 6: (U (1)-current, see e.g. [27,28]) The net of the free U (1) current on the
circle can be defined e.g. starting from the Lie-algebra generated by a central element 1
and the “modes” jn, n ∈ Z defined by [ jn, jm] = inδn,−m1 with *-operation j∗n = j−n .
The Hilbert spaceH is the closure of the linear span of jn1 . . . jnk |�0〉, n1 � · · · � nk �
−1 on which the action of the Jm’s is obtained via the commutation relations and the
condition jn|�0〉 = 0 for n > −1. One sets Ln = 1

2

∑
m∈Z : jn−m jm :, where here and

in the following, the normal ordering sign : , : means that modes with index m > −1
(or > h if the field has dimension h) are always put to the right of the modes with index
n − m � −1. The Ln’s the satisfy a Virasoro algebra of central charge c = 1.

It can be checked that the corresponding current

j (z) = 1√
2π

∑
n∈Z

jnz
−n−1 (25)

satisfies the above assumptions with h = 1 and is hence an operator valued distribution
satisfying j (z)∗ = z2 J (z) and [ j (z), j (w)] = iδ′(z − w). For any test-function f , the
smeared operator j ( f ) := ∫

S
j (z) f (z)dz has a dense set of analytic vectors (a space of
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such vectors is spanned by the eigenvectors of L0), and hence is essentially self-adjoint
by Nelson’s analytic vector theorem. Hence, we can unambiguously define the Weyl
operators

W ( f ) = ei j ( f ), f ∈ C∞
� (S), (26)

(here � f (z) = − f (z) and C∞
� (S) is the set of invariant elements under �), satisfying

the Weyl relations

W ( f )W (g) = eiC( f,g)/2W ( f + g), W ( f )∗ = W (− f ),

C( f, g) = 1
2

∫
S

(g′ f − f ′g)dz. (27)

The corresponding net of v. Neumann algebras is defined by

AU (1)(I ) ≡ {W ( f ) | f ∈ C∞
� (I )}′′ (28)

where I ⊂ S is an open arc of the circle or a union thereof, and the double prime
means the weak closure (double commutant). The local, unbounded field operators
j ( f ), supp f ⊂ I are not contained in- but are affiliated with these algebras.

Example 7: (Free Fermi net, see e.g. [27,32]) This net is constructed starting from the
Clifford algebra generated by a central element 1 and the “modes”ψn, n ∈ Z+ 1

2 subject
to the relations ψnψm + ψmψn = δn,−m1, ψ∗

n = ψ−n . The vacuum Hilbert space HNS
is the closure of the linear span of the vectors ψn1 · · ·ψnk |�NS〉, n1 < n2 < · · · < 0.
A ∗-representation is defined setting ψn|�NS〉 = 0 for all n � 0 using the relations to
define the action of an arbitraryψn . The state |�NS〉 is in this context called the “Neveu-
Schwarz-vacuum”. The operators Ln are defined by Ln = ∑m∈Z+ 1

2
m : ψ−m+nψm :

which generate an action of the Virasoro algebra (in particular of the Lie algebra of
SU(1, 1) generated by Ln, n = −1, 0, 1), at central charge c = 1

2 . The corresponding
field

ψ(z) = 1√
2π

∑
n∈Z

ψn− 1
2
z−n (29)

is hence an operator valued distribution. It satisfies ψ(z)∗ = zψ(z) and ψ(z)∗ψ(w) +
ψ(w)ψ(z)∗ = δ(z − w)1. For any test-function f , the smeared operator ψ( f ) :=∫
S
ψ(z) f (z)dz is in fact a bounded operator satisfying the canonical anti-commutation

relations

ψ( f )ψ(g) + ψ(g)ψ( f ) = −(� f, g)1, ψ( f )∗ = ψ(� f ), �( f ) = −z−1 f (z).
(30)

The corresponding net of v. Neumann algebras is defined as the CAR-algebra [33]

AFermi(I ) ≡ {ψ( f ) | f ∈ C∞
0 (I )}′′. (31)

The net of local observables is not a local net but a graded local net, see e.g. [27]. There
is another representation of the same net AFermi, called the “Ramond” representation. It
is given by the integer moded expansion

ψ(z) = 1√
2π

∑
n∈Z

ψnz
−n− 1

2 , (32)
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where themodes satisfy the same relations as before. TheHilbert spaceHR is constructed
as the linear span of the vectors ψn1 · · ·ψnk |�R〉, n1 < n2 < · · · � 0 setting ψn|�R〉 =
0 for all n > 0 using the relations to define the action of an arbitrary ψn . The Virasoro
generators in the Ramond representation HR are Ln =∑m∈Zm : ψ−m+nψm :.

4. Modular Operators for Conformal Nets on S

In this section we give a first prescription for computing modular operators of chiral
conformal nets on S satisfying some natural extra conditions. It is related naturally to
the matrix elements 〈�0|φ(x)�i tφ(y)|�0〉, but leaves in general certain ambiguities
that preclude so far their explicit calculation. This difficulty can be overcome to a cer-
tain extent by our second method, presented in Sect. 5, more directly related to the
matrix element 〈�|φ(x)(ln�)φ(y)|�〉. Since the material here will form the basis of
our discussion in Sect. 5, and since the arguments are also of independent interest, we
nevertheless present this approach first.

4.1. General results. Quite generally, if M is a v. Neumann algebra in standard form
with cyclic and separating vector �, then if X,Y ∈M, the Fourier transform

�X,Y (s) ≡
∫
R

〈�|X�i t Y�〉 eits dt
2π

(33)

is well-defined in the sense of a tempered distribution in the variable s—in fact for
Y = X∗, �X,X∗(s)ds is a positive Radon measure on R, see sec. 5.3 of [17,18]. By the
Fourier inversion theorem, the operator �i t is hence fully characterized provided we
know �X,Y (s) for all X,Y ∈M and all s, i.e. as a distribution in s.

Using the KMS condition (8) after shifting the integration contour from the real axis
R to the line R− i parallel to the real axis immediately gives

�X,Y (s) = es�Y,X (−s). (34)

On the other hand, for X ∈M,Y ∈M′ or vice versa, we get

�X,Y (s) = �Y,X (−s) (35)

using that the modular flow σ t (X) = �i t X�−i t preserves M,M′.
We now want to describe how the extra structure of chiral conformal field theory can

help to characterize �X,Y (s). The case we want to consider is the v. Neumann algebra
M = A(A), associated with a region A consisting of p open arcs. The vector under
consideration is the vacuum, |�〉 = |�0〉. It seems that the information is most easily
retrieved if instead of bounded operators X,Y , we work with point-like unbounded field
operators as described in the previous section. We define for a generic primary field φ:

�(s; x, y) ≡
∫
R

〈�0|φ(x)�i tφ(y)|�0〉 eits dt
2π

. (36)
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Here, x, y ∈ S are to be smeared with test functions on A or A′, and � ≡ �A is the
modular operator in the vacuum state for the multi-interval/arc A. The quantity � should
be considered as analogous to (33).

Example 8: For one arc, A = (a, b), the modular flow of a local primary field of
dimension h is given by the Hislop–Longo theorem [8,9] as

�i tφ(x)�−i t = [g′t (x)]hφ(gt (x)), gt (x) = a(b − x)e−2π t + b(x − a)

(b − x)e−2π t + (x − a)
. (37)

Therefore � can be found from (36) and (24), giving for x, y ∈ (a, b)

�(s, x, y) =e−is/2−iπh |�(h − is
2π )|2

(2π)2�(2h)

(
(b − a)2

(x − a)(x − b)(y − a)(y − b)

)h
·

· exp
(
is

2π
ln

(x − a)(y − b)

(x − b)(y − a)

)
.

(38)

The example suggests that the behavior of �(s, x, y) near a boundary point qi of a
multi-interval could be (x−qi )−h . This is supported by the following lemma, formulated
in the circle picture.

Lemma 1. Under the assumptions on the CFT given in the previous subsections:

1. If f ∈ C∞
0 (R) and �( f ; x, y) ≡ ∫ �(s; x, y) f (s)ds, then �( f ; x, y) is smooth

in x, y ∈ S away from the 2p end-points of the p intervals I j . Moreover, for any
0 < ε � 1

2 , ∣∣∣∣∣�( f, x, y)
p∏

n=1
(x − an)

h(y − an)
h(x − bn)

h(y − bn)
h

∣∣∣∣∣
� Cε−2h sup

s

(
e−( 12−ε)|s|eσ s/2| f (s)|

) (39)

for some constant C only depending on the end-points. Here, σ = +1 if both x, y
are in A, σ = −1 if x, y are in A′ = S \ Ā.

2. We have the KMS condition

�(s; x, y) = es�(−s; y, x) (40)

in the sense of distributions for x, y ∈ A. When x ∈ A, y ∈ A′ (or vice versa), we
have instead

�(s; x, y) = �(−s; y, x). (41)

Proof. 1)We will compare the quantity � of an arbitrary multi-arc A to that correspond-
ing to a single arc. First we assume x, y ∈ A. Let I be the largest arc contained in A
that is symmetric around x , and J the largest interval contained in A symmetric around
y. If, for example, c j resp. ck are to the left of x resp. y, then I = (c j , c

−1
j x2) resp.

J = (ck, c
−1
k y2). We let�A,�J ,�I be the modular operators for the corresponding lo-

cal algebras. Then we use the well-known operator inequality �α
I � �α

A for 0 � α � 1.
This follows from the fact that A(A) ⊃ A(I ), which is exploited as follows. Quite
generally, letMi be two v. Neumann algebras on the same Hilbert space with common
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cyclic and separating vector |�〉. We let Si be the Tomita operators for Mi with polar
decompositions Si = Ji�

1/2
i . Note that, if M2 ⊂ M1, then D(S2) ⊂ D(S1). The set

D(S1) is a Hilbert space called H1 with respect to the inner product (graph norm)

(�,�) = 〈�|�〉 + eu〈S1�|S1�〉 = 〈�|(1 + eu�1)�〉. (42)

Letting I : H1 → D(S1) be the identification map, one shows that I−1D(S2) is a
closed subspace H2 ⊂ H1 with associated orthogonal projection P2. The operators
Vj = I−1(1 + eu� j )

−1/2 are isometries fromH toH j ( j = 1, 2) and their adjoints are
V ∗
j = (1 + eu� j )

1/2 I Pj (with P1 = 1). There follow the relations

I Pj I
∗ = I Vj V

∗
j I

∗ = (1 + eu� j )
−1, j = 1, 2 (43)

I ∗ = I−1(1 + eu�1)
−1, (44)

which can already be found in [24].
We multiply the first relation from the right with X ∈ M2 and from the left with

Y ∗ ∈ M2 and take the expectation value in the state |�〉. Then we use the second
equation and obtain

〈�|Y ∗(1 + eu�1)
−1X |�〉 − 〈�|Y ∗(1 + eu�2)

−1X |�〉
= 〈(1− P2)I

−1(1 + eu�1)
−1Y |(1− P2)I

−1(1 + eu�1)
−1X�〉 .

