
On the Modular Representation of Architectural Aspects

Alessandro Garcia 1, Christina Chavez 2, Thais Batista3, Claudio Sant’anna4,
Uirá Kulesza4 , Awais Rashid 1, Carlos Lucena4

1 Computing Department, Lancaster University, United Kingdom
a.garcia@lancaster.ac.uk, marash@comp.lancs.ac.uk

2 Computer Science Department , Federal University of Bahia, Brazil
flach@dcc.ufba.br

3Computer Science Department, Federal University of Rio Grande do Norte, Brazil
thais@ufrnet.br

4Computer Science Department, Pontifical Catholic University of Rio de Janeiro, Brazil
claudios@les.inf.puc-rio.br, uira@les.inf.puc-rio.br, lucena@inf.puc-rio.br

Abstract. An architectural aspect is a concern that cuts across architecture
modularity units and cannot be effectively modularized using the given abstractions
of conventional Architecture Description Languages (ADLs). Dealing with
crosscutting concerns is not a trivial task since they affect each other and the base
architectural decomposition in multiple heterogeneous ways. The lack of ADL
support for modularly representing such aspectual heterogeneous influences leads to
a number of architectural breakdowns, such as increased maintenance overhead,
reduced reuse capability, and architectural erosion over the lifetime of a system. On
the other hand, software architects should not be burdened with a plethora of new
ADL abstractions directly derived from aspect-oriented implementation techniques.
However, most aspect-oriented ADLs rely on a heavyweight approach that mirrors
programming languages concepts at the architectural level. In addition, they do not
naturally support heterogeneous architectural aspects and proper resolution of aspect
interactions. This paper presents AspectualACME, a simple and seamless extension
of the ACME ADL to support the modular representation of architectural aspects
and their multiple composition forms. AspectualACME promotes a natural blending
of aspects and architectural abstractions by employing a special kind of architectural
connector, called Aspectual Connector, to encapsulate aspect-component connection
details. We have evaluated the applicability and scalability of the AspectualACME
features in the context of three case studies from different application domains.

Keywords: Architecture Description Languages, Aspect-Oriented Software
Development, Architectural Connection.

1. Introduction

Aspect-Oriented Software Development (AOSD) [8] is emerging as a promising
technique to promote enhanced modularization and composition of crosscutting concerns
through the software lifecycle. At the architectural level, aspects provide a new
abstraction to represent concerns that naturally cut across modularity units in an
architectural description, such as interfaces and layers [1, 6, 9, 15]. However, the
representation of architectural aspects is not a straightforward task since they usually
require explicit representation mechanisms to address the heterogeneous manifestation of
some widely-scoped properties, such as error handling strategies, transaction policies, and
security protocols [5, 6,,10, 11]. By heterogeneous manifestation of widely-scoped
properties – or , simply, heterogeneous crosscutting –, we mean that some properties
impact multiple points in a software system, but the behavior that is provided at each of
those points is different. Such architectural crosscutting concerns may interact with the
affected modules in a plethora of different ways. Moreover, aspects may interact with
each other at well-defined points in an architectural description. Hence, it is imperative to
provide software architects with effective means for enabling the modular representation
of aspectual compositions.

Software Architecture Description Languages (ADLs) [16] have been playing a
central role on the early systematic reasoning about system component compositions by
defining explicit connection abstractions, such as interfaces, connectors, and
configurations. Some Aspect-Oriented Architecture Description Languages (AO ADLs)
[19-22] have been proposed, either as extensions of existing ADLs or developed from
scratch employing AO abstractions commonly adopted in programming frameworks and
languages, such as aspects, join points, pointcuts, advice, and inter-type declarations.
Though these AO ADLs provide interesting first contributions and viewpoints in the field,
there is little consensus on how AOSD and ADLs should be integrated, especially with
respect to the interplay of aspects and architectural connection abstractions [1, 6, 24, 17].
In addition, such existing proposals typically provide heavyweight solutions [1, 25],
making it difficult their adoption and the exploitation of the available tools for supporting
ADLs. More importantly, they have not provided mechanisms to support the proper
modularization of heterogeneous architectural aspects and their compositions.

This paper present AspectualACME, a general-purpose aspect-oriented ADL that
enhances the ACME ADL [14] in order to support improved composability of
heterogeneous architectural aspects. The composition model is centered on the concept of
aspectual connector, which takes advantage of traditional architectural connection
abstractions – connectors and configuration – and extends them in a lightweight fashion to
support the definition of some composition facilities such as: (i) heterogeneous
crosscutting interfaces at the connector level, (ii) a minimum set of aspect interaction
declarations at the attachment level, and (iii) a quantification mechanism for attachment
descriptions. Our proposal does not create a new aspect abstraction and is strictly based on
enriching the composition semantics supported by architectural connectors instead of

introducing elements that elevate programming language concepts to the architecture
level. This paper also discusses the applicability and scalability of the proposed ADL
enhancements in the context of three case studies from different domains, and the
traceability of AspectualACME models to detailed aspect-oriented design models.

