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1. Introduction

It is interesting that many important properties o f sample
functions o f G.p.') hold with probability 0 or 1. For some class
o f G.p.'s the modulus of continuity o f sample functions is one of
such properties. Let {X (s ); se DI be a  real valued G .p . with a
parameter space D .  We shall throughout this paper assume the
following.

(A. 1) D  is  a compact convex subset o f  N—dimensional
Euclidean space containing an open set with the usual Euclidean

metric Ils— t112 =

(A .2 ) {X (s ) ;  s e D }  has the mean E [X (s ) ]= 0  and with
stationary increment v E[(X(s)— X(t))1=c(Ils — t11), where 0-2(x)
(0-(x) 0 ) is concave near the origin and 0-(x) is a non-decreasing
continuous function that satisfies

cr(e- ' ) d x <  +  .
0

This condition guarantees that the G .p . has continuous sample
functions by modification due to the theorem o f X. Fernique [5].
So we shall assume that the G.p. has continuous sample functions.

Now we are led to introduce the concept of upper class and
lower class with respect to  the modulus o f uniform continuity
or local continuity o f sample functions.

Let q (x ) be a  non-increasing continuous function satisfying

1) G_ p. m eans G aussian process.
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lim p(x)= ± 00• Then, after P. Lévy [10], we shall say that (p(x)r
belongs to the upper class ct.? (X ) with respect to the modulus of
unifrom continuity if  there exists a positive constant 8(0)), with
probability 1, such that I X (s )-X (t)I < 0 -(1 1 s -til)9 9 (iis -til)  holds for
any s, t with M s-1-11<SM . We shall also say that q (x )  belongs
to the lower class l ' " (X )  with respect to the modulus of uniform
continuity i f  there exists no such positive constant with pro-
bability 1. In the same manner we can define the upper class
cU i(X ) and the lower class _LA X ) with respect to  the modulus
of local continuity at any fixed point.

Investigations of the Holder continuity o f  sample functions
are formulated from our standpoint as follows : Sample functions
of a G .p. are said to be uniform Holder continuous o f modulus
yo(x) if and only if cy9(x)EcIAX) or e _L (X ) according as c>1
or 0 < c< 1  respectively. In a similar manner we can define the
local Holder continuity of modulus p(x). For some class o f G.p.'s,
however, we can only know properties that are weaker than the
Holder continuity in our sense, that is cep(x)er1J"(X) or £ "(X )
("1.11(X )  o r  _LAX)) provided c> c , or c < c , (c ,> c ,) respectively,
but we emphasize that c, and c, must coincide from Kolmogorov's
0-1 law as is explained in Section 6.

In case of Brownian motion, I. Petrovsky [14] proved the
deciding condition that determines whether 99(x) is of the class
T I(B ) or . f i (B ) (Kolmogorov test). This alternative corresponds
to the regular points for the boundary value problem of the heat
equation. K. L. Chung-P. Erdijs-T. Sirao [3] proved an analogous
deciding condition for uniform continuity. T. Sirao [17] showed
deciding conditions for the case of Brownian motion with multi-
dimensional parameter.

In  this paper we shall give each deciding condition which
determines q_r(X) or £ U ( X )  and ci..11(X )  or _LAX) for a class of
G.p.'s characterized by the conditions on the increment variance
cr(x). That is, Theorems 3 and 7 state that i f  cr(x) is  a  nearly
regular varying function (n.r.v.f. Definition 2 in Section 2), then
so(x) belongs to (0 "(X ) or _L"'"(X )  according as
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1 l
r x x  ' e x p  —  2  cp'(x) f

(1. 2) (P) --- —  dx')
) ] 2 N (p(x)

v log 1/x

converges or diverges respectively. Also 60(x) belongs to ( 1.71(X )
or / 1 (X ) according as

x N ' e x p  —  cpz(x)}
(1.3)/ r ( o - ,    2  xc[ a. (  a - ( X ) \ i N c i 9 ( x )

