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Abstract. An architectural aspect is a concern that cuts across architecture 
modularity units and cannot be effectively modularized using the given abstractions 
of conventional Architecture Description Languages (ADLs). Dealing with 
crosscutting concerns is not a trivial task since they affect each other and the base 
architectural decomposition in multiple heterogeneous ways. The lack of ADL 
support for modularly representing such aspectual heterogeneous influences leads to 
a number of architectural breakdowns, such as increased maintenance overhead, 
reduced reuse capability, and architectural erosion over the lifetime of a system. On 
the other hand, software architects should not be burdened with a plethora of new 
ADL abstractions directly derived from aspect-oriented implementation techniques. 
However, most aspect-oriented ADLs rely on a heavyweight approach that mirrors 
programming languages concepts at the architectural level. In addition, they do not 
naturally support heterogeneous architectural aspects and proper resolution of aspect 
interactions. This paper presents AspectualACME, a simple and seamless extension 
of the ACME ADL to support the modular representation of architectural aspects 
and their multiple composition forms. AspectualACME promotes a natural blending 
of aspects and architectural abstractions by employing a special kind of architectural 
connector, called Aspectual Connector, to encapsulate aspect-component connection 
details.  We have evaluated the applicability and scalability of the AspectualACME 
features in the context of three case studies from different application domains.  

Keywords: Architecture Description Languages, Aspect-Oriented Software 
Development, Architectural Connection. 



1. Introduction  

Aspect-Oriented Software Development (AOSD) [8] is emerging as a promising 
technique to promote enhanced modularization and composition of crosscutting concerns 
through the software lifecycle. At the architectural level, aspects provide a new 
abstraction to represent concerns that naturally cut across modularity units in an 
architectural description, such as interfaces and layers [1, 6, 9, 15]. However, the 
representation of architectural aspects is not a straightforward task since they usually 
require explicit representation mechanisms to address the heterogeneous manifestation of 
some widely-scoped properties, such as error handling strategies, transaction policies, and 
security protocols [5, 6,,10, 11]. By heterogeneous manifestation of widely-scoped 
properties – or , simply, heterogeneous crosscutting –, we mean that some properties 
impact multiple points in a software system, but the behavior that is provided at each of 
those points is different. Such architectural crosscutting concerns may interact with the 
affected modules in a plethora of different ways. Moreover, aspects may interact with 
each other at well-defined points in an architectural description. Hence, it is imperative to 
provide software architects with effective means for enabling the modular representation 
of aspectual compositions. 

Software Architecture Description Languages (ADLs) [16] have been playing a 
central role on the early systematic reasoning about system component compositions by 
defining explicit connection abstractions, such as interfaces, connectors, and 
configurations.  Some Aspect-Oriented Architecture Description Languages (AO ADLs) 
[19-22] have been proposed, either as extensions of existing ADLs or developed from 
scratch employing AO abstractions commonly adopted in programming frameworks and 
languages, such as aspects, join points, pointcuts, advice, and inter-type declarations. 
Though these AO ADLs provide interesting first contributions and viewpoints in the field, 
there is little consensus on how AOSD and ADLs should be integrated, especially with 
respect to the interplay of aspects and architectural connection abstractions [1, 6, 24, 17]. 
In addition, such existing proposals typically provide heavyweight solutions [1, 25], 
making it difficult their adoption and the exploitation of the available tools for supporting 
ADLs. More importantly, they have not provided mechanisms to support the proper 
modularization of heterogeneous architectural aspects and their compositions.     

This paper present AspectualACME, a general-purpose aspect-oriented ADL that 
enhances the ACME ADL [14] in order to support improved composability of 
heterogeneous architectural aspects. The composition model is centered on the concept of 
aspectual connector, which takes advantage of traditional architectural connection 
abstractions – connectors and configuration – and extends them in a lightweight fashion to 
support the definition of some composition facilities such as: (i) heterogeneous 
crosscutting interfaces at the connector level, (ii) a minimum set of aspect interaction 
declarations at the attachment level, and (iii) a quantification mechanism for attachment 
descriptions. Our proposal does not create a new aspect abstraction and is strictly based on 
enriching the composition semantics supported by architectural connectors instead of 



introducing elements that elevate programming language concepts to the architecture 
level. This paper also discusses the applicability and scalability of the proposed ADL 
enhancements in the context of three case studies from different domains, and the 
traceability of AspectualACME models to detailed aspect-oriented design models. 