The remainder of this paper is organized as follows. Section 2 introduces the case
study used through the paper, and illustrates some problems associated with the lack of
explicit support for modularizing heterogeneous architectural aspects and their
interactions. Section 3 presents AspectualACME. Section 4 describes the evaluation of
our approach. Section 5 compares our proposal with related work. Finally, Section 6
presents the concluding remarks and directions for future work.

2. Health Watcher: A Case Study

In this section we present the basic concepts of the ACME ADL [14] (Section 2.1) and
discuss the architecture design of the case study that we are going to use as running
example through the paper (Section 2.2), with emphasis on the heterogeneous crosscutting
nature of some architectural concerns (Section 2.3) and their interactions (Section 2.4).

2.1 ACME in a Nutshell

ACME is a general purpose ADL proposed as an architectural interchange language.
Architectural structure is described in ACME with components, connectors, systems,
attachments, ports, roles, and representations. Components are potentially composite
computational encapsulations that support multiple interfaces known as ports. Ports are
bound to ports on other components using first-class intermediaries called connectors
which support the so-called roles that attach directly to ports. Systems are the abstractions
that represent configurations of components and connectors. A system includes a set of
components, a set of connectors, and a set of attachments that describe the topology of the
system. Attachments define a set of port/role associations. Representations are alternative
decompositions of a given element (component, connector, port or role) to describe it in
greater detail. Properties of interest are <name, type, value> triples that can be attached to
any of the above ACME elements as annotations. Properties are a mechanism for
annotating designs and design elements with detailed, generally non-structural,
information. Architectural styles define sets of types of components, connectors,
properties, and sets of rules that specify how elements of those types may be legally
composed in a reusable architectural domain. The ACME type system provides an
additional dimension of flexibility by allowing type extensions via the extended with
construct. These ACME concepts are illustrated through this paper.

2.2 Health Watcher Architecture

The HealthWatcher (HW) system is a Web-based information system developed by the
Software Productivity research group from the Federal University of Pernambuco [27]. It
supports the registration of complaints to the health public system. Figure 1 illustrates a
partial, simplified ACME [14] textual and graphical representation of the HW
architectural description, which combines a client-server style with a layered style [30]. It
is composed of five main architectural concerns: (i) the GUI (Graphical User Interface)
component provides a Web interface for the system, (ii) the Distribution component
externalizes the system services at the server side and support their distribution to the
clients, (iii) the Business component defines the business elements and rules, (iv) the
TransactionManager and Data components address the persistency concern by storing the
information manipulated by the system, and (v) the ErrorHandling component which is
charge of supporting forward error recovery through exception handling.

Figure 1 also illustrates a set of provided/required ports and connectors which make
explicit the interactions between the architectural components. The saveEntity required port
from the GUI component, for example, is linked to the distributedInterface provided port
from the Distribution component by means of a connector. Despite many of the
interactions between the architectural components have been appropriately represented
using the port and connector abstractions, it is not possible to use these common ADL
abstractions to represent the crosscutting relationships between two component services.
Consider, for example, the transactionService provided port of the Transaction Manager
component. It affects the execution of the savingService provided port of the Business
component, by delimiting the occurrence of a business transaction (operations of begin,
end and rollback transaction) before and after the execution of every operation invoked on
savingService port. There is no existing abstraction in current ADLs which explicitly
captures this crosscutting semantic between architectural component services. Because of
lack of support to represent such kinds of crosscutting interactions between components,
Figure 1 alternatively models it by defining the useTransaction required port. This
description, however, does not make explicit the existence of crosscutting relationships
between the components.

2.3 Heterogeneous Architectural Crosscutting

Exception handling is considered a widely-scoped influencing concern in the HW
architectural specification [28], which is mostly realized by the Error Handling
component. This component consists of the system exception handlers, and it provides the
services in charge of determining at runtime the proper handler for each of the exceptions
exposed by the system components, such as Distribution, Persistence [24], and
TransactionManager. In fact, Figure 1 shows that the Error Handling component has a
crosscutting impact on the HW architecture since it affects the interfaces of several
components in the layered decomposition. Almost all the architectural interfaces need to

expose erroneous conditions, which in turn need to be handled by the error handling
strategy. Figure 1 gives some examples of exceptional interfaces in the component’s ports
savingService and distributedInterface. Hence, the broadly-scoped effect of this component
denotes its crosscutting nature over the modular architecture structure of the HW system.