(45)

The fact that the right side is manifestly non-negative for X = Y implies (1+eu�2)
−1 �

(1 + eu�1)
−1, and that, combined with the operator identity

�α
1 −�α

2 =
sin πα

π

∫ ∞

−∞
e−αu[(1 + eu�2)

−1 − (1 + eu�1)
−1]du � 0 (46)

for 0 < α < 1 gives the claim. Therefore�
−α/2
I �

α/2
A (�

−α/2
I �

α/2
A )∗ = �

−α/2
I �α

A�
−α/2
I

� 1 implying ‖�α/2
A �

−α/2
I ‖ � 1, and similarly for J . By the functional calculus, if

dE(λ) is the spectral resolution of ln�A:

�( f, x, y) = (2π)−1
∫
R

eits f (s)
∫
R

eiλt 〈�0|φ(x)dE(λ)φ(y)|�0〉 dλds
= 〈�0|φ(x) f (− ln�A)φ(y)|�0〉,

(47)

and then by the Cauchy-Schwarz inequality

|�( f, x, y)| =
∣∣∣∣〈�0|φ(x) f (− ln�A)φ(y)|�0〉

∣∣∣∣
� ‖�−α

A f (− ln�A)‖ ‖�
α
2
A�

− α
2

I ‖ ‖�
α
2
A�

− α
2

J ‖ ‖�
α
2
I φ(x)�0‖

‖�
α
2
J φ(y)�0‖

�
(
sup
s

eαs | f (s)|
)
‖�

α
2
I φ(x)�0‖ ‖�

α
2
J φ(y)�0‖ .

(48)

Since φ(x)|�0〉 can be analytically continued to a H0-valued holomorphic function
inside the unit disk D

+ (by the mode expansion of φ, see the previous subsection), the
Hislop–Longo theorem applied to the modular flow σ t

I of I can similarly be continued
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to imaginary flow time parameter t = −iα (see Eq. (37)). In combination with (24) we
thereby obtain

‖�
α
2
I φ(x)�0‖2 = 〈�0|φ(x)∗�α

I φ(x)|�0〉
= 〈�0|φ(x)∗σ−iαI (φ(x))|�0〉
= x2h〈�0|φ(x)σ−iαI (φ(x))|�0〉
= (2π)−1|dgI−iα(x)/dx (x − gI−iα(x))−2|h
� (sin πα)−2h |x − c j |−2h,

(49)

and similarly for y. Since this holds for any pair of end points,∣∣∣∣∣�( f, x, y)
p∏

n=1
(x − an)

h(y − an)
h(x − bn)

h(y − bn)
h

∣∣∣∣∣
� (sin πα)−2h sup

s

(
eαs | f (s)|)

(50)

Now we split the testfunction f = f+ + f−, where the testfunction f− has support in
(−∞, c], and the testfunction f+ has support in [−c,∞). Then, for the contribution
from f−, we choose α = 1− ε, whereas for the contribution from f+, we choose α = ε.
As a consequence, we find that (39) holds.

This shows in particular boundedness in x, y of �( f, x, y) away from the endpoints.
A similar estimation can be made for descendant fields, i.e. the derivatives of the fields
φ(x), φ(y), and this shows smoothness. This finishes the proof of 1) when x, y ∈ A.

To cover the other case, we note that the modular operator for A(A)′ ⊃ A(A′) is
related to that of M1 by �′

1 = �−1
1 . Then the other case of 1) follow by the same

argument, namely, x, y ∈ A′ we take I ′ be the largest interval contained in A′ that is
symmetric around x , and J ′ the largest interval contained in A′ symmetric around y and
proceed in the same way as before.

2) Eq. (40) follows from the KMS condition (8) for bounded operators X,Y ∈
π0(A(A))′′ because we are assuming about the local fields that for test-functions f, g
supported in A there exist Xn,Yn ∈ π0(A(A))′′ with the property that limn Xn|�0〉 =
φ( f )|�0〉 and limn Yn|�0〉 = φ(g)|�0〉 in the strong topology. A similar remark applies
to (41). ��

Wenextmake analytic continuations in the variables x, y. This gives us the following:
For fixed x ∈ A, and fixed test-function f (s), the function y �→ �( f ; x, y) has an
analytic extension to a holomorphic function of y inside the unit disk D

+ = {z ∈ C |
|z| < 1}, by the mode expansion of φ. Similarly, for fixed y ∈ A, the function x �→
�(s; x, y) has an analytic extension to x outside the unit disk D

− = {z ∈ C | |z| > 1}.
How to extend to y ∈ D

− or x ∈ D
+? The idea is that �( f, y, x) is analytic in this

domain, so we try to paste �(s; x, y) and �( f, y, x) together across the boundary of the
disk and hope that we get an analytic function that way. This will turn out to be the case
on account of the KMS condition which relates the two quantities in precisely the right
way.

To this end, we define the following auxiliary quantity for fixed x ∈ A, s ∈ R:

K (y) ≡
{

�(+s, x, y) if y ∈ D
+,

�(−s, y, x) if y ∈ D
−.

(51)
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We similarly define, for fixed y ∈ A, s ∈ R:

H(x) ≡
{

�(+s, x, y) if x ∈ D
−,

�(−s, y, x) if x ∈ D
+.

(52)

Note that H implicitly also depends on the choice of y, s and K on the choice of x, s,
but we suppress this since we are, for the moment, only interested in the dependence of
H on x and of K on y. Furthermore, note that H and K are, a priori defined only as
holomorphic functions on the union D

+ ∪D
− = C \S, i.e. the complex plane minus the

circle. On the circle, we define the boundary values from the inside resp. the outside of
the disk (±):

H±(x) = lim
z→x,z∈D±

H(z), K±(y) = lim
z→y,z∈D±

K (z), x, y ∈ S. (53)

Then the “jump conditions” (40), (41) imply that

H+(x) =
{
H−(x) if x ∈ A′,
e−s H−(x) if x ∈ A,

K +(y) =
{
K−(y) if y ∈ A′,
e+s K−(x) if y ∈ A.

(54)

Thus, both H resp. K are solutions to a Riemann–Hilbert-problem (across the contour
S). These problems are essentially completely understood, see e.g. [34,35]. The number
and type of solutions depends in general on the specification of the behavior of H resp.
K near the boundary points {q j } of the multi-arc A = ∪ j (a j , b j ) and at infinity, see e.g.
[34] (para. 79, pp 230) or [35] (para. 42, pp 420). In the case at hand, this behavior is
restricted by (39) and by the mode expansions of the fields.

Aminor technical complication arises at this stage due to the fact that, as functions of
s, both H resp. K are only defined in the distributional sense, and our bound (39) likewise
also involves a test-function in s. This complication would make the direct application
of the results in [34,35] somewhat cumbersome, so we give an explicit analysis of the
implications imposed by the Riemann–Hilbert problem in the case at hand taking into
account this complication.

First we define the shorthands

�a(x) =
p∏

j=1
(x − a j ), �b(x) =

p∏
j=1

(x − b j ), (55)

and

Z±(x) = 1

2π
ln

⎛
⎝± p∏

j=1

(x − a j )

(x − b j )

⎞
⎠ . (56)

Notice that Z+(x(1∓ ε)) = Z−(x(1∓ ε))∓ i/2 when ε → 0+, and that Z+ has branch
cuts on A, while Z− has branch cuts on A′ = S \ A. Then we define

K̃ (y) ≡ (�a(y)�b(y))
h
∫

f (s)eis(Z+(x)−Z+(y))K (y, s) ds,

H̃(x) ≡ (�a(x)�b(x))
h
∫

f (s)eis(Z+(x)−Z+(y))H(x, s) ds.
(57)

We have:



800 S. Hollands

Lemma 2. K̃ (y) is a polynomial in y of degree at most 2(p−1)h, H̃(x) is a polynomial
in x of degree at most 2(p − 1)h.

Proof. We first consider K̃ (y). The function ln �a(y)
�b(y)

= 2π Z+(y) jumps by +2π i as
y crosses A from the inside of the unit disk to the outside. That jump compensates
precisely the jump (40) implied by the KMS condition, so that K̃ (y) is continuous
across A. Similarly, (41) implies that K̃ (y) is continuous across the complement A′ as
a function of y, too. Therefore, by the edge-of-the-wedge theorem, K̃ is an analytic
function of y in the entire complex plane minus the boundary points of the intervals.
Since K̃ is a tempered distribution on S which away from the boundary points is the
boundary value of an analytic function (from either inside or outside the unit disk), it
follows that K̃ cannot have any essential singularities at the boundary points y ∈ {q j }.
Indeed, at any given boundary point, say a j , since we have a tempered distribution,
there exists a natural number N , such that, if we multiply K̃ (y) by (y − a j )

N , we get a
continuous function near a j in y ∈ S. By the edge of the wedge theorem, this function,
being a boundary value from both inside and outside the disk, must be holomorphic
near a j . Actually, by (39) we know the factor (�a(y)�b(y))h cancels the potential
blow up near a j when y ∈ A, and therefore we can actually choose N = 0. Since this
argument can be repeated for any other boundary point, we learn that the function K̃ (y)
is analytic in y throughout the entire complex plane. A similar statement holds for x and
y interchanged and with K̃ and H̃ interchanged.

We now establish a bound on the modulus of K̃ (y) for |y| → ∞. We learn from
the mode expansions and properties of the fields that y−2ph+2h K̃ (y) remains bounded.
Thus, we conclude that |K̃ (y)| � |y|2hp−2h throughout the entire complex plane for
some new constant possibly depending on x ∈ A and on the test-function f . Therefore,
K̃ (y) must for fixed x ∈ A be a polynomial in y of degree at most 2ph − 2h. We may
repeat the same argument with the roles of x and y and of K̃ and H̃ reversed, and this
finishes the proof. ��

The next lemma is a straightforward consequence of the preceding two lemmas.

Lemma 3. As a distribution on (x, y) ∈ S×S (and s ∈ R), we have (for Z−, see (56)):

�(s, x, y)

= (�a(x)�b(x)�a(y)�b(y))
−h

2(p−1)h∑
m,n=0

cmn(s)qm(x)qn(y)e
is[Z−(y)−Z−(x)],

(58)

where ε2he( 12−ε)|s|−s/2cmn(s) ∈ L1(R, ds) for each 1
2 � ε > 0, with uniformly bounded

L1-norm in ε, and where qn are polynomials of degree n.

Proof. We consider the distributional boundary values for x → A from within D
− and

for y → A from within D
+, respectively in the following expression

�̃(s, x, y) = lim
x,y→A

(�a(x)�b(x)�a(y)�b(y))
heis[Z+(x)−Z+(y)]�(s, x, y). (59)

This boundary value prescription coincides with that for�(s, x, y) and thus the right side
is well-defined as a distribution in on A × A (after smearing in s against a testfunction
f (s)), by elementary results on products of distributions that are boundary values of
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analytic functions. By Lemma 2, �̃( f, x, y) is a polynomial both in x and in y. The
inequality (39) and the definition of Z+ (56) gives the upper bound

|�̃( f, x, y)| � Cε−2h sup
s

(
e−( 12−ε)|s|− 1

2 s | f (s)|
)

(60)

on this polynomial for all x, y ∈ A. Since the coefficients, amn( f ), of this polynomial can
be reconstructed by interpolation from the values �̃( f, xα, yβ) for 2h(p−1) interpolation
points xα and 2h(p − 1) interpolation points yβ from A, this upper bound also holds
for amn( f ). By the well-known duality between the Banach spaces L1(R) and L∞(R)

we can interpret this as saying that amn(s)e( 12−ε)|s|+ 1
2 s is a function in L1(R) with norm

bounded from above by Cε−2h . Now set cnm(s) = anm(s)es and use the relationship
Z+(x(1∓ ε)) = Z−(x(1∓ ε))∓ i/2 when ε → 0+. Then the proposition follows after
expressing � in terms of �̃. ��

If we wish, we can at this stage take an inverse Fourier transform of G in s to get a
general expression for 〈�0|φ(x)�i tφ(y)|�0〉. We set

ĉmn(t) =
∫
R

e−i tscmn(s)ds, (61)

andwemay take the polynomialsq in (58) asmonomials, again for simplicity of notation.
Then we immediately get:

Proposition 1. 1) As a distribution in (x, y) ∈ A× A (with boundary value prescription
(x, y) ∈ D

− × D
+ → S× S understood)

〈�0|φ(x)�i tφ(y)|�0〉 = (�a(x)�b(x)�a(y)�b(y))
−h ·

·
2(p−1)h∑
m,n=0

ĉmn (t + Z(x)− Z(y)) xm yn,
(62)

where Z ≡ Z− is defined in (56), where ĉmn(t) is analytic in the strip {t ∈ C | −1 <

�(t) < 0}. There, it satisfies a bound
|̂cmn(t)| � [sin(π�t)]−2h (63)

and for real t satisfies the property (in the distributional sense as a boundary value)

ĉmn(t − i) = ĉnm(−t) = ĉmn(t). (64)

2) We must have:

(−1)h
2π

(
Q(x, y)

2 sinh π(Z(x)− Z(y)− i0)

)2h

=
2(p−1)h∑
m,n=0

ĉmn (Z(x)− Z(y)− i0) xm yn (65)

in the distributional sense (for x, y ∈ A ⊂ S), where the bi-variate polynomial Q is as
in (66).
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Proof. 1) The formula (62) follows directly from Lemma 3. In particular, the claimed
analyticity and bound (63) follow from the corresponding bounds on cmn(s). The formula
(64) follows from the KMS-condition. 2) For t = 0 we evidently have �i t = 1. This
condition gives a non-trivial constraint on the functions ĉnm . Introduce the quantity Z
as in (56) and

Q(x, y) =
∏p

j=1(x − a j )(y − b j )−∏p
j=1(y − a j )(x − b j )

x − y
. (66)

Note that Q(x, y) is a polynomial in x, y of degree 2(p − 1) in each variable. We then
get 2). ��
Remark 1. The domain of analyticity of ĉmn is large enough to permit us to take the
limit |y| → ∞ or |x | → 0. The constraint then confirms that ĉmn(t) = 0 when m, n >

2h(p − 1).