The remainder of this paper is organized as follows. Section 2 introduces the case 
study used through the paper, and illustrates some problems associated with the lack of 
explicit support for modularizing heterogeneous architectural aspects and their 
interactions. Section 3 presents AspectualACME. Section 4 describes the evaluation of 
our approach.  Section 5 compares our proposal with related work. Finally, Section 6 
presents the concluding remarks and directions for future work. 

2. Health Watcher: A Case Study  

In this section we present the basic concepts of the ACME ADL [14] (Section 2.1) and 
discuss the architecture design of the case study that we are going to use as running 
example through the paper (Section 2.2), with emphasis on the heterogeneous crosscutting 
nature of some architectural concerns (Section 2.3) and their interactions (Section 2.4).   
 
2.1 ACME in a Nutshell 
 
ACME is a general purpose ADL proposed as an architectural interchange language.  
Architectural structure is described in ACME with components, connectors, systems, 
attachments, ports, roles, and representations. Components are potentially composite 
computational encapsulations that support multiple interfaces known as ports. Ports are 
bound to ports on other components using first-class intermediaries called connectors 
which support the so-called roles that attach directly to ports. Systems are the abstractions 
that represent configurations of components and connectors. A system includes a set of 
components, a set of connectors, and a set of attachments that describe the topology of the 
system. Attachments define a set of port/role associations. Representations are alternative 
decompositions of a given element (component, connector, port or role) to describe it in 
greater detail. Properties of interest are <name, type, value> triples that can be attached to 
any of the above ACME elements as annotations. Properties are a mechanism for 
annotating designs and design elements with detailed, generally non-structural, 
information. Architectural styles define sets of types of components, connectors, 
properties, and sets of rules that specify how elements of those types may be legally 
composed in a reusable architectural domain. The ACME type system provides an 
additional dimension of flexibility by allowing type extensions via the extended with 
construct. These ACME concepts are illustrated through this paper.   

 
 
 



2.2  Health Watcher Architecture 
 
The HealthWatcher (HW) system is a Web-based information system developed by the 
Software Productivity research group from the Federal University of Pernambuco [27]. It 
supports the registration of complaints to the health public system. Figure 1 illustrates a 
partial, simplified ACME [14] textual and graphical representation of the HW 
architectural description, which combines a client-server style with a layered style [30]. It 
is composed of five main architectural concerns: (i) the GUI (Graphical User Interface) 
component provides a Web interface for the system, (ii) the Distribution component 
externalizes the system services at the server side and support their distribution to the 
clients, (iii) the Business component defines the business elements and rules, (iv) the 
TransactionManager and Data components address the persistency concern by storing the 
information manipulated by the system, and (v) the ErrorHandling component which is 
charge of supporting forward error recovery through exception handling. 

Figure 1 also illustrates a set of provided/required ports and connectors which make 
explicit the interactions between the architectural components. The saveEntity required port 
from the GUI component, for example, is linked to the distributedInterface provided port 
from the Distribution component by means of a connector. Despite many of the 
interactions between the architectural components have been appropriately represented 
using the port and connector abstractions, it is not possible to use these common ADL 
abstractions to represent the crosscutting relationships between two component services. 
Consider, for example, the transactionService provided port of the Transaction Manager 
component. It affects the execution of the savingService provided port of the Business 
component, by delimiting the occurrence of a business transaction (operations of begin, 
end and rollback transaction) before and after the execution of every operation invoked on 
savingService port. There is no existing abstraction in current ADLs which explicitly 
captures this crosscutting semantic between architectural component services. Because of 
lack of support to represent such kinds of crosscutting interactions between components, 
Figure 1 alternatively models it by defining the useTransaction required port. This 
description, however, does not make explicit the existence of crosscutting relationships 
between the components.  