PERSISTENCE

TRANSACTION
MANAGER

GUI

DISTRIBUTION

BUSINESS

DATA

requestFacade

factoryFacade

saveEntity

distributedInterface

requestDistributedFacade

getFacade

saveDistributedEntity

savingService

useTransaction

transService

initPersistence

initPersistenceService

saveInfo

savingInfoService

ERROR HANDLING

Retrial

Termination

handler
Search

distributeInterface
{

save(info);
transactionExceptionalEvent;
repositoryExceptionalEvent;
communicationExceptionalEvent;

}

savingService
{

save(info);
transactionExceptionEvent();
repositoryExceptionEvent();

}

ATTACHMENTS
Distribution.distributedService to Retrial.target
Retrial.handler to ErrorHandling.handlerSearch
Business.savingService to Termination.target
Termination.handler to ErrorHandling.handlerSearch
TransactionMan.transactionService to Termination.target
Termination.handler to ErrorHandling.handlerSearch
Business.savingService to BackwardRecovery.target
BackwardRecovery.action to TransactionMan.transService
…

Termination

Bac
kw

ard

Rec
ove

ry

Figure 1. Error Handling in the HW Architecture: A Heterogeneous Crosscutting Concern

However, the influence of this crosscutting concern is not exactly the same over each
affected HW component; it crosscuts a set of interfaces in heterogeneous ways, depending
on the way the exception should be handled in the target component. In the HW system,
there is at least two forms of interaction between a faulty component and the Error
Handling component: the termination protocol (Termination connector), and the retry
protocol (Retrial connector). However, the heterogeneous crosscutting composition of
ErrorHandling and the affected architectural modules can not be expressed in a modular
way. For instance, the connector Termination needs to be replicated according to the
number of affected interfaces, and separated connectors for expressing the Retrial
collaboration protocols need to be created. For simplification, Figure 1 only contains some
examples of those connectors; the situation is much worse in the complete description of
the HW architecture since almost all the interfaces expose exceptions. Also the attachment
section contains a number of replicated, similar attachments created only for the sake of

combining the replicated error handling connectors (Figure 1). Finally, the “provided”
interface handlingStrategy needs to be connected with the “provided” interfaces containing
exceptional events, which is not allowed in conventional ADLs.

2.4 Aspect Interaction
In addition, there are other architectural breakdowns when using conventional ADLs to
define interactions between crosscutting concerns. For example, the TransactionManager
is another architectural aspect that crosscuts several elements in the Business layer in
order to determine the interfaces that execute transactional operations. Most of these
affected interfaces are also connected with the error handling connectors (Section 2.2).
Figure 1 illustrates this situation for the savingService interface. The problem is that it is
impossible to express some important architectural information and valid architectural
configurations involving the interaction of the ErrorHandling and TransactionManager
aspects. For example, although the attachments section allows the architect to identify that
both aspects are actuating over the same architectural elements, it is not possible to
declare which aspect has precedence over others affecting the same interfaces or whether
only one or both of the backward and forward recovery strategies should be used.

3. AspectualACME

This Section presents the description of AspectualACME. We present the ACME
extension to support the modeling of the crosscutting interactions (Section 3.1) and the
definition of a quantification mechanism (Section 3.2). This section ends with a discussion
about the AspectualACME support for modeling heterogeneous architectural aspects
(Section 3.3) and aspect interaction (Section 3.4).

3.1 Aspectual Connector

As software architecture descriptions rely on a connector to express the interactions
between components, an equivalent abstraction must be used to express the crosscutting
interactions. We define an aspectual component as a component that represents a
crosscutting concern in a crosscutting interaction. The traditional connector is not enough
to model the crosscutting interaction because the way that an aspectual component
composes with a regular component is slightly different from the composition between
regular components only. A crosscutting concern is represented by provided services of an
aspectual component and it can affect both provided and required services of other
components which can be, in turn, regarded as structural join points [8] at the architectural
level. As discussed in Sections 2.2 and 2.3, since ADL valid configurations are those that
connect provided and required services, it is impossible to represent a connection between
a provided service of an aspectual component and a provided service without extensions

to the traditional notion of architectural connections. Although ACME itself does not
support a syntactic distinction between provided and required ports, this distinction can be
expressed using properties or declaring port types.

In order to express the crosscutting interaction, we define the Aspectual Connector
(AC), an architectural connection element that is based on the connector element but with
a new kind of interface. The purpose of such a new interface is twofold: to make a
distinction between the elements playing different roles in a crosscutting interaction – i.e.,
affected base components and aspectual components; and to capture the way both
categories of components are interconnected. The AC interface contains: (i) base roles,
(ii) crosscutting roles, and (iii) a glue clause. Figure 2 depicts a high-level description of a
traditional connector (Fig. 2a) and an aspectual connector (Fig. 2b).

Connector homConnector = {

 Role aRole1;
 Role aRole2;

}

AspectualConnector homConnector = {
 BaseRole aBaseRole;
 CrosscuttingRole aCrosscuttingRole;
 Glue glueType;

}
(a) Regular connector in ACME (b) Aspectual connector in AspectualACME

Figure 2. Regular and Aspectual Connectors

The base role may be connected to the port of a component (provided or required)
and the crosscutting role may be connected to a port of an aspectual component. The
distinction between base and crosscutting roles addresses the constraint typically imposed
by many ADLs about the valid configurations between provided and required ports. An
aspectual connector must have at least one base role and one crosscutting role. The
composition between components and aspectual components is expressed by the glue
clause. The aspectual glue specifies the way an aspectual component affects one or more
regular components. There are three types of aspectual glue: after, before, and around.
The semantics is similar to that of advice composition from AspectJ [29].