As we will see, in certain special cases eq. (65) and the properties given in proposi-
tion 1 suffice to determine ĉmn uniquely. For instance we will see in Sect. 4.2 that for
a free fermion, the information we have obtained uniquely fixes the modular flow. For
the U (1)-current, the proposition is however already less restrictive, although we are
still able to get some results in Sect. 4.3. This is mainly because the polynomial Q is of
increasing degree and thus contains more free parameters for fields of higher dimension.
Also for this reason, we will introduce in Sect. 5 another method.

4.2. Example: Modular flow of free Fermi field in vacuum (NS)-state. As an application
of these general results, we find the action of the modular flow of a multi-arc A for the
net AFermi in the vacuum state (Neveu-Schwarz sector), see example 7. Even though the
free Fermi net is not local but graded local (the free Fermi field ψ has h = 1

2 ) we can
easily adapt, in this simple case, our arguments leading to proposition 1 to fields obeying
Fermi-statistics, i.e. fields of dimension h ∈ 1

2N. Themain change appears in (41), where
there is now a pre-factor −1 on the right side when φ = ψ obeys Fermi-statistics. This
change propagates to eqs. (51) and (52), where there now appears a pre-factor −1 on
the second line on the right sides in both equations. Following through this sign change
one sees that proposition 1 still holds if we replace (64) by ĉmn(t − i) = −ĉnm(−t).

To determine these functions, we may, in this simple case, test the relation (65) with
p points (and with h = 1

2 ).We pick ζ, η ∈ R not equal, and we let xl , yl ∈ A ⊂ S, k, l =
1, . . . , p be the pre-images of ζ = Z(xl) �= η = Z(yk), where Z = Z− is the function
defined by (56), and where A is the union of p open disjoint arcs in S as in (12). Testing
the constraint (65) with these points we get for the free Fermi field ψ

− i

4π

Q(xk, yl)

sinh π(ζ − η − i0)
=

p−1∑
m,n=0

ĉmn (ζ − η − i0) (xk)
m(yl)

n . (67)

We note that vm(xk) = (xk)m and vn(yl) = (yl)n where m, n = 0, . . . , p− 1 are p× p
Vandermonde matrices whose determinants

det[v j (xk)] =
∏

1�i< j�p

(xi − x j ) �= 0 (68)

do not vanish since all the points xl , l = 1, . . . , p are from disjoint intervals in A. Thus,
the Vandermonde matrices in (67) may be inverted and therefore ĉmn(t) is uniquely
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determined. However, rather than finding the coefficients Q(x, y) =∑p−1
m,n=0 Qnmxn ym

from (66) and inserting the inverses of the Vandermondians directly, we may observe
that one solution to the constraint (67) is of the form

ĉnm(t) = − i

4π

Qnm

sinh π t
(69)

and this must hence be the unique solution. It is a good check that this solution is also
consistent with the general properties of proposition 1 (for h = 1

2 ). Substituting the
solution into proposition 1 (for h = 1

2 ) then gives:

Theorem 1. For the freemassless realFermi fieldonSandamulti-arc A = ∪p
j=1(a j , b j )

⊂ S, the associated modular flow of the Neveu-Schwarz state is

〈�0|ψ(x)�i tψ(y)|�0〉 = 1

2π i (x − y)

�b(x)�a(y)−�a(x)�b(y)

eπ t�b(x)�a(y)− e−π t�a(x)�b(y)
, (70)

where x, y ∈ A, with the usual boundary value prescription (y approached from the
within D

+, x approached from within D
−) understood.

Since the action of the modular flow σ t is of second quantized form on the vacuum
Hilbert space, it follows that modular flow is uniquely determined by (70). We now
obtain the generator if the flow, thereby making contact with the original analysis due
to [10] based on eigenfunctions of the Cauchy kernel.

First, we transform our result from the circle to the lightray via the Caley transfor-
mation C : S \ {+1} → R,C(x) = −i(x + 1)/(x − 1). The lightray fields are then
related to the circle fields by ψS(x) = √

C ′(x)ψR(C(x)). In terms of the lightray fields,
eq. (70) is seen to retain its form, where the arcs of the circle (a j , b j ) become inter-
vals (C(a j ),C(b j )) of the lightray. By abuse of notation, we can thus work with (70)
and pretend that all quantities, such as x, a j , b j , ψ, A (see (12)) refer to the lightray.
Next, we go back from (70) to the Fourier transform (36) using (106). This gives us for
x, y ∈ A ⊂ R,

〈0|ψ(x)(ln�)ψ(y)|0〉 =
∫
R

s �(s, x, y) ds

= Q(x, y)

4π2(�a(x)�b(x)�a(y)�b(y))
1
2

∫
R

se−isZ−(x)+isZ−(y)

1 + e−s
ds

= 1

4π2

p∑
k=1

∫
R

s

1 + e−s
Uk
s (x)Uk

s (y)ds.

(71)

In the last line we have substituted the functions Uk
s (x) = (−�a(x)�b(x))−

1
2 qk(x)

eisZ−(x) [compare (62)] with the choice qk(x) = N−1
k

∏
i �=k(x−ai ) for the polynomials,

where Nk is the constant

N 2
k = −

∏
i �=k(ak − ai )∏p
i=1(ak − bi )

(72)

given in [10], andwe have used the identity
∑p

k=1 qk(x)qk(y) = Q(x, y) taken from [11]
(eq. 2.55). For a function f ∈ C∞

0 (A, C)of compact support onourmulti-interval A (12),
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we next letGA be the restriction of the Cauchy kernelG(x, y) = (1/2π i)(x− y− i0)−1
to A, defining an operator on L2(A) and we let

kA(x, y) = (2π)−2
p∑

k=1

∫
R

sUk
s (x)Uk

s (y)ds, (73)

which will be identified as the modular hamiltonian on the 1-particle space momentarily.
As shown by [11] (eq. 2.11), we have GAUk,s = (1 + e−s)−1Uk,s , and the functionsUk

s
in fact give a spectral resolution of the operator GA. We can consequently write, with
ψ( f ) = ∫

R
ψ(x) f (x)dx, f, g ∈ C∞

0 (A, C):

〈�0|ψ( f )(ln�)ψ(g)|�0〉 = (GA f̄ , kAg) = ( f̄ ,GAkAg) (74)

with the usual L2-inner product on the right side. The kernel kA(x, y) has been computed
in [11] (eqs. 2.72, 2.76), with the result (Z = Z−)

kA(x, y) =− i

(
1

Z ′(x)
δ′(x − y) +

1

2

[
1

Z ′(x)

]′
δ(x − y)

− 1

x − y

1

Z ′(x)
∑
j

δ[x − y j (Z(y))]
) (75)

where the sum over k is over all pre-images y j of Z(y) not equal to y itself. Below we
will also see that kA = ln(G−1

A − 1). 4

In order to re-interpret this result on Fock space, it is convenient to give a slightly
different, but fully equivalent description of the theory {AFermi(I )} on the lightray. The
n-point functions on the lightray are of “quasi-free” form in the sense of [33]

〈�0|ψ( f1) · · ·ψ( fn)|�0〉 =
{∑

σ sgn(σ )
∏n/2

i=1( f̄σ(i),G fσ(i+1)) n even,
0 otherwise

(76)

where the sum is over all perfect matchings in the group of permutations on n elements,
and where G is the operator defined by the Cauchy kernel. This operator is a projection
which in momentum space corresponds to the multiplication with the characteristic
function onR+, i.e. Ĝ f (k) = 1(0,∞)(k) f̂ (k). As shown in [33], this leads to an alternative
but equivalent description ofH as the fermionic Fock-spaceH = ⊕n∧nKwith 1-particle
spaceK = { f ∈ L2(R) | f̂ (k) = 0,∀k � 0} of square integrable functions f (x)whose
Fourier transform f̂ (k) is non-zero only for k � 0. In terms of this Fock-space, the
representation of the light ray fields can be written as

ψ( f ) = a∗(G f ) + a(G f̄ ), (77)

where a∗(g), g ∈ K are smeared creation operators defined as a∗(g)|�〉 = |g ∧�〉 on
any n-particle state |�〉 = |�1 ∧ · · · ∧�n〉 ∈ ∧nK ⊂ H.

The 1-particle version of the Reeh-Schlieder theorem implies that it is consistent to
introduce on the dense domain D(hA) = {G f | f ∈ C∞

0 (A, C)} ⊂ K the “1-particle”
modular Hamiltonian hA as

hA : D(hA) → K, hA(G f ) := GkA f, (78)

4 In the literature [13], such formulas have previously been proven for finite-dimensional fermion algebras.
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and as a consequence of (89), we can then write the modular flow of AFermi(A) for a
multi-interval A = ∪p

j=1 I j in second quantized form as

�i t =
∞⊕
n=0

n∧
eithA . (79)

In view of (74) the final answer may also be (formally) rewritten as

〈�0|ψ(x)(ln�)ψ(y)�0〉 = 〈�0|ψ(x)[HA, ψ(y)]�0〉, (80)

where HA = 1
2

∫
A×A kA(x, y)ψ(x)ψ(y)dxdy and kA the kernel of the operator on the

right side of (75). Our result for the modular flow is thereby seen to be equivalent to
the result for the modular flow found previously by [10]. Our arguments therefore in
particular provide a rigorous proof of the result by [10]. For related results establishing
(75) see [32,36] who use different methods. They also give a (slightly) corrected way to
write this equation in exponentiated form, see eq. 4.3 of [32].

4.3. Example: Modular flow of U (1)-current on S. The conformal netAU (1) for the free
U (1) current algebra on the circle was defined in example 6. Via the Caley transform
C : S \ {+1} → R,C(x) = −i(x + 1)/(x − 1), one obtains a corresponding net indexed
by open intervals I ⊂ R of the real line (lightray) or a union thereof. The circle and
lightray currents are related by jS(x) = C ′(x) jR(C(x)) and thus jR(x)∗ = jR(x). The
corresponding lightray Weyl operators satisfy the same relations as on the circle. The
two-point function on the lightray is

〈�0| j (x) j (y)|�0〉 = − 1

2π (x − y − i0)2
, (81)

and thus takes the same form as on the circle (24) up to the precise form of the boundary
value prescription.