 
 
2.3 Heterogeneous Architectural Crosscutting 
 
Exception handling is considered a widely-scoped influencing concern in the HW 
architectural specification [28], which is mostly realized by the Error Handling 
component. This component consists of the system exception handlers, and it provides the 
services in charge of determining at runtime the proper handler for each of the exceptions 
exposed by the system components, such as Distribution, Persistence [24], and 
TransactionManager. In fact, Figure 1 shows that the Error Handling component has a 
crosscutting impact on the HW architecture since it affects the interfaces of several 
components in the layered decomposition. Almost all the architectural interfaces need to 



expose erroneous conditions, which in turn need to be handled by the error handling 
strategy. Figure 1 gives some examples of exceptional interfaces in the component’s ports 
savingService and distributedInterface. Hence, the broadly-scoped effect of this component 
denotes its crosscutting nature over the modular architecture structure of the HW system. 
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Figure 1. Error Handling in the HW Architecture: A Heterogeneous Crosscutting Concern   
 

However, the influence of this crosscutting concern is not exactly the same over each 
affected HW component; it crosscuts a set of interfaces in heterogeneous ways, depending 
on the way the exception should be handled in the target component. In the HW system, 
there is at least two forms of interaction between a faulty component and the Error 
Handling component: the termination protocol (Termination connector), and the retry 
protocol (Retrial connector). However, the heterogeneous crosscutting composition of 
ErrorHandling and the affected architectural modules can not be expressed in a modular 
way. For instance, the connector Termination needs to be replicated according to the 
number of affected interfaces, and separated connectors for expressing the Retrial 
collaboration protocols need to be created. For simplification, Figure 1 only contains some 
examples of those connectors; the situation is much worse in the complete description of 
the HW architecture since almost all the interfaces expose exceptions. Also the attachment 
section contains a number of replicated, similar attachments created only for the sake of 



combining the replicated error handling connectors (Figure 1). Finally, the “provided” 
interface handlingStrategy needs to be connected with the “provided” interfaces containing 
exceptional events, which is not allowed in conventional ADLs.   
 
2.4 Aspect Interaction  
In addition, there are other architectural breakdowns when using conventional ADLs to 
define interactions between crosscutting concerns. For example, the TransactionManager 
is another architectural aspect that crosscuts several elements in the Business layer in 
order to determine the interfaces that execute transactional operations. Most of these 
affected interfaces are also connected with the error handling connectors (Section 2.2). 
Figure 1 illustrates this situation for the savingService interface. The problem is that it is 
impossible to express some important architectural information and valid architectural 
configurations involving the interaction of the ErrorHandling and TransactionManager 
aspects. For example, although the attachments section allows the architect to identify that 
both aspects are actuating over the same architectural elements, it is not possible to 
declare which aspect has precedence over others affecting the same interfaces or whether 
only one or both of the backward and forward recovery strategies should be used. 

3. AspectualACME  

This Section presents the description of AspectualACME. We present the ACME 
extension to support the modeling of the crosscutting interactions (Section 3.1) and the 
definition of a quantification mechanism (Section 3.2). This section ends with a discussion 
about the AspectualACME support for modeling heterogeneous architectural aspects 
(Section 3.3) and aspect interaction (Section 3.4). 

3.1 Aspectual Connector  

As software architecture descriptions rely on a connector to express the interactions 
between components, an equivalent abstraction must be used to express the crosscutting 
interactions. We define an aspectual component as a component that represents a 
crosscutting concern in a crosscutting interaction. The traditional connector is not enough 
to model the crosscutting interaction because the way that an aspectual component 
composes with a regular component is slightly different from the composition between 
regular components only. A crosscutting concern is represented by provided services of an 
aspectual component and it can affect both provided and required services of other 
components which can be, in turn, regarded as structural join points [8] at the architectural 
level. As discussed in Sections 2.2 and 2.3, since ADL valid configurations are those that 
connect provided and required services, it is impossible to represent a connection between 
a provided service of an aspectual component and a provided service without extensions 



to the traditional notion of architectural connections. Although ACME itself does not 
support a syntactic distinction between provided and required ports, this distinction can be 
expressed using properties or declaring port types.  

In order to express the crosscutting interaction, we define the Aspectual Connector 
(AC), an architectural connection element that is based on the connector element but with 
a new kind of interface. The purpose of such a new interface is twofold: to make a 
distinction between the elements playing different roles in a crosscutting interaction – i.e., 
affected base components and aspectual components; and to capture the way both 
categories of components are interconnected. The AC interface contains: (i)  base roles, 
(ii) crosscutting roles, and (iii) a glue clause. Figure 2 depicts a high-level description of a 
traditional connector (Fig. 2a) and an aspectual connector (Fig. 2b).  
 