0 . i ]og(„ 1/ x

converges or diverges respectively.
Recently, T. Sirao-H. Watanabe [18] have treated the G.p.'s

with stationary increments on an interval for which cr'-'(x ) satisfies
the inequality

c f  (log 1/x) 0-2(x) S (log 1/x)0

and is also concave near the origin. Their results have shown
that the upper class and the lower class depend on a  but not on
8 , that is, both classes depend only on the exponent of n.r.v.f.
in  this case. Here arises the question of whether o r  not the
upper and lower classes are the same fo r any two G.p.'s with
increment variances which are n.r.v.f. with the same exponent.
Our theorems, however, state that both classes can be different
even if corresponding cr(x)'s are n.r.v,f. with the same exponent.
For example, le t {X i (t ); 0 ( i = 1 ,  2 ,  3 )  be three G.p.'s with
stationary increments which have increment variances a i (x ) such
that

.71 ( x )  x x -  ,

0-2 (x ) X x - exp {(log 1/x)(log (0 1/x) - 0 1
c7(x) x x - exp {(log 1/x)(log (3) 1/x) - 1 1

(0<a 1/ 2, g, 7>0).

1) By concavity an d  monotonicity o f  a2 ( x ) ,  c (x ) h as  th e  inverse function
near the origin . The integral

- o  
means lim r if a 2 (x )  is  concave a t  (0,

2 , 0

2) 10g 2 )  x —log log x, log x— log log „ _1) x.
3 )  _I"( x ) x g ( s )  means 0< I im fix ) g ( x ) S jiT n f ( x ) ,  g ( x ) < -  .
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Then we have

(1. 4) tir(X i) = cif(X 2) and X IX )  = _E"(X,)

when /3> 1, but these equalities never hold when 0<13<1, and
similarly we get

(1. 5) 9.P(X,) --= L U I ( X 3 )  a n d  _P(X 1)  =

when 7 > 1 , but these equalities never hold when 0<7<1.
T . K aw ad a [8 ] proved an analogous deciding condition in

case of G .p . with increment variance E[(X(s)— X(t))2 1=ils—tir
(0< a < 1) over N-dimensional Euclidean space. Many authers
have investigated the Holder continuity of sample functions [1 ],
131 [19].

W e shall give in  Theorems 1  and 2  the uniform Holder
continuity obtained by M. B. Marcus in case of a G .p . on an
interval. It is remarkable, as is explained in Remarks 1 and 2,
that if 0-(x) is a n.r.v.f. the modulus of uniform Holder continuity
equals N/2 log NAM, where N,(D) is the minimal number o f E-
covering of D .  This fact is valid even i f  D  is some infinite
dimensional compact subset o f a  Hilbert space, (which contains
the results of P. T. Strait [19]).

We shall also give some results on the modulus of local
continuity of sample functions (Section 5).

Our theorems suggest to us that it is useful to investigate
the modulus of continuity of sample functions of G.p.'s under some
classification. Now we shall propose the following classification
of G.p.'s. Let {X(s)} be a G .p. satisfying our assumptions. Set

(1. 6) 6(x) = F,(x)/(7(x) ,

where F o .(x ) = ro o-(xe - u2 )du.

C lass I. {X(s)} belongs to Class I if a(x) is  bounded.

Class II. {X(s)} belongs to Class II if a(x ) is not bounded
but satisfies

(1.7) lim a(x)/ v log 1/x — 0..0
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Class III. {X (s )} belongs to Class HI if u(x) satisfies

(1.8)a ( x ) , s - z . ' log 1/x

Class IV . The rest of the G.p.'s.

We shall briefly discuss in Section 3  the meaning o f our
classification and difference of classes. Also we shall give a classi-
fication if the function 0-(x) is a n.r.v.f. or a n.s.v.f. (Definition
4  in Section 2).

The content of each section is as follows.

1. Introduction.
2. Some notation and some definitions.
3. About our classification.
4. Theorems on the modulus of uniform continuity.
5. Theorems on the modulus of local continuity.
6. Preliminary lemmas.
7. Proofs of Theorems 1 and 2.
8. Proofs of Theorems 3  and 4.
9. Proofs of Theorems 5  and 6.

10. Proofs of Theorems 7  and 8.
1 1 .  Proofs of Propositions 1 -4 .

The author is greatly indebted to Professor T. Sirao, Pro-
fessor H. Watanabe and Dr. I. Kubo for sending him their un-
published papers.

2. Some notation and some definitions

First we shall give the following modified definitions of regular
varying function with exponent a > 0 , nearly regular varying
function, slowly varying function, and nearly slowly varying
function due to J. Karam ata [7].