We would next like to understand better the modular flow of the net AU (1) of the free
U (1) current algebra. In so far as proposition 1 is concerned, the discussion is actually
identical for any bosonic field φ of dimension d = 1. First we note that for local fields
of conformal dimension h = 1, 2, 3, . . . the method used for the free massless Fermi
field to determine ĉmn is inapplicable since the analog of the Vandermonde matrices,
V n
l = (xl)n, l = 1, . . . , p, n = 1, . . . , 2h(p − 1), that now appear in the analogue of

(67) for general h are no longer square matrices and hence not invertible as the sum over
n,m would now go up to 2h(p − 1) according to (65).

But we can obtain a weaker result for h = 1 which will follow instantly from the
following two lemmas. The first lemma is taken from [11].

Lemma 4. Let xl ∈ A ⊂ S, l = 1, . . . , p (A the union of p open disjoint arcs as in
(12)) be the pre-images of ζ = Z−(xl) as in (56). Then

p∑
l=1

1

2π Z ′−(xl)

(xl) j∏p
n=1(xl − an)(xl − bn)

= K j (82)

for all natural numbers j in the range 0 � j � 2p − 2 and all ζ ∈ R, where

K j =
p∑

l=1

(al) j∏p
n=1(al − bn)

∏
m �=l(al − am)
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= −
p∑

l=1

(bl) j∏p
n=1(bl − an)

∏
m �=l(bl − bm)

(83)

From this result, one gets:

Lemma 5. Let xl , yl ∈ A ⊂ S, k, l = 1, . . . , p be the pre-images of ζ = Z−(xl) �=
η = Z−(yk) as in (56). Then

p∑
k,l=1

1

Z ′−(xk)

1

Z ′−(yl)

1

(2π)2(xk − yl)2
= p

[2 sinh π(ζ − η)]2 . (84)

Proof. Using the notation introduced in the previous proof (with Z = Z−), we have:

p∑
k,l=1

1

Z ′(xk)
1

Z ′(yl )
1

(2π)2(xk − yl )2

=
p∑

k,l=1

1

Z ′(xk)
1

Z ′(yl )
(2π)−2Q(xk , yl )

2

(�a(xk)�b(yl )−�a(yl )�b(xk))2

= (2π)−2
(eπ(ζ−η) − eπ(η−ζ ))2

p∑
k,l=1

1

Z ′(xk)�a(xk)�b(xk)

1

Z ′(yl )�a(yl )�b(yl )
Q(xk , yl )

2

= 1

(2 sinh π(η − ζ ))2

p∑
k,l=1

Q(ak , al )
2∏p

n=1(al − bn)
∏

m �=l (al − am)
∏p

i=1(ak − bi )
∏

j �=k(al − a j )

(85)

using the previous lemma in the last step. Now it follows from the definition of Q (66)
that

Q(ak, al) =
{
0 if k �= l,
−(�′

a�b −�′
b�a)(ak) if k = l,

(86)

which is also equal to −δkl
∏

j �=l(al − a j )
∏p

i=1(al − bi ). Inserting this identity into
(85) completes the proof. ��

Now let φ be a bosonic field of dimension d = 1. For fixed ζ , consider the pre-images
xl ∈ A, l = 1, . . . , p of ζ = Z−(xl) inside the p open disjoint arcs (12). We can view
the xl = xl(ζ ) as functions of ζ and form the operator-valued distribution on R given
by

φ̃(ζ ) = 1

2π

p∑
l=1

x ′l (ζ )φ(xl(ζ )), (87)

formally corresponding to the “transformation law” of a primary field of dimension 1.
Our first result on the modular flow is

Theorem 2. We have for any dimension 1 fields φ (e.g. the U (1)-current)

〈�0|φ̃(ζ )�i t φ̃(η)|�0〉 = p

[2 sinh π(t + ζ − η − i0)]2 (88)

in the sense of distributions in η, ζ ∈ R.
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Proof. First we apply eq. (24) to φ and we set x = xk, y = yl and sum over k, l =
1, . . . , p. Then we get from the previous lemma:

〈�0|φ̃(ζ )φ̃(η)|�0〉 = p

[2 sinh π(ζ − η − i0)]2 (89)

Next we set x = xk, y = yl in proposition 1 and sum over k, l = 1, . . . , p. Then we get
using the notation introduced in the previous proofs

〈�0|φ̃(ζ )�i t φ̃(η)|�0〉

= (2π)−2
p∑

k,l=1

2(p−1)∑
m,n=0

ĉmn (t + ζ − η − i0) (xk)m(yl)n

Z ′(xk)Z ′(yl)�a(xk)�a(yl)�b(xk)�b(xl)

=
2(p−1)∑
m,n=0

ĉmn (t + ζ − η − i0) KmKn

(90)

applying Lemma 4 in the last step. Now let f (t) =∑2(p−1)
m,n=0 ĉmn(t)KmKn . Comparing

(90) with (89), we conclude that f (t − i0) = p[2 sinh(π t − i0)]−2 for real t , and hence
for all t in the strip 0 > �t > −1 by the edge-of-the-wedge theorem, completing the
proof. ��
Remark 2. As is well-known, the U (1) current can be represented on the Fock space of
two independent free real Fermion fields ψ1, ψ2 by j (x) = i : ψ1ψ2 : (x). In operator
algebraic terms, theU (1)-net is a subnet of two copies of the free Fermi net, see [27]. If
one could show that there was a unit norm vacuum preserving conditional expectation
value from the Fermi algebra for region A to the current algebra of A (as follows from the
work by [27] when A is an interval byHaag duality), then themodular flow on the current
algebra AU (1)(A) would be that induced by the flow for the Fermi net (Theorem 1), by
Takesaki’s theorem, see e.g. sec. 5 of [37]. At present, however, we do not know that
such a conditional expectation exists for multi-component regions A.

As a test, Theorem 1, eq. (70), can then be applied to j̃(ζ ) defined as in (87). Alter-
natively, we my compute the left side of (70) using the modular flow of the free Fermi
field(s) given explicitly in [10,32]. One sees after a computation that either results are
consistent with Theorem 2. In the next section, we will again discuss the modular Hamil-
tonian for the U (1)-current from a different perspective.

5. Thermal States

It is possible to analyse the modular flow of a thermal state in a similar manner as for the
vacuum state. However, we find it useful to use a variation of the method described in
the previous section which, in essence, corresponds to replacing the matrix elements of
the function �i t with functions closely related to the resolvent, (�− λ)−1. Such matrix
elements will have certain analogous jump properties as the functions K , H introduced
above, but their exact form depends on the statistics (i.e. conformal dimension h) of the
field φ(x). The cases of fermionic5 and bosonic fields are treated separately in Sects. 5.1
and 5.3, respectively.

5 In the case of fermionic fields, we have graded locality as in the example of the free Fermi field.
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We will use the parametrization x = e2π iu of the circle. Under this map A consists
of intervals ∪p

i=1(ai , bi ) ⊂ (0, 1). A′ is as before the interior of the complement. We
define, by a slight abuse of notations,

φ(u) ≡ e2π ihuφ(e2π iu). (91)

A Gibbs state is given by the usual formula

ωβ(X) = Tr
(
Xe−βL0

)
Tr
(
e−βL0

) , �(β) > 0, X ∈ A(A), (92)

where the trace is taken in the vacuum (i.e. the defining) representation (π0,H0) of
the net. We shall mostly take β to be real and positive, and occasionally use τ =
iβ/2π , which is the periodicity of the correlation functions in imaginary direction in the
coordinate u. The general case can be obtained usually by analytic continuation in the
end. Then it follows immediately that ωβ is a β-KMS-state on A = B(H0) relative to
the 1-parameter automorphism group of rotations of the circle, i.e. translations in u. By
the Reeh-Schlieder theorem, the GNS-vector |�β〉 corresponding to ωβ is (cyclic and)
separating for A(A) = ∨p

i=1A(Ii ), and we can define a corresponding modular operator
� ≡ �β,A as in the vacuum situation.

5.1. Fermionic fields. We begin by introducing a variant of the construction in the pre-
vious section involving resolvents. For |�〉 ≡ |�β〉 and � ≡ �β,A, we set6

F(ξ, u, v) =
{
〈�|φ(u)[(�−1 + 1)−1 + ξ − 1

2 ]−1φ(v)�〉 if − β/2π < �(u) < 0,
−〈�|φ(v)[(� + 1)−1 + ξ − 1

2 ]−1φ(u)�〉 if β/2π > �(u) > 0.

(93)

The resolvents in these expressions are well defined if ξ ∈ ( 12 ,∞) ∪ (− 1
2 ,−∞) in

view of � > 0, and the analytic continuations in u are justified by the KMS property
for the Gibbs state, because φ(u)|�〉 is a vector-valued holomorphic function on the
strip {u ∈ C | 0 < �(u) < β/2π}. φ is assumed to be a hermitian field of conformal
dimension h satisfying our Assumptions 1. The relation to the modular Hamiltonian
follows from the formula

− ln� =
∫ ∞
1
2

dξ

(
[(�−1 + 1)−1 + ξ − 1

2 ]−1 + [(�−1 + 1)−1 − ξ − 1
2 ]−1
)

, (94)

which trivially holds for positive real numbers � and for positive self adjoint operators
in view of the spectral theorem. This immediately gives

〈�|φ(u)(ln�)φ(v)�〉 = −
∫ ∞
1
2

dξ

(
F(ξ, u, v) + F(−ξ, u, v)

)
, (95)

where u has a small negative imaginary part. The holomorphic functional calculus also
implies more general formulas such as

〈�|φ(u)h (�) φ(v)�〉
6 Here and in the following, we write φ(u) for πω(φ(u)), where πω is the GNS representation of ω ≡ ωβ .
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= 1

2π i

∫ ∞

−∞
dξ h

(
1/2 + ξ

1/2− ξ

)(
F(ξ + 1 + i0, u, v)− F(ξ + 1− i0, u, v)

)
,

(96)

for suitable holomorphic h.
In any case, we should try to find F . Our first lemma is the crucial tool expressing

the analyticity/jump properties across the real u-axis.

Lemma 6. Let v ∈ A be fixed. If u ∈ A′, then

F(ξ, u − i0, v) = F(ξ, u + i0, v). (97)

If u ∈ A, then

− (ξ + 1
2 )F(ξ, u + i0, v) + (ξ − 1

2 )F(ξ, u − i0, v) = 〈�|{φ(u), φ(v)}�〉, (98)

in the sense of distributions. Here {φ(u), φ(v)} = φ(u)φ(v) + φ(v)φ(u) is the anti-
commutator.

Proof. We take λ = 1
2 − ξ and consider the elementary formula

1

λ

�−1 + 1

�−1 + 1− 1/λ
= 1

(λ− 1) + (� + 1)−1
. (99)

Using this formula, and u, v ∈ A, the definition of F gives

F(ξ, u + i0, v) = −〈�|φ(v)[(� + 1)−1 + (λ− 1)]−1φ(u)�〉
= −1

λ
〈�|φ(v)(�−1 + 1)(�−1 + 1− 1/λ)−1φ(u)�〉

= −1

λ
〈�|φ(v)φ(u)�〉 − 1

λ2
〈�|φ(v)(�−1 + 1− 1/λ)−1φ(u)�〉.