Connector homConnector = { 

 Role aRole1; 
 Role aRole2; 

} 

AspectualConnector homConnector = { 
 BaseRole aBaseRole; 
 CrosscuttingRole aCrosscuttingRole;  
 Glue glueType; 

} 
(a) Regular connector in ACME (b) Aspectual connector in AspectualACME 

Figure 2. Regular and Aspectual Connectors 
 

The base role may be connected to the port of a component (provided or required) 
and the crosscutting role may be connected to a port of an aspectual component. The 
distinction between base and crosscutting roles addresses the constraint typically imposed 
by many ADLs about the valid configurations between provided and required ports. An 
aspectual connector must have at least one base role and one crosscutting role. The 
composition between components and aspectual components is expressed by the glue 
clause. The aspectual glue specifies the way an aspectual component affects one or more 
regular components. There are three types of aspectual glue: after, before, and around. 
The semantics is similar to that of advice composition from AspectJ [29].  

 
AspectualConnector aConnector = { 
  BaseRole aBaseRole1, aBaseRole2; 
  CrosscuttingRole aCrosscuttingRole1, 
                    aCrosscuttingRole2; 
  Glue { aCrosscuttingRole1 before aBaseRole1; 
         aCrosscuttingRole2 after aBaseRole2;   } 
} 

Figure 3. Heterogeneous aspectual connector. 

The glue clause can be simply a declaration of the glue type (Figure 2b), or a block 
with multiple declarations, where each relates a crosscutting role, a base role and a 
specific glue type (Figure 3). The description of heterogeneous aspectual interactions 
(Section 3.3) requires more elaborated glue clauses.  



Although the idea of the aspectual connector is derived from the traditional connector, 
it is not modeled as a subtype of the traditional connector, since the aspectual connector 
can be used in a connection between two provided ports. This would result in an invalid 
configuration (ill-formed connection) using the traditional connector and its subtypes. 

Figure 4 contains a graphical notation that we propose to represent Aspectual 
Connectors. C1 is an aspectual connector that defines a crosscutting and heterogeneous 
interaction involving the Aspectual Component, Component 1, and Component 2.   

 
 
 
 
 
 
 
 
 
 
 

Figure 4. Graphical Notation to the Aspectual Connector  

3.2 Quantification Mechanism 

A base role of an aspectual connector may be bound to several ports of possibly different 
components. These ports represent structural join points that may be affected by aspectual 
components. To express these bindings, many attachments should be defined, where each 
one binds the same base role instance to a different component port. We propose an 
extension to the attachments part of an ACME configuration to allow the use of patterns. 
Wildcards such as ‘*’, can be used in attachments to concisely describe sets of ports to be 
attached to the same base role.  

 
System Example = { 
Component aspectualComponent = { Port aPort }  
AspectualConnector aConnector = { 

 BaseRole aBaseRole; 
 CrosscuttingRole aCrosscuttingRole;  
 glue glueType; 

} 
Attachments { 

aspectualComponent.aPort to aConnector.aCrosscuttingRole  
aConnector.aBaseRole to *.prefix* }  

} 
Figure 5. ACME Description of the Composition . 
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The attachment “aConnector.aBaseRole to *.prefix*” (Figure 5) specifies the 
binding between aConnector.aBaseRole and ports from the “set of component 
ports where the port name begins with prefix”. By avoiding explicit enumeration of 
ports and definition of multiple attachments, this extension promotes economy of 
expression and improves writability in architectural configurations.  

3.3 Heterogeneous Architectural Aspects 

Figure 2b presented a simple aspectual connector that has a homogeneous crosscutting 
impact on the architectural decomposition. Figure 3 shows how AspectualACME supports 
heterogeneous crosscutting. Multiple base and crosscutting roles can be used to define the 
different ways a crosscutting concern can affect the component interfaces. Different or 
similar glue types can be used in the definition of the pairs of base and crosscutting roles. 
Figure 6a is an example of heterogeneous aspectual connector for the error handling 
concern discussed in Section 2.2. Note that the two ways of interacting with the 
ErrorHandling component – i.e. retrial and termination – can now be modularized in a 
single architectural element. In addition, quantification mechanisms can be used in the 
attachments specification to describe in single statements which component ports are 
affected by those two crosscutting roles specified in the ForwardRecovery connector (Figure 
6b). 
 