Definition 1. Let r (x ) be a positive continuous function de-
fined on a semi-closed interval (0, uo ]. Then r (x )  is called a
regular varying function with exponent a  (> 0 ) (r.v.f. (a)) if it
holds lim r (tx )Ir (x )= P  for any t> 0.
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Definition 2. We shall say that f ( x )  is  a  nearly regular
varying function with exponent a  (n.r.v.f . (a )) if there exists a
r.v.f . (a ) r(x ) such that r(x);-•-", f(x).

Definition 3. Let s(x ) be a function defined in Definition 1.
Then s(x ) is called a  slowly varying function (s.v.f .) if it holds
lim s(tx )/s(x )=1 for any t>0.

0

Definition 4. W e shall say that g (x )  is  a  nearly slowly
varying function (n.s.v .f .) if there exists a  s.v .f . s(x ) such that
s(x)s,---; g(x).

It is well known (for instance [20]) that r(x ) is a r.v .f . (a)
if and only if there exists a s.v.f. s(x) such that r(x )=es(x )  and
s(x ) is expressible as follows :

(2. 1) s(x) =  b(x) exp 1— Vx
 a ( u ) dul (cE (0, u0)),

where a(x) and b(x) are continuous functions such that lim a(x )=0

and llin b(x)>0.

Definition 5. We shall say the function a(x) of (2.1) a struc-
ture function of the s.v .f . or the n.s.v.f..

The following definition is useful to describe our assertions.

Definition 6. For two functions f (x )  and g(x ) defined near
the origin, we shall denote by f > g  ( x  0) i f  there exists u0 >0
such that f (x )>g(x ) holds for any 0<x<u o . We shall say that
f k >g A ( x  0 ) holds uniform ly  i f  there exists a  constant u0 >0
independent o f X  such that f x (x ) ›g x (x ) holds for any 0<x<uo•
B y an analogous way we shall define an >b„ (n—).00) fo r two
sequences {a,s},7_, and ft),JZ.1 .

Next we shall prepare some notation which are used re-
peatedly.

1 -a2ra4 ) ( a )  =   e -
27r a

r r 1 exp — dxdy ,(13•( "' h27\ 1—r2
x2-2r xy+

2(1— r2)
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F (x ) = 0-(xe' 2 )du ,0

Go .(x) = 0-(e- ' 2 )du

aV b = max (a, b ) ,  a Ab = min (a, b).

Let (S, p) be a compact metric space, and K  is a compact
subset of S with the diameter d (K ) .  Then we define

N (K ) =  in f  { K c  ô  A i s u c h  t h a t  d(il 1). 2E} , 1 )
M ,(K ) =  sup 41(t1 , t„, t„ )cK such that p(t i , t i ) >E

for an y i * j }  .

We shall denote by ci (E) a positive constant dependent on
and denote by d i  an  absolute constant.

3. About our classification

First we shall give a classification if the function 0-(x) is a
n.r.v.f. or a n.s.v.f..

Proposition 1. If  0 -(x ) i s  a n.r.v.f., then the process is of
Class I, and if 0-(x) is  a n.s.v.f., it is  no t o f Class I.

Proposition 2. A ssum e that Gr(x) is  a n.s.v.f. with a structure
function a(x) which satisfies the following two conditions:

(i) (1 . 0 )

holds fo r  any  S>0.

(ii) There ex ists a constant c3 >0  such that

a (x ''')>  c a (x ) ( x  0)

uniformly fo r  any  0 .< 6 < 1 .  Then the Process is o f Class II.

Proposition 3. I f  0-(x) is  a n.s.v.f. w ith a structure function
a(x) such that

1 ); ...7.1 denotes the cardinal num ber of I.
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C5 

» a ( x )  » log 1/xlog 1/x
(x $. 0), (c,>c s > 1/2) ,

then the Process is o f Class III.

Proposition 4. Assume that 0-(x) is a n.s.v.f. with a structure
function a(x) such that

1 1   1 
2 log 1/ x 

+  

(log 1/ x)(logq , 1/x) 
+  +  

(log 1/ x)• (log ( ,„_,) 1/ x)
C 6

 a  1 1 +  

(log 1/ x)•••(log(„)1/x)
( x ) ›  

2 log 1/x 
+

(log 1/ x)(log (2, 1/ x)
1c l+ •••+

(log 1/ x)- • • (logo „ _ 1/ x)
+  

(log 1/ x).- (low&  1/ x)
( x  0), (c.>c.,> 1) .

Then the process is of Class IV.
These propositions are proved in Section 11. Here we shall

give some examples.