(100)

On the other hand, using the formula for � → �−1 and the definition of F gives also

F(ξ, u − i0, v) = 〈�|φ(u)[(�−1 + 1)−1 + (λ− 1)]−1φ(v)�〉
= 1

λ− 1
〈�|φ(u)φ(v)�〉 − 1

λ− 1
〈�|φ(u)(�−1 + 1)−1

[(�−1 + 1)−1 + (λ− 1)]−1φ(v)�〉
= 1

λ− 1
〈�|φ(u)φ(v)�〉 − 1

λ(λ− 1)
〈�|φ(u)(�−1 + 1)−1(� + 1)

[� + 1− 1/λ]−1φ(v)�〉
= 1

λ− 1
〈�|φ(u)φ(v)�〉 − 1

λ(λ− 1)
〈�|φ(v)�(� + 1)−1(�−1 + 1)

[� + 1− 1/λ]−1φ(u)�〉
= 1

λ− 1
〈�|φ(u)φ(v)�〉 − 1

λ(λ− 1)
〈�|φ(v)(�−1 + 1− 1/λ)−1φ(u)�〉.

(101)
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Here, we used the relations φ(u)|�〉 = φ(u)∗|�〉 = Sφ(u)|�〉 = J�
1
2 φ(u)|�〉, the

anti-unitary property of J , and the property J�−1 J = �, which follow from Tomita–
Takesaki theory. Adding up these relations:

(λ− 1)F(ξ, u − i0, v)− λF(ξ, u + i0, v) = 〈�|{φ(u), φ(v)}�〉, (102)

which is equivalent to the statement of the lemma when u, v ∈ A.
In the other case, when u ∈ A′, v ∈ A, we use the formula (117). On this for-

mula, we act from the left with φ(v) and from the left with φ(u) and take the expec-
tation value in |�. Then we obtain a formula for F . Since u ∈ A′, v ∈ A, we have
[�−i tφ(v)�i t , φ(u)] = 0 by Tomita–Takesaki theory, and using this formula to com-
mute the operators inside the expectation values, we get the claim of the lemma when
u ∈ A′, v ∈ A. ��

As in the previous section, the lemma shows that F(ξ, u, v) defines a function of
u for fixed v ∈ A that is analytic in the cut strip {u ∈ C | |�(u)| < β/2π, u /∈ A}.
Furthermore, by the KMS condition, it can be checked that H(s, u − i(β − 0), v) =
−H(s, u + i0, v), which is also= −H(s, u +1+ i0, v) by construction. Thus, F(ξ, u, v)

has the same periodicity as the 2-point function 〈�|φ(u)φ(v)�〉, that is
F(ξ, u + 1, v) = F(ξ, u + τ, v) = −F(ξ, u, v). (103)

This allows us to define F as a function of u on the entire complex plane cut by A+Z+τZ.
The limits from below the real axis define hermitian distributional kernels F(ξ, u−i0, v)

that are of positive/negative type for ξ > 1
2 resp. ξ < − 1

2 , which follows from � > 0;
similarly for the limit from above the real axis. Similar statements hold when fixing
u ∈ A and viewing F(ξ, u, v) as a function of v.

As in the vacuum case studied in Sect. 4.1, we would next like to have a result like
(39) of Lemma 1 about the potential singularities of F at the end points of the intervals.
Unfortunately, the proof strategy of Lemma 1 does not hold in the present case since we
have no analogue of the Hislop–Longo theorem for thermal states.

Instead, we will prove first a result comparing the modular operator of a thermal state
ωβ for the full algebraA = B(H0) to the modular operator for the partial algebraA(A).
The point is that the former corresponds to rotations of the circle (i.e. translations of the
coordinate u) and is thus known. The idea is more precisely to apply eq. (45) to the case
M1 = A,M2 = A(A) (viewed as operator algebras on the GNS-Hilbert spaceHβ ≡ H
of the thermal state ωβ ≡ ω), so we can define the modular operators �i of Mi on H
with respect to the cyclic and separating vector |�〉 ≡ |�ω〉.
Lemma 7. Let s ∈ R, let u, v ∈ A = ∪p

i=1(ai , bi ). Then∣∣∣〈�|φ(u)(1 + es�1)
−1φ(v)�〉 − 〈�|φ(u)(1 + es�2)

−1φ(v)�〉
∣∣∣

�
∑
q j

|u − q j |−h |v − q j |−h,
(104)

with implicit constant depending on s and the endpoints {q j } of the intervals.
Proof. Let X,Y ∈M2. From (45), we get with the notations introduced around (42)

〈�|Y ∗(1 + es�1)
−1X |�〉 − 〈�|Y ∗(1 + es�2)

−1X |�〉
= 〈(1− P2)I

−1(1 + es�1)
−1Y�|(1− P2)I

−1(1 + es�1)
−1X�〉 .

(105)
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For y > 0, we can write

1

1 + y
= i

2

∫
R

yit

sinh[π(t + i0)]dt. (106)

Therefore, by the spectral calculus applied to y = es�1,

(1− P2)I
−1(1 + es�1)

−1X |�〉 = i

2
(1− P2)I

−1
∫
R

dt
eist�i t

1

sinh[π(t + i0)] X |�〉.
(107)

The key idea is now the following. Suppose that, for |t | < t0 and some t0 > 0, we knew
that σ t

1(X) is inM2, so �i t
1 X |�〉 = σ t

1(X)|�〉 is in the domain D(S2), so I−1�i t
1 X |�〉

is in H2, so (1 − P2)I−1�i t
1 X |�〉 = 0. Then we can effectively restrict the range in

the integral to |t | � t0 and drop the i0-prescription, and this is the moral reason for the
existence of our bound.

An even better estimate is obtained if instead we choose a, say even, real-valued
smooth function h(t) � 0 such that h(t) = 0 for |t | < 1

2 and h(t) = 1 for |t | � 1, say,
and write

(1− P2)I
−1(1 + es�1)

−1X |�〉 = i

2
(1− P2)I

−1
∫
R

dt
eist�i t

1

sinh(π t)
h

(
t

t0

)
X |�〉.

(108)

Now we take a test function f compactly supported inside A and we denote the distance
of the support of f to the boundary of A by δ = dist(∂A, supp( f )); of course δ > 0.
Furthermore, we let {Xn} be a sequence in M2 converging strongly to φ( f ). Such a
sequence exists since we assume that the local fields are affiliated. Then (108) also holds
for X = φ( f ). We next wish to use the mode expansion (21) inside (108). Because
ω ≡ ωβ is a β-KMS state on M1 with respect to the automorphic actions of rotations
αt = αgt , gt (z) = e−iβt z, the modular flow �i t

1 corresponds to rotations in the sense
that �i t

1 φ(z)�−i t
1 = e−ihtβφ(e−iβt z) for z ∈ S. Then it is clear that �i t

1 φ( f )�−i t
1 will

remain affiliated with M2 as long as |t | < δ/β, so (108) holds with X = φ( f ) and
t0 = δ/β.

In terms of modes

�i t
1 φn�

−i t
1 = eiβ(n+h)tφn . (109)

In particular, since the modular flow preserves the state, we must have 〈φm�|φn�〉 =
δn,m‖φn�‖2 = δn,mω(φ∗nφn). From (iv) of Assumption 1 it follows that φ∗nφn � (1 +
|n|)2h−1(1 + L0)

2k for some k � 0, and therefore we must have

‖φn�‖2 � (1 + |n|)2h−1ω[(1 + L0)
2k] (110)

for all n. Since ω ≡ ωβ is a Gibbs state, we conclude

‖φn�‖2 � (1 + |n|)2h−1 Tr[(1 + L0)
2ke−βL0 ]

Tr(e−βL0)
� (1 + |n|)2h−1. (111)
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Using the definition of I as well as 1− P2 � 1, we get for any complex constants cn ,∥∥∥∥∥
∑
n∈Z

cn(1− P2)I
−1φn�

∥∥∥∥∥
2

�
∑

n,m∈Z
c̄ncm 〈I−1φm�|I−1φn�〉

=
∑

n,m∈Z
c̄ncm 〈φm�|(1 + es�1)φn�〉

=
∑
n∈Z

|cn|2 (‖φn�‖2 + es‖φ∗n�‖2)

=
∑
n∈Z

|cn|2 (‖φn�‖2 + es‖φ−n�‖2)

� (1 + es)
∑
n

|cn|2 O(|n|2h−1).

(112)

Taking the norm squared of (108) then gives:

‖(1− P2)I
−1(1 + es�1)

−1φ( f )�‖2

= 1

4

∥∥∥∥∥
∑
n∈Z

(∫
R

eist+iβ(n+h)t

sinh(π t)
h

(
βt

δ

)
dt

)
fn(1− P2)I

−1φn�

∥∥∥∥∥
2

� (1 + es)
∑
n∈Z

∣∣∣∣∣
∫
R

eist+iβ(n+h)t

sinh(π t)
h

(
βt

δ

)
dt

∣∣∣∣∣
2

| fn|2 O(|n|2h−1)

≡ (1 + es)
∑
n∈Z

ϕδ/β

(
s + β(n + h)

)
| fn|2 O(|n|2h−1) ,

(113)

where fn = ∫ 10 e2π inu f (u)du the Fourier components of f (u), and where ϕt0(s) is
some smooth function which can be chosen to satisfy for large |s| a bound of the form
|ϕt0(s)| � O[ (1 + t0|s|)−N ] for as large an N as we wish. The Fourier coefficients are
trivially bounded by the L1-norm of f . The bound (113) then gives, altogether

‖(1− P2)I
−1(1 + es�1)

−1φ( f )�‖

� ‖ f ‖L1

(∑
n∈Z

O(|δn|−N ) O(|n|2h−1)
) 1

2

� ‖ f ‖L1

(
1

δ

)h
,

(114)

with implicit constants depending on s. We can likewise find a sequence {Yn} in M2
converging strongly to φ(g), and thereby obtain a similar result as (114) replacing φ( f )
by φ(g). Combining these two results now with (45) and using the Cauchy-Schwarz
inequality on the right side of that equation gives∣∣∣〈�|φ(g)∗(1 + es�1)

−1φ( f )|�〉 − 〈�|φ(g)∗(1 + es�2)
−1φ( f )|�〉

∣∣∣
� ‖ f ‖L1‖g‖L1

(
δ f δg
)−h

.

(115)



On the Modular Operator of Mutli-component Regions in Chiral CFT 813

Letting f, g tend to delta-distributions centered at u, v then by defintion, δ f → dist
(u, ∂A) �

∑ |u − a j ||u − b j | and likewise for g, and the L1 norms remain bounded.
This gives the claim of the lemma. ��

From here, we can get:

Lemma 8. Let u, v ∈ A = ∪p
i=1(ai , bi ). Then∣∣∣F(ξ, u ∓ i0, v)

∣∣∣ �∑
q j

|u − q j |−h |v − q j |−h + |u − v|−2h, (116)

with implicit constant depending on β, s and the endpoints {q j } of the intervals.
Proof. For definiteness, consider F(ξ, u − i0, v). From (106), we get for � > 0 the
identity

1

(�−1 + 1)−1 + ξ − 1
2

= 1

ξ + 1
2

− i

2

1

ξ2 − 1
4

∫ ∞

−∞
dt

(
ξ − 1

2

ξ + 1
2

)i t
�−i t

sinh[π(t − i0)] .
(117)

We use this for � = �1, the modular operator for the full algebra A. Then �i t
1 gener-

ates translations by −βt/2π of the coordinate u. Now we sandwich the above identity
between 〈�|φ(u− i0) and φ(v + i0)|�〉. Then if F1 is defined as F but with �1, we get

F1(ξ, u − i0, v) = 1

ξ + 1
2

〈�|φ(u)φ(v)�〉

− i

2

1

ξ2 − 1
4

∫ ∞

−∞
dt

(
ξ − 1

2

ξ + 1
2

)i t 〈�|φ(u + β(−t − i0)/2π)φ(v)�〉
sinh[π(t − i0)] .