AspectualConnector ForwardRecovery = { 

 BaseRole toBeTerminatedTarget, toBeRetriedTarget; 
 CrosscuttingRole termination, retrial; 
 Glue {termination after toBeTerminatedTarget; 
       retrial after toBeRetriedTarget; 
 } 

} 

 

(a) an example of heterogeneous aspectual connector   

Attachments { 
ForwardRecovery.toBeTerminatedTarget to *.*Service  

  ForwardRecovery.termination to ErrorHandling.handlerSearch  
  Distribution.distributedInterface to    
      ForwardRecovery.toBeRetriedTarget 
  ForwardRecovery.retrial to ErrorHandling.handlerSearch 
  ...// to be continued in Figure 5b   
} 

 

(b) specification of join points using AspectualACME quantification mechanisms   

Figure 6. Supporting Heterogeneous Crosscutting 

Figure 7 presents a graphical notation for the HW example, where the ForwardRecovery  is 
defined as a heterogeneous aspectual connector. The yellow vertical rectangle indicates 
that ForwardRecovery is a heterogeneous aspectual connector. 



 

Figure 7.  An Example of Aspectual Connector: Forward Recovery 
 
3.4 Aspect Interaction 
AspectualACME also allows the specification of aspectual architecture-level interaction 
between two or more aspectual connectors which have join points in common. Such 
interactions are declared in the configuration description since the attachments part is the 
place where join points are identified. The ADL supports two basic kinds of composition 
operators: precedence and XOR (Figure 8b). The architect can specify that the precedence 
is either valid for the whole architecture or only at specific join points. Figure 8b 
illustrates both situations: (i) in general, the Retrial connector has precedence over the 
Termination connector at all the join points they have in common, and (ii) at the port 
savingService, it is always tried first forward recovery through termination-based error 
handling and, second, the backward recovery with abort in case the exception was not 
successfully handled. When there is a precedence relation between two connectors X and 
Y, where the execution of Y depends on the satisfaction of a condition associated with X, 
the architect can explicitly document it using a condition statement together with an 
around glue in X. Figure 8b also illustrates the use of XOR: at a given join point, only one 
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of the either termination or retrial should be non-deterministically chosen. Finally, it is 
important to highlight that the elements participating in a precedence or XOR clause can 
be components instead of connectors: it means that the relationship applies to all the 
connectors involving the two components (see Section 4.1).  
 
AspectualConnector BackwardRecovery = { 

BaseRole target; 
CrosscuttingRole transBegin, transAbort, transCommit; 
Glue {transBegin before target; 
      transCommit after target; 
      transAbort after target; 
} 

} 

 

(a) an example of aspectual connector   

Attachments { 
  //continued from Figure 4c 

Business.savingService to BackwardRecovery.target  
  BackwardRecovery.transBegin to TransactionManager.transService  

BackwardRecovery.transCommit to TransactionManager.transService 
BackwardRecovery.transAbort to TransactionManager.transService 

  Distribution.distributedInterface to ForwardRecovery.retriedTarget 
  ForwardRecovery.Retrial to ErrorHandling.handlerSearch   
  Precedence {  
    ForwardRecovery.retrial, ForwardRecovery.termination; 
    savingService: 
         ForwardRecovery.termination, BackwardRecovery.transAbort; 
  } 
  XOR { 
    ForwardRecovery.resumption, ForwardRecovery.termination; 
  } 
} 

 

(b) specification aspectual interactions   

Figure 8. Supporting Aspect Interaction Declarations 
 
4. Evaluation  
This Section presents the evaluation of AspectualACME in three case studies with respect 
to the usefulness of the proposed composition enhancements. We have evaluated the 
applicability and scalability of the notion of Aspectual Connectors (Section 3.1) and the 
extensions provided in AspectualACME (Sections 3.2 to 3.4) in the context of three case 
studies: the HealthWatcher system [28] (Section 2), a context-sensitive tourist information 
guide (TIG) system [9, 1], and AspectT – a multi-agent system framework [10, 11, 12]. 
As indicated in Table 1, the TIG architecture encompassed the manifestation of three 
heterogeneous architectural aspects: replication, security, and performance. The AspectT 
architecture included five main heterogeneous architectural aspects: autonomy, 



adaptation, learning, code mobility, and interaction. The choice of such case studies was 
driven by the heterogeneity of the aspects, and the different ways they affect the dominant 
architectural decomposition and each other.  