Class cr(x )

n.r.v.f., f(log 1/x ) (0<a, </a< ± C'
°

) ,

exp { ± (log 1/x) }( 0 < a ,  —  co <0 <1),

II exp {—(log 1/x)0(log( 0  1/x)11 (0 <p <1, - 00<•y< + 00),

III (log 1/ x)i(log (2 ) 1/x)8
( 7  >112, — < 8< + 00),

(log 1/ xri 2(logq , 1/x)-1 •••(logc,„5 1/x)-8 1(log( 1/x)82
IV

•-(log ( „A „) 11 (S,>1, —  co <S r <  + 00, 1=2,n ) .

Now we shall briefly discuss the meaning o f our classification
and the difference of classes.

In case of G.p.'s with stationary increments on an interval,
it follows from Theorem 1 and Theorem 2 that i f  a  G.P. is  of
Class I or II the sample functions are uniform Holder continuous
o f modulus N/2 log 1/x, while if the process is o f Class III the
sample functions are uniformly Milder continuous o f  modulus

c log 1/x which is of Q1(X ) or _E"(X) according as c>c a >2  or



On the m odulus o f  continuity  of  sample functions 501

c<2  respectively. If, in particular, we assume that c-( x )  is a
n.r.v.f. the process belongs to Class I and we have the conditions
that decide whether q ( x )  is  o f  cY (X ) or _LA X ) and cl)/(X) or
_LI(X) as decribed already.

The crucial difference between Class I and Class II  may be
seen by a particular choice of 95,(x) as follows. I f  cr(x) is a n.r.v.f.
(i.e. the G.p. is of Class I) we see that 99(x)= y 2 log 1/x +c log( v 1/x
belongs to cif ( X )  or _L"(X ) depending on the constant c. While
if a(x) is a n.s.v.f. with a structure function a (x ) the process is
o f  Class I I  only under certain conditions on a (x ) and q )(x ).

\' 2 log 1/x + ca(x) -  ̀log,, 1/ xEct_/"(X) or . L A X )  (Theorem 4).
Deciding conditions for cl/"(X) or ...C "(X ) a l/ (X ) or _ P (X )) of
Class II—IV are unknown.

4. Theorems on the modulus of u iform  continuity

First we shall give the uniform upper bound of sample func-
tions.

Theorem  1. L et {X(s): sED} be a G.p. satisfying our assump-
tions (A.1), (A.2) and assume that cr(x)\ log 1/x is a non-decreasing
function near th e  o rig in . Then

(4.1)i -Tn I  X(s)— X(01 <  1

t11)99,(ns—til)

holds with Probability one f ar any  E>0, where

(4.2) ( p ( x ) v ; (2 + 6)N log 17x+ c9(E)G„(\'' N log 1/x)/0- (x) .

Remark 1. Theorem 1 is still valid under the non-decreasing-
ness o f  0- (x)v"H(log 1/x) and the following conditions (A. 1)(*),
(A. 2)(4') instead o f (A. 1), (A. 2) by substituting

(4. 3) 99,(x) = y' (4 ±6) H(log 1/ x)+ c,0(6) G'( H(log 1/ x))/ a(x)

where G/.(x )= \  0-(exp {— H i(u 2 )})du

(A. 1)(*) The parameter space (D, p) is a compact centered metric

1 )  For any two points s .  s 2 E D  there exists so ED such that p(so . st)=P(stost)
— 1/2 p(si, s2).
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space" satisfying

exp {(1+ 8) H(log 1/0} > N,(D)> exp {(1-8)H(log 1/8)} (8 0)

for any  8 > 0 , w h e re  1/ /M ix )  is  a  strictly increasing r.v.f.(p,)
1).

(A. 2)(*)G ' ( 0 ) <  ± o0 .

Furthermore assume tha t (D, p) satisfies

( A .  1 ) (* * )  i i n a N e(B(t, aE))$ (B(t, r)= { se D; nt — 457:})
4 N i (D)

uniformly in  tE D fo r  a n y  a )1 . T h e n  w e  c a n  c h o o se  (p,(x)
instead of (4. 3) as follows :

(4.4) q ( x ) \,
1 (2+8)H(log 1/ .rj + cii(E)GAVH(log 1/x))/ 0-(x) .