(118)

The second term is uniformly bounded in u, v since the integrand is the boundary value of
an analytic function that his holomorphic for−ε < �(t) < 0with algebraic singularities.
The first term behaves as ∼ (u − v)−2h , since this is the UV-behavior of a thermal 2-
point function of a field of conformal dimension h, as one may also prove rigorously by
decomposing the field intomodes and using (iv) of Assumption 1. The proof now follows
bywriting |F | ≡ |F2| � |F2−F1|+|F1| and using the preceeding Lemma 7 on |F2−F1|.
We remark that the proof actually shows F(ξ, u − i0, v) ∼ e−iπh

2π
1

ξ+ 12

(u − v − i0)−2h

for u near v if the field φ is in standard normalization (24). ��
Our Assumptions 1 and the fermionic nature of φ (i.e. h ∈ 1

2N) imply the operator
expansion in anti-commutator form,

{φ(u), φ(v)} =
2h−1∑
n=0

δ(n)(u − v)On(
1
2 (u + v)), (119)

as one can see for instance using the relation between our operator algebraic formalism
andVertexOperatorAlgebras, see [23]. Here the On are hermitian bosonic primary fields
of conformal dimension 2h−1−n, and δ(n)(u) = dn

dun δ(u).We let 〈On〉 = 〈�|On(u)�〉,
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which is independent of u for our rotation invariant thermal state |�〉, and use this
relation in Lemma 6, to obtain a new version of the jump condition involving the thermal
expectation values 〈On〉.

We summarize the properties of F (93):

Theorem 3. Let φ be a fermionic field of conformal dimension h in the normalization
(24).

• For fixed v ∈ A and ξ ∈ ( 12 ,∞)∪ (− 1
2 ,−∞), F(ξ, u, v) is a holomorphic function

of u on the periodically cut complex plane C \ (A + Z + τZ) with the periodicity
F(ξ, u + 1, v) = F(ξ, u + τ, v) = −F(ξ, u, v).
• Across the cuts, u ∈ A, F satisfies the jump condition

−(ξ + 1
2 )F(ξ, u + i0, v) + (ξ − 1

2 )F(ξ, u − i0, v)

=
2h−1∑
n=0

δ(n)(u − v)〈On〉. (120)

• Near the end-points qi of the intervals, |F | � |qi − u|−h, as a function of u.
• Near v,

F(ξ, u − i0, v) ∼ e−iπh

2π

1

ξ + 1
2

(u − v − i0)−2h (121)

as a function of u.
• Analogous properties hold true for u ↔ v.

Now we let

G(u − v) = ϑ ′1(τ )

2π iϑ3(τ )

ϑ3(u − v; τ)

ϑ1(u − v; τ)
(122)

also equal to the thermal 2-point function of the free Fermi field (see below). Our conven-
tions for the Jacobi ϑ functions are summarized in the appendix. Then the combination
G(u − u′)F(ξ, u′, v) is doubly periodic in u′ for any fixed v ∈ A. Thus, integrating
around a contour γ� surrounding the fundamental parallelogram as in fig. 1, we get
zero,

0 =
∮

γ�
du′ G(u − u′)F(ξ, u′, v). (123)

Since G(u − u′) ∼ 1
2π i (u − u′)−1 for u ∼ u′, and u = u′ is the only singu-

larity of G inside the fundamental parallelogram, we can deform the contour γ� to
a contour tightly surrounding the intervals as shown in fig. 1, for �(u) → 0− and
�(u) ∈ A. Then we collect the residue, use the jump condition in the theorem, as well
as
∑2h−1

n=0 〈On〉G(n)(u − v − i0) = 〈�|φ(u)φ(v)�〉.This gives:
Corollary 1. Let φ be a fermionic primary field of dimension h. F defined as in (93)
satisfies (in the distributional sense for u, v ∈ A):

〈�β |φ(u)φ(v)�β〉 = − (ξ + 1
2 )F(ξ, u − i0, v)

+
1

2π i

∫
−

A
du′

ϑ ′1(τ )

ϑ3(τ )

ϑ3(u − u′ − i0; τ)

ϑ1(u − u′ − i0; τ)
F(ξ, u′ − i0, v).

(124)

Here,
∫− denotes a regulated version of the integral described in the following remark.
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1

τ
a1 b1a2 b2

γ

Fig. 1. Illustration of the contour deformation in complex u-plane

Remark/Definition: The meaning of the regularized integral operation
∫− A is somewhat

subtle because because F±(ξ, u, v) = F(ξ, u ± i0, v) are distributions of u ∈ R for
fixed v ∈ A. As such, there is no obviousmeaning to the integral in Corollary 1. To define∫− A, we must remember the origin of the formula from an integration along a contour
fitting tightly around A, see fig. 1. We consider tempered distributions F̃±(ξ, u, v) of
u ∈ R with the property that

(a) F̃+(ξ, u, v)− F̃−(ξ, u, v) = F+(ξ, u, v)− F−(ξ, u, v),
(b) F̃±(ξ, u, v)|A′ = 0, as a distribution tested with functions of u having compact

support in A′ (thus away from any boundary point), and
(c) F̃±(ξ, u, v)|A satisfies the jump condition (120) of Theorem 3 as a distribution tested

with functions of u having compact support in A (thus away from any boundary
point).

We then define the regulated integral by replacing F− with F̃−, now integrated over all
u, which is now well-defined. Corollary 1 holds with this prescription, since (a), (b), (c)
are all that is used about F in the vicinity of the real axis in the above proof.

The existence of F̃± can be seen as follows. In A, it is defined to be equal to F±. In
A′, it is defined to zero. This defines distributions for all u ∈ R, except for the boundary
points qi . We wish to define F̃± by a suitable distributional extension. At the boundary
points the unextended distributions have “scaling degree” at most −h (by Theorem 3),
i.e. finite. Therefore, by standard results (see e.g. [38]), an extension exists and is unique
up to addition of

∑
q j

∑
k�h−1 ±Ak

jδ
(k)(u−q j ). The free parametersmust be adjusted in

such a way that (c) holds for all u ∈ R, not just inside A away from the boundary points,
and such that (a) still holds. This uniquely determines F̃±, and hence our prescription∫− A.

7

The corollary imposes on F an integral equation at which we will look at in more detail
in the following example. The example also suggests that corollary 1 can be used to find
the modular operator in the case of a general fermionic primary field of dimension h.

7 We remark that in the expressions considered below in Sect. 5.4, our regulated integral has the same
meaning as that explained in sec. 4 of [11].
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5.2. Example: Modular Hamiltonian for thermal state of free Fermi field. Now we
analyzewhatwe can learn fromTheorem3 andCorollary 1 for the free Fermi field,where
h = 1

2 and {ψ(u), ψ(v)} = δ(u−v)1. For this theory, we can actually prescribe thermal
states (92) using either the Neveu-Schwarz or the Ramond representations. For the
Neveu-Schwarz (vacuum) sector, the representation is the half-integer moded expansion
(29), now denoted as ψNS(z). For the Ramond-sector, the representation corresponds to
an integer moded expansion given in (32) now denoted as ψR(z). The Gibbs states (92)
in the Neveu-Schwarz/Ramond representation correspond, accordingly, to the thermal
state vectors |�NS,β〉 and |�R,β〉, respectively. The thermal 2-point functions are [39]:

〈�X,β |ψX(u)ψX(v)�X,β〉 = GX(u − v − i0) (125)

where the subscript X ∈ {R,NS} indicates the choice of boundary conditions (sector).
For NS, the definition was already given above in (126), whereas for R, we set

GR(u − v) = ϑ ′1(τ )

2π iϑ2(τ )

ϑ2(u − v; τ)

ϑ1(u − v; τ)
(126)

Next we define FX as in (93). By Theorem 3 we know its properties, with the only trivial
difference that FR(s, u + 1, v) = FR(ξ, u, v) in the Ramond sector, where the subscript
X ∈ {R,NS} indicates the choice of boundary conditions. These properties uniquely
determine FX in our case (cf. table 1):

FR,NS(ξ, u, v) = 1

ξ + 1
2

ϑ ′1(τ )

2π iϑ1(u − v; τ)

ϑ2,3(u − v − is|A|/2π; τ)

ϑ2,3(−is|A|/2π; τ)

×
(

�a(u; τ)�b(v; τ)

�b(u; τ)�a(v; τ)

)is/2π
, (127)

assuming for instance −ε < �(u) < 0. Here |A| =∑ j (b j − a j ) is the total length of
the intervals,

es = ξ + 1
2

ξ − 1
2

, (128)

and

�a(u; τ) =
p∏

i=1
ϑ1(u − ai ; τ) (129)

etc.
By the well-known periodicity properties and pole/zero structure of the ϑ-functions,

it is easy to check that the above formula indeed satisfies the the properties known to
hold by Theorem 3. For instance, the role of the second line is to give the required jump
across A, and the role of the pole at u = v in the first line gives the delta-function in
(117), also consistent with (142). To show that F as given is the only solution to the
properties in Theorem 3, we multiply any solution F with the inverse of the second line.
This will cancel the jump of F except for the delta function in (117). Thus, themultiplied
F can have a first order pole at u = v mod Z with residue 1/(ξ − 1

2 ), by (117). It cannot
have poles, however, at the end-points qi of the intervals, since Theorem 3 tells us that
|F | � |qi − u|−1/2. Thus, the multiplied function F is meromorphic with a single pole
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in the fundamental parallelogram, with the same residue and periodicity properties as
the first line. There can only be one such function, by well-known results on elliptic
functions.

Knowing F , we get the kernel of the modular hamiltonian 〈�X,β |ψX(u)(ln�)ψX(v)

�X,β〉 by integrating up (96). Thus, we have, in principle, found this kernel. The (non-
trivial) integration over ξ in (96) has recently performed by [15,16], who have inde-
pendently arrived at an analogous formula as for F for a closely related quantity, by
a different method based on resolvents. It is instructive to see more precisely how this
method is related to ours, as it may also shed light on how to proceed in the case of fields
with general conformal dimension h.

For this purpose, let us set GX(u − v) be the thermal 2-point function given by
(125), with X ∈ {NS,R}. By Theorem 3, FX has the same periodicity as GX, so the
combination GX(u − v′)FX(ξ, u, v) is doubly periodic in u for any fixed v ∈ A. Thus,
integrating again around a contour γ� surrounding the fundamental parallelogram as in
fig. 1, we get zero as in (123), with G = GX now in that equation. Such an identity also
derived by [16] via a different argument using the special properties of the free Fermi
field. By contrast, we have so far only used general properties and Theorem 3, so our
argument works for any CFT.