Our approach has scaled up well in all the case studies mainly by the fact that 
AspectualACME follows a symmetric approach, i.e. there is no explicit distinction 
between regular components and aspectual components. The modularization of the 
crosscutting interaction into connectors facilitated, for example, the reuse of the 
persistence component description from the first to the second case study. Persistence was 
a crosscutting concern only in the HealthWatcher architecture (Figure 7). Hence, we have 
not applied an aspectual connector in the TIG architectural specification. The definition of 
quantification mechanisms (Section 3.2) in attachments also has shown to be the right 
decision choice as it improves the reusability of connectors. The other reason was that is 
was easier to determine how multiple interacting aspects affect each other by looking in a 
single place in the architectural description – i.e. the attachments specification. 
 

Aspect Interactions Case Study Heterogeneous 
Aspects # Total   Some Examples 

Health Watcher Error Handling, 
Transaction Management,
Distribution 

13 Precedence: Error Handling, Transaction Manag. 
XOR: ForwardRecovery.resumption, Forward   
            Recovery.termination 

TIG Replication, Performance,
Security 

7 Precedence: Security, Performance 
XOR: Replication.passive, Replication.active 

AspectT Autonomy, Adaptation, 
Learning, Code Mobility, 
Interaction 

15 Precedence: Interaction, Autonomy, Adaptation 
Precedence: Autonomy.execution, 
                    Autonomy.proactiveness 
XOR: Mobility, Collaboration  

Table 1. Examples of Heterogeneous Architectural Aspects and their Interactions 
 

Table 1 presents a summary on how AspectuaACME has been used through the 
three case studies to capture certain heterogeneous architectural aspects. It also describes 
how many aspectual interactions have been explicitly captured in those studies, followed 
by some examples of Precedence and XOR interactions. In our evaluation, we have 
noticed that two or more crosscutting roles of the same heterogeneous aspectual connector 
can naturally be linked to the same join point (a component port). Hence, the proposed 
aspect interaction mechanisms (Section 3.4) can be used to define their relationships. For 
example, Table 1 shows a XOR relationship in the HW architecture involving two 
crosscutting roles of the same connector: ForwardRecovery. Other interesting possibilities 
have been also explored in the case studies, such as declaring that all the connectors of 
Error Handling aspect have precedence over all the connectors of Transaction 
Management in the HW system.  Also, we have observed that the explicit definition of 
such aspectual relationships in the architectural stage enhances the documentation of 
design choices that need to be observed later on the design of applications, and variation 
points in a certain product-line design [31]. 



 
5. Related Work  
There is a diversity of viewpoints on how aspects (and generally concerns) should be 
modeled in ADLs. However, so far, the introduction of AO concepts into ADLs has been 
experimental in that researchers have been trying to incorporate mainstream AOP 
concepts into ADLs. In contrast, we argue that most of existing ADLs abstractions are 
enough to model crosscutting concerns. For this purpose, it is just necessary to define a 
new configuration element based on the traditional connector concept. 

Most AO ADLs are different from AspectualACME because they introduce a lot of 
concepts to model AO abstractions (such as, aspects, joinpoints, and advices) in the ADL. 
Navasa et al 2005 [19] present a proposal to introduce the aspect modeling in the 
architecture design phase. Aspects are used to facilitate the architecture evolution by 
allowing easily either to modularize crosscutting concerns, or to incorporate new 
requirements in the system architecture. The composition between the architectural 
components and the aspects is based on an exogenous control-driven co-ordination model. 
The incorporation of the authors’ model to existing ADLs, such as ACME, is still under 
investigation. Navasa et al 2002 [18] do not propose an AO ADL, but define a set of 
requirements which current ADLs need to address to allow the management of 
crosscutting concerns using architectural connection abstractions. The requirements are: 
(i) definition of primitives to specify joinpoints in functional components; (ii) definition of 
the aspect abstraction as a special kind of component; and (iii) specification of connectors 
between joinpoints and aspects. The authors suggest the use of existing coordination 
models to specify the connectors between functional components and aspects. Differently 
from our lightweight approach, they suggest the definition of AO specific ADL 
constructs. Furthermore, they do not mention in their proposal the need for supporting 
important AO properties such as quantification, interaction between aspects and 
heterogeneous aspects. 