AspectualConnector aConnector = {
 BaseRole aBaseRole1, aBaseRole2;
 CrosscuttingRole aCrosscuttingRole1,
 aCrosscuttingRole2;
 Glue { aCrosscuttingRole1 before aBaseRole1;
 aCrosscuttingRole2 after aBaseRole2; }
}

Figure 3. Heterogeneous aspectual connector.

The glue clause can be simply a declaration of the glue type (Figure 2b), or a block
with multiple declarations, where each relates a crosscutting role, a base role and a
specific glue type (Figure 3). The description of heterogeneous aspectual interactions
(Section 3.3) requires more elaborated glue clauses.

Although the idea of the aspectual connector is derived from the traditional connector,
it is not modeled as a subtype of the traditional connector, since the aspectual connector
can be used in a connection between two provided ports. This would result in an invalid
configuration (ill-formed connection) using the traditional connector and its subtypes.

Figure 4 contains a graphical notation that we propose to represent Aspectual
Connectors. C1 is an aspectual connector that defines a crosscutting and heterogeneous
interaction involving the Aspectual Component, Component 1, and Component 2.

Figure 4. Graphical Notation to the Aspectual Connector

3.2 Quantification Mechanism

A base role of an aspectual connector may be bound to several ports of possibly different
components. These ports represent structural join points that may be affected by aspectual
components. To express these bindings, many attachments should be defined, where each
one binds the same base role instance to a different component port. We propose an
extension to the attachments part of an ACME configuration to allow the use of patterns.
Wildcards such as ‘*’, can be used in attachments to concisely describe sets of ports to be
attached to the same base role.

System Example = {
Component aspectualComponent = { Port aPort }
AspectualConnector aConnector = {

 BaseRole aBaseRole;
 CrosscuttingRole aCrosscuttingRole;
 glue glueType;

}
Attachments {

aspectualComponent.aPort to aConnector.aCrosscuttingRole
aConnector.aBaseRole to *.prefix* }

}
Figure 5. ACME Description of the Composition .

Aspectual
Component
Aspectual
Component

C1

p1

p2

cr1.1

cr1.2 Component 2

Component 1Component 1Component 1

Component 2

br1.1

br1.2

p3

r1

Provided Port

Required Port

Key: Crosscutting role

Base role

Provided Port

Required Port

Key: Crosscutting role

Base role

Aspectual
Component
Aspectual
Component

C1

p1

p2

cr1.1

cr1.2 Component 2

Component 1Component 1Component 1

Component 2

br1.1

br1.2

p3

r1
Aspectual

Component
Aspectual
Component

C1

p1

p2

cr1.1

cr1.2 Component 2

Component 1Component 1Component 1

Component 2

br1.1

br1.2

p3

r1
Component 2

Component 1Component 1Component 1Component 1Component 1Component 1Component 1

Component 2

br1.1

br1.2

p3

r1

Provided Port

Required Port

Key: Crosscutting role

Base role

Provided Port

Required Port

Key: Crosscutting role

Base role

The attachment “aConnector.aBaseRole to *.prefix*” (Figure 5) specifies the
binding between aConnector.aBaseRole and ports from the “set of component
ports where the port name begins with prefix”. By avoiding explicit enumeration of
ports and definition of multiple attachments, this extension promotes economy of
expression and improves writability in architectural configurations.

3.3 Heterogeneous Architectural Aspects

Figure 2b presented a simple aspectual connector that has a homogeneous crosscutting
impact on the architectural decomposition. Figure 3 shows how AspectualACME supports
heterogeneous crosscutting. Multiple base and crosscutting roles can be used to define the
different ways a crosscutting concern can affect the component interfaces. Different or
similar glue types can be used in the definition of the pairs of base and crosscutting roles.
Figure 6a is an example of heterogeneous aspectual connector for the error handling
concern discussed in Section 2.2. Note that the two ways of interacting with the
ErrorHandling component – i.e. retrial and termination – can now be modularized in a
single architectural element. In addition, quantification mechanisms can be used in the
attachments specification to describe in single statements which component ports are
affected by those two crosscutting roles specified in the ForwardRecovery connector (Figure
6b).

AspectualConnector ForwardRecovery = {

 BaseRole toBeTerminatedTarget, toBeRetriedTarget;
 CrosscuttingRole termination, retrial;
 Glue {termination after toBeTerminatedTarget;
 retrial after toBeRetriedTarget;
 }

}

(a) an example of heterogeneous aspectual connector

Attachments {
ForwardRecovery.toBeTerminatedTarget to *.*Service

 ForwardRecovery.termination to ErrorHandling.handlerSearch
 Distribution.distributedInterface to
 ForwardRecovery.toBeRetriedTarget
 ForwardRecovery.retrial to ErrorHandling.handlerSearch
 ...// to be continued in Figure 5b
}

(b) specification of join points using AspectualACME quantification mechanisms

Figure 6. Supporting Heterogeneous Crosscutting

Figure 7 presents a graphical notation for the HW example, where the ForwardRecovery is
defined as a heterogeneous aspectual connector. The yellow vertical rectangle indicates
that ForwardRecovery is a heterogeneous aspectual connector.