Now, we deform again the contour γ� to a contour tightly surrounding the cuts A
inside the fundamental parallelogram, see fig. 1, use the jump properties and bounds on
F as given in Theorem 3 and collect the residue.While these steps can still be performed
in any CFT according to Theorem 3, the free Fermi case is especially simple because the

poles of F near the end-points qi of the intervals are of the order |u − qi |
1
2 , and hence

integrable. Thereby, we immediately get the integral equation

GX(u − v − i0)

= −(ξ + 1
2 )FX(ξ, u − i0, v) +

∫
A
du′ GX(u − u′ − i0)FX(ξ, u′ − i0, v) (130)

without any need for a regulator in the integral as in Corollary 1. Dropping the subscript
“X” for ease of notation and indicating by GA ≡ G|A the restriction of the kernels (125)
to A×A, wemay viewGA as an operator L2(A) → L2(A). In fact, the anti-commutation
relations and the positive nature of the Hilbert space inner product in (125) imply the
operator inequalities 0 � GA � 1. Now we define F±A (ξ) the operator defined by the
restriction F(ξ, u ± i0, v) to A in kernel notation, i.e. when u, v ∈ A. We can then also
write the above integral equation in operator notation as GA = (GA − ξ − 1

2 )F
−
A (ξ)

and solve it as

F−A (ξ) = (GA − ξ − 1
2 )
−1GA (131)

when ξ ∈ ( 12 ,∞) ∪ (− 1
2 ,−∞). In view of (96), we should then further calculate, in

operator notation ∫ ∞
1
2

dξ

(
F−A (ξ) + F−A (−ξ)

)
= ln(G−1

A − 1)GA. (132)

Thus, as a kernel, the modular hamiltonian is given by

〈�|ψ(u)(ln�)ψ(v)�〉 = −
(
ln(G−1

A − 1)GA

)
(u, v). (133)
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Formally, this may also be expressed as saying HA = 1
2

∫
A×A kA(x, y)ψ(x)ψ(y)dxdy

and kA = ln(G−1
A − 1) is the hamiltonian appearing in eq. (80). This is in accord with

a well known formula [14] for the modular Hamiltonian of the free Fermi field in terms
the restricted 2-point function GA, which can be derived using the Fock-space structure
of theory. In the present case, however, our derivation was rather different and can be
paralleled for fermionic fields in general CFTs which are not necessarily equivalent to
free field theories. As derived here, our formula holds for thermal states in either the NS
or the R sector, choosing for G either one of the 2-point functions (125). Thus, apart
from confirming our method, this relation to integral equations might also be useful in
the case of more general CFTs where one does not have a priori relations like (133).

5.3. Bosonic fields. We now repeat a similar analysis for a bosonic field φ of dimension
h ∈ N, satisfying our standing Assumptions 1. In fact, most results in Sect. 5.1 for
fermions hold just as well for bosons, with nearly identical proof. A difference, however,
arises in the jump condition (98), which involves the anti-commutator of φ, whereas for
bosons, we would like to have the commutator. This means that we should work with a
different definition of F , (93). In the bosonic case, we instead define using the shorthands
|�〉 ≡ |�β〉 and � ≡ �β,A

F(s, u, v) =
{
〈�|φ(u)[1− es(1−�)−1]−1φ(v)�〉 if − β < �(u) < 0,
〈�|φ(v)[1− es(1−�−1)−1]−1φ(u)�〉 if β > �(u) > 0.

(134)

Since � > 0, F is well defined, in the distributional sense if s > 0, and we refrain
from using a different symbol for F even though it is a different quantity compared to
Sect. 5.1. The connection to the modular Hamiltonian now follows from the elementary
formula

ln� =
∫ ∞

0
ds

1

1− es(1−�−1)−1
, (135)

giving for �(u) > 0, say,

〈�|φ(v)(ln�)φ(u)�〉 =
∫ ∞

0
ds F(s, u, v). (136)

Thus, we should determine F . Again, the key result is a lemma expressing a jump
condition.

Lemma 9. Let v ∈ A be fixed. If u ∈ A′, then

F(s, u − i0, v) = F(s, u + i0, v). (137)

If u ∈ A, then

(1− es)F(s, u − i0, v)− F(s, u + i0, v) = 〈�|[φ(u), φ(v)]�〉, (138)

in the sense of distributions. Here [φ(u), φ(v)] = φ(u)φ(v)− φ(v)φ(u) is the commu-
tator.

Proof. Analogous to the proof of Lemma 6. ��
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Our Assumption 1 and the bosonic nature of φ imply the operator expansion

[φ(u), φ(v)] =
2h−1∑
n=0

δ(n)(u − v)On(
1
2 (u + v)), (139)

which may be used to eliminate the commutator in the jump condition (138). Certain
obvious changes also apply to the periodicity of F , which is now (103) without the “−”
sign. In the proof of Lemma 8 we now use the formula

1

1− es(1−�−1)−1
= 1− i

2

1

es − 1

∫ ∞

−∞
dt

[(es − 1)�]i t
sinh[π(t − i0)] . (140)

instead of (117), leading now to F(s, u − i0, v) ∼ e−iπh
2π (u − v − i0)−2h for u near v.

Altogether, this gives the following variant of Theorem 3 for bosonic fields:

Theorem 4. • For fixed v ∈ A and s > 0, F(s, u, v) is a holomorphic function
of u on the periodically cut complex plane C \ (A + Z + τZ) with the periodicity
F(s, u + 1, v) = F(s, u + τ, v) = F(s, u, v).
• Across the cuts, u ∈ A, F satisfies the jump condition

(1− es)F(s, u − i0, v)− F(s, u + i0, v) =
2h−1∑
n=0

δ(n)(u − v)〈On〉. (141)

• Near the end-points qi of the intervals, |F | � |qi − u|−h, as a function of u.
• Near v,

F(s, u − i0, v) ∼ e−iπh

2π
(u − v − i0)−2h (142)

as a function of u.
• Analogous properties hold true for u ↔ v.

Remark 3. Wewill see below that the theorem, or alternatively the followingCorollary 2,
may be used to find F , and thereby the modular Hamiltonian in view of (136). See
Sect. 5.4 for examples.

In the case of bosonic fields, it is apparently not straightforward to get an analog of
the integral equation in Corollary 1. The problem is thatG, the analogue of (126) should
have a simple pole at u = v and be such that G(u − u′)F(s, u′, v) is doubly periodic
in u′ for fixed v ∈ A. Since, by contrast to fermionic fields, F(s, u, v) is itself doubly
periodic in u, the simplest choice—in the absence of any other structural properties of
F , would be to choose G as doubly periodic, too. However, as is well known there is no
suchmeromorphic function with only one simple pole in the fundamental parallelogram.
We will, however, be able to make a similar construction below in the case of the U (1)
current, where F has an additional property.

In the general case, we can nevertheless still find an integral equation in the vacuum
case, where we can simply set G(x − y) = (2π i)−1(x − y)−1. Here, we go back to
the real line picture in which the theory is living on R parameterized by x, y, and we
correspondingly write F(s, x, y), etc. Theorem 4 still applies to the vacuum case: By
inspection of the proof, we can take in the end the limit β → ∞. A similar type of
argument as for Corollary 1 now leads to (using 〈On〉 = 0 except when On = 1 in the
vacuum state):
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Fig. 2. Illustration of the contour deformation in the complex y′-plane

Corollary 2. F defined as in (134) (for a bosonic primary field φ of dimension h in
standard nomalization (24)) satisfies for the vacuum state |�〉 ≡ |�0〉:

〈�0|φ(x)φ(y)�0〉 =F(s, x, y + i0)

+ es
1

2π i

∫
−

A
dy′ F(s, x, y′ + i0)(y′ − y − i0)−1.

(143)

for x, y ∈ A ⊂ R (lightray picture).

Proof. For the proof, we first work in the circle picture where x, y ∈ S. For our as-
sumptions about the fields, we have for z ∈ D

+ = {z : |z| < 1} that φ(z)|�0〉 =∑
n�h z

n−hφn|�0〉 which is holomorphic in D
+. Likewise, for z ∈ D

− = {z : |z| > 1}
that 〈�0|φ(z) = ∑n�h z

−n−h〈φn�0| which is holomorphic in D
− and goes as |z|−2h

for |z| → ∞. This implies that, for fixed x ∈ A, F(s, x, y) is a holomorphic function
in C \ A decaying like |y|−2h for |y| → ∞. Now we consider y ∈ D

+, a small contour
γ0 around y′ = 0, and the identity

1

2π i

∮
γ0

dy′ F(s, x, y′)(y′ − y)−1 = 0. (144)

We then move the contour γ0 across the cuts A as in fig. 2, deform it to a very large
circle γ∞, use the decay of F(s, x, y′) as well as the jump conditions (141) across the
cuts A and collect the residue. The statement then follows after transforming back to the
lightray picture. ��
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5.4. Example: Modular Hamiltonian of free U (1)-current. The U (1) current, j , was
introduced in example 6 above. It has dimension h = 1 and commutator [ j (u), j (v)] =
iδ′(u − v). The thermal 2-point function is

〈�β | j (u) j (v)�β〉 = − 1

2π
(℘ (u − v − i0; τ)− η1(τ )) ≡ G(u − v − i0). (145)

Here, η1, η2 are the constants appearing in connection with the Weierstrass ℘-function,
see appendix.

Guessing a—hopefully unique—answer for F just from the properties given in The-
orem 4 as in the case of the free Fermi field does not seem as straightforward for the
current, so we proceed by the more deductive method of integral equations. We have
already mentioned that for thermal states, we have not found a general way to obtain an
analogue of Corollary 1 for bosons. However, for the case of the U(1)-current, there is
an additional structural property which helps.

Consider the Weierstrass ζ -function satisfying ζ ′ = −℘, see appendix. It has a
single simple pole at u = 0 in the fundamental parallelogram but is only quasi-periodic,
ζ(u+1) = ζ(u)+η1, ζ(u+τ) = ζ(u; τ)+η2. As a consequence, the function ζ(u)−η1u
is periodic under u → u + 1, and changes by η2 − η1τ = −2π i under u → u + τ . The
combination {ζ(v′ −v)− (v′ −v)η1}F(ξ, u, v′) is also not doubly periodic in v′ for any
fixed u ∈ A. However, integrating around a contour γ� surrounding the fundamental
parallelogram as in fig. 1,

0 =
∮

γ�
du F(s, u, v′){ζ(v′ − v)− (v′ − v)η1}, (146)

still gives zero because of the special property of F that, for u ∈ A,

∫ 1

0
F(s, u, v′ + ε)dv′ =

{
〈[1− es(1−�)−1]−1 j (u)�| j0�〉 if − β < �(ε) < 0,
〈 j0�|[1− es(1−�−1)−1]−1 j (u)�〉 if β > �(ε) > 0,

= 0, (147)

which follows from the mode expansion of j (v) =∑∞
n=−∞ jne−2π inv and the fact that

j0 is the charge operator, which annihilates any state in the vacuum sector. Hence also
j0|�〉 = 0 for our thermal state, since it can be viewed as a statistical operator on the
vacuum Hilbert space.

If we now evaluate this contour integral as before taking the properties of F in
Theorem 4 into account, then we get

1

2π
{℘(u − v − i0)− η1} = F(s, u, v + i0)

+
1

2π i
es
∫
−

A
dv′ F(s, u, v′ + i0){ζ(v′ − v − i0)− (v′ − v)η1}. (148)

Here,
∫− denotes the regulated integral described in and below Corollary 1.

We now consider the connection with formulae in the literature for the kernel of the
modular Hamiltonian. First, we decompose

G(u − v − i0) = S(u − v) +
i

2
C(u − v), (149)
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with i
2C(u − v) = δ′(u − v) symmetric (imaginary) and S(u − v) = − 1

2π P.V.
(
℘(u −

v)−η1
)
the symmetric (real) part of G as in (145) (P.V. means Cauchy principal value).

Since the correlation function satisfies 〈�| j ( f )∗ j ( f )�〉 � 0, we get G( f , f ) � 0 for
any test-function f ∈ C∞

0 (A, C). Decomposing f = g + ih into a real and imaginary
part, we get

1
2 |C(h, g)| � √S(h, h)

√
S(g, g) (150)

for all g, h ∈ C∞
0 (A, R). We then use the positive definite R-bi-linear form S to define

on C∞
0 (A, R) an inner product, which we then extend to a hermitian inner product by

complex anti-linearity in the first entry. Let this hermitian positive definite sesqui-linear
form be called ( , )S . Its completion defines a Hilbert space, KA, which is contained
in the Sobolev space W 1/2,2

0 (A). It is the 1-particle space of the GNS-Fock space built
on |�〉 ≡ |�β〉. It follows from the definitions that KA  f �→ φ( f )|�〉 ∈ H is an
isometry. Furthermore, since [1− es(1−�±1)−1]−1 is a bounded, self-adjoint operator
on H for s > 0, it follows from (134) that the kernel F±(s, x, y) = F(s, x ± i0, y)
extends to a bounded quadratic form onKA, and hence can be identified with a bounded
linear operator on KA.