DAOP-ADL [22] defines components and aspects as first-order elements. Aspects can 
affect the components’ interfaces by means of: (i) an evaluated interface which defines the 
messages that aspects are able to intercept; and (ii) a target events interface responsible for 
describing the events that aspects can capture. The composition between components and 
aspects is supported by a set of aspect evaluation rules. They define when and how the 
aspect behavior is executed. Besides, they also include a number of rules concerning with 
interaction between aspects. With regards to precedence, aspects can be evaluated in two 
ways: sequentially or concurrently. In addition, aspects can share information using a list 
of input and/or output global properties. Nevertheless, DAOP-ADL does not provide 
mechanisms to support quantification at the attachment level and explicit modularization 
of heterogeneous architectural aspects. 

Similarly to our proposal, FuseJ [26] defines a unified approach between aspects and 
components, that is, FuseJ does not introduce a specialized aspect construct. It provides 
the concept of a gate interface that exposes the internal implementation functionality of a 
component and offers access-point for the interactions with other components. In a similar 
way to our proposal, FuseJ concentrates the composition model in a special type of 



connector that extends regular connectors by including constructs to specify how the 
behaviour of one gate crosscuts the behaviour of another gate. However, differently from 
our work, our compositional model works in conjunction with the component traditional 
interface while FuseJ defines the gate interface that exposes internal implementation 
details of a component. However, FuseJ provides explicit support neither for defining the 
interaction between aspects nor for modularizing heterogeneous aspects. Moreover, it only 
allows quantification over the same gate methods. In addition, FuseJ does not work with 
the notion of configuration. It includes the definition of the connection inside the 
connector itself. This contrasts with the traditional way that ADLs works – that declares a 
connector and binds connectors’ instances at the configuration section. 

Pessemier et al [21] defines the Fractal Aspect Component (FAC), a general model for 
mixing components and aspects. Their aim is to promote the integration between aspect-
oriented programming (AOP) and component-based software engineering (CBSE) 
paradigms. FAC model proposes three new abstractions: (i) aspect components – that 
modularize a crosscutting concern by implementing the service of a regular component as 
a piece of an around advice; (ii) aspect bindings – which define bindings between regular 
and aspectual components; and (iii) aspect domains – that represents the reification of 
regular components affected by aspect components. FAC model is implemented under 
Fractal [2], an extensible and modular component model, and its respective ADL. There 
are similarities between the aspect component from the FAC model and our aspectual 
connector. Both are used to specify crosscutting concerns existing in the system 
architecture. The aspect bindings of FAC define a link between a regular and an aspect 
component. This latter can modify/extend the behavior of the former by affecting its 
exposed join points. In our approach, this is addressed by the definition of: (i) base and 
crosscutting roles – which allow specifying the binding between two components; and (ii) 
the glue clause – that define the semantic of crosscutting composition between them. 

6. Conclusions and Future Work 

This paper has addressed current issues related to aspect-oriented architecture modeling 
and design. The analysis of heavyweight solutions provided by some AO ADLs yielded to 
the design of AspectualACME, a general-purpose aspect-oriented ADL that supports 
improved composability of heterogeneous architectural aspects. The composition model is 
centered on the concept of aspectual connector, which takes advantage of traditional 
architectural connection abstractions – connectors and configuration – and, based on 
them, provides a lightweight support for the definition of some composition facilities such 
as: (i) heterogeneous crosscutting interfaces at the connector level, (ii) a minimum set of 
aspect interaction declarations at the attachment level, and (iii) a quantification 
mechanism for attachment descriptions. In this way, AspectualACME encompasses a 
reduced set of minor extensions, thereby avoiding the introduction of additional 
complexity in architectural descriptions. The paper also discussed the applicability and 



scalability of the proposed ADL enhancements in the context of three case studies from 
different domains. Our approach has scaled up well in all the case studies mainly by the 
fact that AspectualACME follows a symmetric approach, i.e. there is no explicit 
distinction between regular components and aspectual components. Also, we have 
observed that explicit aspect interaction declarations in the architectural stage enhances 
the documentation of design choices that need to be observed later on the design of 
applications. 

As future work, we plan to further elaborate on several issues related to the 
expressiveness of the AspectualACME language, as well as on traceability issues. 
Architectural descriptions in AspectualACME can be mapped to aspect-oriented design 
languages that support aspect-oriented modeling at the detailed design level, such as 
aSideML [5] and Theme/UML [8]. Tools need to be developed to support the creation of 
AspectualACME descriptions and their transformation to design level descriptions. Once 
these tools are available, designers may fully exploit the benefits from the aspect-oriented 
ADL and explicitly “design” aspectual connectors. 
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