Figure 7. An Example of Aspectual Connector: Forward Recovery

3.4 Aspect Interaction
AspectualACME also allows the specification of aspectual architecture-level interaction
between two or more aspectual connectors which have join points in common. Such
interactions are declared in the configuration description since the attachments part is the
place where join points are identified. The ADL supports two basic kinds of composition
operators: precedence and XOR (Figure 8b). The architect can specify that the precedence
is either valid for the whole architecture or only at specific join points. Figure 8b
illustrates both situations: (i) in general, the Retrial connector has precedence over the
Termination connector at all the join points they have in common, and (ii) at the port
savingService, it is always tried first forward recovery through termination-based error
handling and, second, the backward recovery with abort in case the exception was not
successfully handled. When there is a precedence relation between two connectors X and
Y, where the execution of Y depends on the satisfaction of a condition associated with X,
the architect can explicitly document it using a condition statement together with an
around glue in X. Figure 8b also illustrates the use of XOR: at a given join point, only one

PERSISTENCE

TRANSACTION
MANAGER

GUI

DISTRIBUTION

BUSINESS

DATA

requestFacade

factoryFacade

saveEntity

distributedInterface

requestDistributedFacade

getFacade

saveDistributedEntity

savingService

transService

initPersistence saveInfo

savingInfoService

ERROR HANDLING

Retrial

Termination

handlerSearch

Bac
kw

ard

Rec
ove

ry

Fo
rw

ar
d

R
ec

ov
er

y
toBeTerminatedTarget

toBeTerminatedTarget

toBeRetriedTarget

initPersistenceService

useTransaction

PERSISTENCE

TRANSACTION
MANAGER

GUI

DISTRIBUTION

BUSINESS

DATA

requestFacade

factoryFacade

saveEntity

distributedInterface

requestDistributedFacade

getFacade

saveDistributedEntity

savingService

transService

initPersistence saveInfo

savingInfoService

ERROR HANDLING

Retrial

Termination

handlerSearch

Bac
kw

ard

Rec
ove

ry

Fo
rw

ar
d

R
ec

ov
er

y
toBeTerminatedTarget

toBeTerminatedTarget

toBeRetriedTarget

initPersistenceService

useTransaction

of the either termination or retrial should be non-deterministically chosen. Finally, it is
important to highlight that the elements participating in a precedence or XOR clause can
be components instead of connectors: it means that the relationship applies to all the
connectors involving the two components (see Section 4.1).

AspectualConnector BackwardRecovery = {

BaseRole target;
CrosscuttingRole transBegin, transAbort, transCommit;
Glue {transBegin before target;
 transCommit after target;
 transAbort after target;
}

}

(a) an example of aspectual connector

Attachments {
 //continued from Figure 4c

Business.savingService to BackwardRecovery.target
 BackwardRecovery.transBegin to TransactionManager.transService

BackwardRecovery.transCommit to TransactionManager.transService
BackwardRecovery.transAbort to TransactionManager.transService

 Distribution.distributedInterface to ForwardRecovery.retriedTarget
 ForwardRecovery.Retrial to ErrorHandling.handlerSearch
 Precedence {
 ForwardRecovery.retrial, ForwardRecovery.termination;
 savingService:
 ForwardRecovery.termination, BackwardRecovery.transAbort;
 }
 XOR {
 ForwardRecovery.resumption, ForwardRecovery.termination;
 }
}

(b) specification aspectual interactions

Figure 8. Supporting Aspect Interaction Declarations

4. Evaluation
This Section presents the evaluation of AspectualACME in three case studies with respect
to the usefulness of the proposed composition enhancements. We have evaluated the
applicability and scalability of the notion of Aspectual Connectors (Section 3.1) and the
extensions provided in AspectualACME (Sections 3.2 to 3.4) in the context of three case
studies: the HealthWatcher system [28] (Section 2), a context-sensitive tourist information
guide (TIG) system [9, 1], and AspectT – a multi-agent system framework [10, 11, 12].
As indicated in Table 1, the TIG architecture encompassed the manifestation of three
heterogeneous architectural aspects: replication, security, and performance. The AspectT
architecture included five main heterogeneous architectural aspects: autonomy,

adaptation, learning, code mobility, and interaction. The choice of such case studies was
driven by the heterogeneity of the aspects, and the different ways they affect the dominant
architectural decomposition and each other.

Our approach has scaled up well in all the case studies mainly by the fact that
AspectualACME follows a symmetric approach, i.e. there is no explicit distinction
between regular components and aspectual components. The modularization of the
crosscutting interaction into connectors facilitated, for example, the reuse of the
persistence component description from the first to the second case study. Persistence was
a crosscutting concern only in the HealthWatcher architecture (Figure 7). Hence, we have
not applied an aspectual connector in the TIG architectural specification. The definition of
quantification mechanisms (Section 3.2) in attachments also has shown to be the right
decision choice as it improves the reusability of connectors. The other reason was that is
was easier to determine how multiple interacting aspects affect each other by looking in a
single place in the architectural description – i.e. the attachments specification.