By Riesz’ theorem, there is a self-adjoint operator on this Hilbert space, �A, such
that i

2C( f, g) = ( f, �Ag)S for all f, g ∈ KA. This operator satisfies |�A| � 1, so
|�−1

A | � 1 in view of (150). It follows that for s > 0, (e−s − 1
2 +

1
2�

−1
A )−1 exits and is

a bounded, self-adjoint operator onKA. By construction, the operator �A is expressible
as (i/2)S−1A CA, with SA,CA,GA the operators defined by the restriction of the kernels
to A. Alternatively,

− iC−1
A GA = 1

2 (�
−1
A − 1). (151)

Using C = δ′ and following the same argument as in sec. 4 of [11] (where the vacuum
state was considered), we find that

C−1
A f (u) = 1

2

∫ u

a
f (u′)du′ − 1

2

∫ b

u
f (u′)du′ (152)

in the case of one interval A = (a, b), leading to

2πC−1
A GA = ζ(u − v − i0)− uη1 − 1

2 [ζ(a − v − i0)

+ ζ(b − v − i0)− (a + b)η1]. (153)

Note that the terms in [. . . ] do not depend on u, and therefore could be added in the
integral (146) in view of (147). Therefore, we can write our integral equation (148) in
operator form also as:

F+
A(s)[1 + 1

2e
s(�−1

A − 1)] = −GA (154)

where F+
A(s) is the bounded operator onKA corresponding to the kernel F(s, u, v + i0).

Since we already know that the operator on the right side can be inverted for s > 0, it
follows that

F+
A(s) = −GA[1 + 1

2e
s(�−1

A − 1)]−1 (155)
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is a solution to our integral equation in operator notation. Integrating this operator identity
over s as in eq. (136), we obtain∫ ∞

0
ds F+

A(s) =− GA

∫ ∞

0
ds [1 + 1

2e
s(�−1

A − 1)]−1

= GA

∫ 1

0
dλ [λ + 1

2 (�
−1
A − 1)]−1

= GA ln

[
�−1

A + 1

�−1
A − 1

]
, (156)

and thereby in view of eq. (136)

〈�| j (u)(ln�) j (v)�〉 =
(
GA ln

[
�−1

A + 1

�−1
A − 1

])
(u, v). (157)

This formula is sometimes quoted in the literature [13] for the matrix elements of the
modular Hamiltonian of a free boson field, and should be thought of as analogous to
(133) for the fermion field. A similar derivation also goes through if A = ∪i (ai , bi )
consists of an arbitrary number of intervals. By contrast to the results in the literature,
our derivation is based on the rigorously derived integral equations, rather than a formal
analog with finite-dimensional quantum systems.

We now sketch how to find an explicit expression for the matrix element (157) of the
modular Hamiltonian in the case of one interval. To calculate the logarithm of operators,
we need the spectral decomposition of the self-adjoint operator �−1

A , which we write as

�−1
A = −

∫ ∞

−∞
ds coth(s)Us(u)Vs(v) (158)

Here,Vs is a generalized8 left-eigenfunctionof�
−1
A with eigenvalueVs�

−1
A = − coth(s)

Vs , andUs satisfies
∫− b
aVs(u)Us′(u)du = δ(s− s′). Paralleling the steps in sec. 4 of [11],

one can see that (qi ranging over the endpoints a, b of the interval)

Vs(u) =
∑
qi

cqi (s)ϑ1(u − qi + is(b − a)/2π)

ϑ1(u − qi )

(
−ϑ1(u − a)

ϑ1(u − b)

)−is/2π
(159)

with boundary value prescription u + i0 understood, is such a generalized eigenfunction.
This eigenfunction is constructed in such a way that is has a multiplicative jump by
es across the interval (a, b) (from the last term), and such that it is doubly periodic in
u (cf. Table 1). Furthermore, near any one qi of the endpoints a, b, it is bounded by
� |u − qi |−1 in accordance with Theorem 4. The constants cqi (s) are at first adjusted
so that ∫

−
1

0
Vs(u − i0) du = 0. (160)

Then, we have again the relation (146) with Vs in place of F , and evaluating this con-
tour integral by deforming the contour around the fundamental parallelogram to a tight

8 More precisely, Vs is a linear form on a domain D ⊂ KA defined by g �→ ∫− AVs (u)g(u)du.
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contour around (a, b) as in fig. 1 then gives the desired eigenvalue equation. That (160)
impose no actual loss of generality is demonstrated in the end.

Property (160) is evidently equivalent to∑
qi

cqi (s)Iqi (s) = 0, (161)

where

Iq(s) =
∫
−

b

a
du

ϑ1(u − q + is(b − a)/2π)

ϑ1(u − q)

(
−ϑ1(u − a)

ϑ1(u − b)

)−is/2π
. (162)

The constants cqi (s) can further be adjusted so that −isgn(s)C−1
A V s = Us is a right-

eigenvector of �−1
A , satisfying the desired normalization

∫− b
aVs(u)Us′(u)du = δ(s− s′),

see sec. 3 of [11] for further discussion of this point. The δ-function in this expression
can only come from the the contribution of the integrals near the boundary points qi ,
which gives a practical way of evaluating these constraints.

Using ln[(coth(s)− 1)/(coth(s) + 1)] = −2s and �−1
A Us = − coth(s)Us , it imme-

diately follows that

− i

2
ln

[
�−1

A + 1

�−1
A − 1

]
C−1

A =
∫ ∞

−∞
ds |s|Us(u)Us(v) =: kA(u, v) . (163)

Therefore in view of (157) and the commutation relation [ j (u), j (v)] = iδ′(u− v), the
final answer may also be (formally) rewritten as

〈�| j (u)(ln�, j (v)�〉 = 〈�| j (u)[HA, j (v)]�〉, (164)

where HA = ∫A×A kA(u, v) j (u) j (v)dudv and kA(u, v) the kernel of the operator on
the right side of (163). We refrain here form analyzing in detail the remaining integrals.

This construction can be generalized to the case of p intervals A = ∪p
j=1(a j , b j ) in

the following way. The ansatz for the generalized eigenfunction is now

Vs(u) =
∑
qi

cqi (s)ϑ1(u − qi + is|A|/2π)

ϑ1(u − qi )

(
−
∏

j ϑ1(u − a j )∏
j ϑ1(u − b j )

)−is/2π
, (165)

where |A| = ∑ j (b j − a j ). On the 2p coefficients cqi (s) we impose (160) and the p
constraints ∫

−
b j

a j

Vs(u) du = 0, j = 1, . . . , p. (166)

Of these, only p − 1 are independent because (160) and the periodicity of Vs(u) can
be used to show that

∑
j

∫− b j
a j
Vs(u) du = 0 by integrating Vs(u) around a contour as in

fig. 1. A priori, (166), (166) are again a restriction on the possible set of eigenfunctions.
But in the end one shows that, in fact, all eigenfunctions of �−1

A satisfy this constraint.
They are equivalent to ∑

qi

cqi (s)I
j
qi (s) = 0, j = 1, . . . , p, (167)
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where

I jq (s) =
∫
−

b j

a j

du
ϑ1(u − q + is|A|/2π)

ϑ1(u − q)

(
−
∏

j ϑ1(u − a j )∏
j ϑ1(u − b j )

)−is/2π
. (168)

This leaves uswith p linearly independent left-eigenfunctions,V k
s (u), k = 1, . . . , p. The

constants cqi (s) are further be adjusted so that −isgn(s)C−1
A V k

s = Uk
s or equivalently

Uk
s (u) = −isgn(s)

∫
−

u

a j

du′ V k
s (u′), for u ∈ (a j , b j ), (169)

is a right-eigenvector of�−1
A , satisfying the desired ortho-normalization

∫− AV
k
s (u)Uk′

s′ (u)

du = δkk′δ(s − s′).
Following an argument given in sec. 5 of [11], let us finally explain why condi-

tions (160), (166), initially only imposed for convenience in order to derive the desired
eigenfunctions, impose no actual loss of generality. By expanding the elliptic func-
tions near the end-points of the intervals and using the regularization prescription im-
plicit in

∫− described in the remark after Corollary 1, that the limits of the functions
lims→0Uk

s (u) = χk(u) yields a set of functions whose span is equal to the set of indi-
cator functions {1(a j ,b j )(u)} j=1,...,p. Therefore, the orthogonality relation implies that
the p eigenfunctions {V k

s (u)}k=1,...,p are already complete, because any eigenfunction
must satisfy (166).

Then a similar analysis as in the case of one interval, expanding the bounded operator
F+(s) on KA in the generalized basis Uk

s , V k
s of �A, gives again (164) with HA =∫

A×A kA(u, v) j (u) j (v)dudv, where

p∑
k=1

∫ ∞

−∞
ds |s|Uk

s (u)Uk
s (v) =: kA(u, v) (170)

now. Again, we refrain here form analyzing in detail the remaining integrals.

6. Conclusion

In this work we have studied the modular flows of multi-component regions in chiral
CFTs usingmethods from complex analysis. Ourmain tool was the KMS-condition built
into modular theory, which we have combined with input from CFT such as locality and
analyticity. The main general results concern matrix elements of the modular operator
of the general type 〈�|φ(x) f (�)φ(y)�〉, where f are various functions such as ln,
resolvents, complex powers, and φ a primary field. The states |�〉 studied in this work
were the vacuum and Gibbs (thermal) states. In some cases, our results for the matrix
elements can be expressed in terms of integral equations of Cauchy-type [34,35], see
e.g. Corollaries 1, 2.

Solving these types of equations was possible in a number of examples, such as
free fermions and the U (1)-current. To keep the paper at a reasonable length, we have
not carried out in this work all the resulting integrations, which would be needed if
one is interested in more explicit answers. This would be possible. In the examples
considered, we were also able to explain the relationship with known results in the
literature [10,11,15,16], and also with certain general, but formal (in the QFT context),
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Table 1. Periodicity properties, with M = e−iπτ e−2π iu

ϑ1 ϑ2 ϑ3 ϑ4
ϑi (u + 1)/ϑi (u) −1 −1 1 1
ϑi (u + τ)/ϑi (u) −M M M −M

methods known specifically for such free field theories, see [13,14]. In this sense, our
methods also serve to make these formal approaches rigorous.

Our analysis is, in principle, not limited to such free CFTs, and in fact e.g., Corollar-
ies 1, 2, refer to general primary fields in an arbitrary chiral CFT, subject only to certain
standard assumptions [40]. It would be interesting to study the implications of these
general results further, which we leave for future work [41–44].
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A. Conventions for Elliptic Functions

Our conventions for the ϑ-functions are:

ϑ1(u; τ) =
∑
n∈Z

(−1)n− 1
2 eiπτ(n+ 1

2 )2+2π i(n+ 1
2 )u

ϑ2(u; τ) =
∑
n∈Z

eiπτ(n+ 1
2 )2+2π i(n+ 1

2 )u

ϑ3(u; τ) =
∑
n∈Z

eiπτn2+2π inu,

ϑ4(u; τ) =
∑
n∈Z

(−1)neiπτn2+2π inu .

(171)

The ℘-function is given by

℘(u; τ) =
∑

(m,n) �=(0,0)

(
1

(u + m + τn)2
− 1

(m + τn)2

)
. (172)
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TheWeierstrass ζ -function is a function defined so that ζ ′(u, τ ) = −℘(u; τ). Explicitly,

ζ(u; τ) = 1

u
+
∑

(m,n) �=(0,0)

(
1

u + m + τn
− 1

m + τn
+

u

(m + τn)2

)
. (173)

It has the periodicity ζ(u + 1) = ζ(u) + η1, ζ(u + τ) = ζ(u) + η2.
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