Aspect Interactions Case Study Heterogeneous
Aspects # Total Some Examples

Health Watcher Error Handling,
Transaction Management,
Distribution

13 Precedence: Error Handling, Transaction Manag.
XOR: ForwardRecovery.resumption, Forward
 Recovery.termination

TIG Replication, Performance,
Security

7 Precedence: Security, Performance
XOR: Replication.passive, Replication.active

AspectT Autonomy, Adaptation,
Learning, Code Mobility,
Interaction

15 Precedence: Interaction, Autonomy, Adaptation
Precedence: Autonomy.execution,
 Autonomy.proactiveness
XOR: Mobility, Collaboration

Table 1. Examples of Heterogeneous Architectural Aspects and their Interactions

Table 1 presents a summary on how AspectuaACME has been used through the
three case studies to capture certain heterogeneous architectural aspects. It also describes
how many aspectual interactions have been explicitly captured in those studies, followed
by some examples of Precedence and XOR interactions. In our evaluation, we have
noticed that two or more crosscutting roles of the same heterogeneous aspectual connector
can naturally be linked to the same join point (a component port). Hence, the proposed
aspect interaction mechanisms (Section 3.4) can be used to define their relationships. For
example, Table 1 shows a XOR relationship in the HW architecture involving two
crosscutting roles of the same connector: ForwardRecovery. Other interesting possibilities
have been also explored in the case studies, such as declaring that all the connectors of
Error Handling aspect have precedence over all the connectors of Transaction
Management in the HW system. Also, we have observed that the explicit definition of
such aspectual relationships in the architectural stage enhances the documentation of
design choices that need to be observed later on the design of applications, and variation
points in a certain product-line design [31].

5. Related Work
There is a diversity of viewpoints on how aspects (and generally concerns) should be
modeled in ADLs. However, so far, the introduction of AO concepts into ADLs has been
experimental in that researchers have been trying to incorporate mainstream AOP
concepts into ADLs. In contrast, we argue that most of existing ADLs abstractions are
enough to model crosscutting concerns. For this purpose, it is just necessary to define a
new configuration element based on the traditional connector concept.

Most AO ADLs are different from AspectualACME because they introduce a lot of
concepts to model AO abstractions (such as, aspects, joinpoints, and advices) in the ADL.
Navasa et al 2005 [19] present a proposal to introduce the aspect modeling in the
architecture design phase. Aspects are used to facilitate the architecture evolution by
allowing easily either to modularize crosscutting concerns, or to incorporate new
requirements in the system architecture. The composition between the architectural
components and the aspects is based on an exogenous control-driven co-ordination model.
The incorporation of the authors’ model to existing ADLs, such as ACME, is still under
investigation. Navasa et al 2002 [18] do not propose an AO ADL, but define a set of
requirements which current ADLs need to address to allow the management of
crosscutting concerns using architectural connection abstractions. The requirements are:
(i) definition of primitives to specify joinpoints in functional components; (ii) definition of
the aspect abstraction as a special kind of component; and (iii) specification of connectors
between joinpoints and aspects. The authors suggest the use of existing coordination
models to specify the connectors between functional components and aspects. Differently
from our lightweight approach, they suggest the definition of AO specific ADL
constructs. Furthermore, they do not mention in their proposal the need for supporting
important AO properties such as quantification, interaction between aspects and
heterogeneous aspects.

DAOP-ADL [22] defines components and aspects as first-order elements. Aspects can
affect the components’ interfaces by means of: (i) an evaluated interface which defines the
messages that aspects are able to intercept; and (ii) a target events interface responsible for
describing the events that aspects can capture. The composition between components and
aspects is supported by a set of aspect evaluation rules. They define when and how the
aspect behavior is executed. Besides, they also include a number of rules concerning with
interaction between aspects. With regards to precedence, aspects can be evaluated in two
ways: sequentially or concurrently. In addition, aspects can share information using a list
of input and/or output global properties. Nevertheless, DAOP-ADL does not provide
mechanisms to support quantification at the attachment level and explicit modularization
of heterogeneous architectural aspects.

Similarly to our proposal, FuseJ [26] defines a unified approach between aspects and
components, that is, FuseJ does not introduce a specialized aspect construct. It provides
the concept of a gate interface that exposes the internal implementation functionality of a
component and offers access-point for the interactions with other components. In a similar
way to our proposal, FuseJ concentrates the composition model in a special type of

connector that extends regular connectors by including constructs to specify how the
behaviour of one gate crosscuts the behaviour of another gate. However, differently from
our work, our compositional model works in conjunction with the component traditional
interface while FuseJ defines the gate interface that exposes internal implementation
details of a component. However, FuseJ provides explicit support neither for defining the
interaction between aspects nor for modularizing heterogeneous aspects. Moreover, it only
allows quantification over the same gate methods. In addition, FuseJ does not work with
the notion of configuration. It includes the definition of the connection inside the
connector itself. This contrasts with the traditional way that ADLs works – that declares a
connector and binds connectors’ instances at the configuration section.

Pessemier et al [21] defines the Fractal Aspect Component (FAC), a general model for
mixing components and aspects. Their aim is to promote the integration between aspect-
oriented programming (AOP) and component-based software engineering (CBSE)
paradigms. FAC model proposes three new abstractions: (i) aspect components – that
modularize a crosscutting concern by implementing the service of a regular component as
a piece of an around advice; (ii) aspect bindings – which define bindings between regular
and aspectual components; and (iii) aspect domains – that represents the reification of
regular components affected by aspect components. FAC model is implemented under
Fractal [2], an extensible and modular component model, and its respective ADL. There
are similarities between the aspect component from the FAC model and our aspectual
connector. Both are used to specify crosscutting concerns existing in the system
architecture. The aspect bindings of FAC define a link between a regular and an aspect
component. This latter can modify/extend the behavior of the former by affecting its
exposed join points. In our approach, this is addressed by the definition of: (i) base and
crosscutting roles – which allow specifying the binding between two components; and (ii)
the glue clause – that define the semantic of crosscutting composition between them.

6. Conclusions and Future Work

This paper has addressed current issues related to aspect-oriented architecture modeling
and design. The analysis of heavyweight solutions provided by some AO ADLs yielded to
the design of AspectualACME, a general-purpose aspect-oriented ADL that supports
improved composability of heterogeneous architectural aspects. The composition model is
centered on the concept of aspectual connector, which takes advantage of traditional
architectural connection abstractions – connectors and configuration – and, based on
them, provides a lightweight support for the definition of some composition facilities such
as: (i) heterogeneous crosscutting interfaces at the connector level, (ii) a minimum set of
aspect interaction declarations at the attachment level, and (iii) a quantification
mechanism for attachment descriptions. In this way, AspectualACME encompasses a
reduced set of minor extensions, thereby avoiding the introduction of additional
complexity in architectural descriptions. The paper also discussed the applicability and

scalability of the proposed ADL enhancements in the context of three case studies from
different domains. Our approach has scaled up well in all the case studies mainly by the
fact that AspectualACME follows a symmetric approach, i.e. there is no explicit
distinction between regular components and aspectual components. Also, we have
observed that explicit aspect interaction declarations in the architectural stage enhances
the documentation of design choices that need to be observed later on the design of
applications.

As future work, we plan to further elaborate on several issues related to the
expressiveness of the AspectualACME language, as well as on traceability issues.
Architectural descriptions in AspectualACME can be mapped to aspect-oriented design
languages that support aspect-oriented modeling at the detailed design level, such as
aSideML [5] and Theme/UML [8]. Tools need to be developed to support the creation of
AspectualACME descriptions and their transformation to design level descriptions. Once
these tools are available, designers may fully exploit the benefits from the aspect-oriented
ADL and explicitly “design” aspectual connectors.

Acknowledgments

This work has been partially supported by CNPq-Brazil under grant No.479395/2004-7
for Christina. Alessandro is supported by European Commission as part of the grant IST-
2-004349: European Network of Excellence on Aspect-Oriented Software Development
(AOSD-Europe), 2004-2008. This work has been also partially supported by CNPq-Brazil
under grant No.140252/03-7 for Uirá, and grant No.140214/04-6 for Cláudio. The authors
are also supported by the ESSMA Project under grant 552068/02-0.

References

1. Batista, T., Chavez, C., Garcia, A., Sant’Anna, C., Kulesza, U., Rashid, A., Filho, F. Reflections on
Architectural Connection: Seven Issues on Aspects and ADLs. Workshop on Early Aspects ICSE'06,
pages 3-9, May 2006, Shanghai, China.

2. Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., Stefani, J.-B. An open component model and its
support in Java. In Proc. of the Intl Symposium on Component-based Software Engineering, Edinburgh,
Scotland, May 2004.

3. Cacho, N., Sant'Anna, C., Figueiredo, E., Garcia, A., Batista, T., Lucena, C. Composing Design
Patterns: A Scalability Study of Aspect-Oriented Programming. Proc. 5th Intl. Conference on Aspect-
Oriented Software Development (AOSD'06), Bonn, Germany, 20-24 March 2006.

4. Chavez, C. A Model-Driven Approach for Aspect-Oriented Design. PhD thesis, Pontifícia Universidade
Católica do Rio de Janeiro, April 2004.

5. Chavez, C., Garcia, A., Kulesza, U., Sant’Anna, C., Lucena, C. Taming Heterogeneous Aspects with
Crosscutting Interfaces. Journal of the Brazilian Computer Society, vol.12, N.1, June 2006.

6. Chitchyan, R., et al. A Survey of Analysis and Design Approaches. AOSD-Europe Report D11, May
2005.

7. Clarke, S. and Walker, R. Generic aspect-oriented design with Theme/UML. In [8], pages 425-458.

8. Filman, R.,Tzilla E., Siobhan Clarke, and Mehmet Aksit, editors. Aspect-Oriented Software
Development. Addison-Wesley, Boston, 2005.

9. Garcia, A., Batista, T., Rashid, A., Sant’Anna, C. Driving and Managing Architectural Decisions with
Aspects. Proc. SHARK.06 Workshop at ICSR.06, Turin, June, 2006.

10. Garcia, A., Kulesza, U., Lucena, C. Aspectizing Multi-Agent Systems: From Architecture to
Implementation. In: Software Engineering for Multi-Agent Systems III, Springer-Verlag, LNCS 3390,
December 2004, pp. 121-143.

11. Garcia, A., Lucena, C. Taming Heterogeneous Agent Architectures with Aspects. Communications of
the ACM, March 2006. (accepted)

12. Garcia, A., Lucena, C., Cowan, D. Agents in Object-Oriented Software Engineering. Software: Practice
& Experience, Elsevier, Volume 34, Issue 5, April 2004, pp. 489-521.

13. Garcia, A., Sant'Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., Staa, A. Modularizing Design
Patterns with Aspects: A Quantitative Study. Transactions on Aspect-Oriented Software Development,
Springer, LNCS, pp. 36 - 74, Vol. 1, No. 1, February 2006.

14. Garlan, D. et al. ACME: An Architecture Description Interchange Language, Proc. CASCON'97, Nov.
1997.

15. Krechetov, I., Tekinerdogan, B., Garcia, A., Chavez, C., Kulesza, U. Towards an Integrated Aspect-
Oriented Modeling Approach for Software Architecture Design. 8th Workshop on Aspect-Oriented
Modelling (AOM.06), AOSD.06, Bonn, Germany.

16. Medvidovic, N., Taylor, R. A Classification and Comparison Framework for Software Architecture
Description Languages. IEEE Trans. Soft. Eng., 26(1):70-93, Jan 2000.

17. Mehta N., Medvidovic, N. and Phadke, S. Towards a Taxonomy of Software Connectors. Proc. of the
22nd Intl Conf. on Software Engineering (ICSE), Limerick, Ireland, pp. 178 – 187, 2000.

18. Navasa, A. et al. Aspect Oriented Software Architecture: a Structural Perspective. Workshop on Early
Aspects, AOSD’2002, April 2002.

19. Navasa, A., Pérez, M. A., Murillo, J. M. Aspect Modelling at Architecture Design. EWSA 2005, pp.
41-58, LNCS 3527, Pisa, Italy, 2005.

20. Pérez, J., et al., E. PRISMA: Towards Quality, Aspect-Oriented and Dynamic Software Architectures. In
Proc. of 3rd IEEE Intl Conf. on Quality Software (QSIC 2003), Dallas, Texas, USA, November (2003).

21. Pessemier, N., Seinturier, L., Coupaye, T., Duchien, L. A Model for Developing Component-based and
Aspect-oriented Systems. In 5th International Symposium on Software Composition (SC'06), Vienna,
Austria, March 2006.

22. Pinto, M., Fuentes, L., Troya, J., "A Dynamic Component and Aspect Platform”, The Computer Journal,
48(4):401-420, 2005.

23. Quintero, C., et al. Architectural Aspects of Architectural Aspects. Proc. of European Workshop on
Software Architecture (EWSA2005)- Pisa, Italy, June 2005, LNCS 3527.

24. Rashid, A., Chitchyan, R. Persistence as an Aspect. Proc. of the 2nd Intl. Conf. on Aspect-Oriented
Software Development (AOSD'03), USA, March 2003.

25. Rashid, A., Garcia, A., Moreira, A. Aspect-Oriented Software Development Beyond Programming.
Proc. of ICSE.06, Tutorial Notes, May 2006, Shanghai, China.

26. Suvée, D., De Fraine, B. and Vanderperren, W. (2005) FuseJ: An architectural description language for
unifying aspects and components. Software-engineering Properties of Languages and Aspect
Technologies Workshop @ AOSD2005.

27. SPG – Software Productivity Group at UFPE. http://twiki.cin.ufpe.br/twiki/bin/view/SPG, 2006.
28. Soares, S., Laureano, E. and Borba, P.. Implementing Distribution and Persistence Aspects with AspectJ.

In Proc. of OOPSLA'02, Seattle, WA, USA, 174-190, November 2002. ACM Press.
29. The AspectJ Team. “The AspectJ Programming Guide”. http://eclipse.org/aspectj/
30. Kulesza, U., et al. Quantifying the Effects of Aspect-Oriented Programming: A Maintenance Study.

Proc. of the Intl Conf. on Software Maintenance (ICSM’06), Philadelphia, USA, September 2006.
31. Kulesza, U., Alves, V., Garcia, A., Lucena, C., Borba, P. Improving Extensibility of Object-Oriented

Frameworks with Aspect-Oriented Programming. Proc. of the 9th Intl Conf. on Software Reuse
(ICSR’06), Turin, Italy, June 2006.