Corollary 1. W hen a  G.p. {X(s): s I)}  belongs to Class I, II
o r III  an d  satisf ies the assumption of Theorem 1, we have

(4.5)l i m  X(s)—X(t)1  
12

C ra  IS — III) 2Nlog 1/ Ils-1H —

with Probability one. Furtherm ore  if  the process belongs to Class I
o r I I  we can choose c1 2 =1, b u t if  the process belongs to Class III
i t  is  an open problem whether c =1 or not.

Corollary 2. I f  a  G .p. {X(s): s D } satisfies the conditions
o f  Proposition 4, we have

(4. 6)
 I X(s)— X(t)I lim

11—, :1400- (11s— t11)\ Nlog 1/Ils —Ill (logq , 1/11s —tII)-.. (log,,l/ — tIl)
< c , , <  00

with probability one.

N e x t w e  sh a ll g iv e  the uniform  low er bound of sam ple
functions.

Theorem 2. L e t {X (s ): seD } b e  a  G .p . satisfy ing our as-
sumptions (A .1) and (A .2 ).  Then we have

(4.7)l i m  I  X(s)— X(t)I  >  c„ 1/
II -1114,00- (11s— tlpv 2N log 1/1Is—tIl
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with Probability  o n e . Furtherm ore i f  w e assum e th at  0-(x) is  a
n.r.v .f . we can set c1 4 =1.

Remark 2. Theorem 2 can be extended as follows. If the
parameter space (D, p) satisfies (A. 1)(*) and have the four point
property» we have

(4.8) lim I X(s)— X(t) I  is 1/V 200- (11s— III) V2H(1og 1/1Is—tll)

with probability on e . Furthermore i f  we assume that (r(x ) is  a
n.r.v .f . we can set (. 1 5 =1.

For example define D= { (a„ a2 , •••)e /2 : 2 for any n}

with usual / 2 -metric. T h e n  N e (D ) satisfies (A. 1)"" fo r H(x )=
x 2 12 ([11]).

Remark 3. I f  D= [ ), 1], we can set c 14 = 1  (D n .
Now we shall give a  deciding condition for uniform upper

class or lower class.

Theorem 3. L e t {X (s); se  D }  be a  G .p. satisf y ing our as-
sumptions (A .1 ) and ( A .2 ) .  Furthermore we assum e that o ( x )  is
a  n.r.v.f .. Then we have

(4. 9) cpec1J"(X) i f  I„(0-, ço)< + 00

and

T e _ r( X ) i f  I.(cr, 99)= .

As the corollary o f Theorem 3, we shall give a condition of
invariance of (0"(X ) and _L'''(X )  which we have pointed out in
Introduction.

Let -(X i (s): s e (i =1, 2) be two G.p.'s satisfying our assump-
tions (A. 1) and (A . 2 ). Set cr,(x)x.r .  ( 0 < a 1 / 2 )  and 0-2(x)

where T(x) is a s.v .f . with a structure function a ( x ) .  Then
there exists a s.v .f . +(x) such that

(4. 10) crV( 
 o 2 ( x )

x ( l o g  1 / x ) - 1 /2 '+(x) .
y  log 1/x

1 )  A ny four points of D  c a n  h e  im beded in 3-dim ensional E uclidean space
w ithout changing their m etrics each other.
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Corollary 3. I f

(4. 11) 11(x) c,,,

then we have

(4. 12) cir(Xi) = 9_r(X 2 ) an d  1 " (X 1) = -C(X r) •

In  particular,

(4. 13) a(x)logcoll cv

guarantees the relation (4.11).

Corollary 4 .  On the other hand, (4. 12) does not hold if  a(x )

satisfies the condition (ii) of  Proposition 2  and

(4. 14)I  a ( x ) l o g ( 2 ,  11x1> c, 8 log ( 3 )  1/ x ( x  0) .

In case of c-(x) being not a n.r.v .f . w e have only restricted
results as follows.

Theorem 4. I f  o ( x )  is  a n .s.v .f . w ith  a structure function

a(x) which satisfies the following conditions:

(i) a(x ) is non-decreasing and there ex ists a  constant c, 1(5) satis-

fying lim  c 1 9 (8)=1 such that
84.

a(xl ' 8) > c 1 9 (8)a(x) ( x  0)

holds uniformly.

(ii) There ex ists a constant 1>[3>0 such that

a ( x ) ›  (log
 1 / x ) _ 1

( x  0 )  .

Then

(4. 15) q(x) =  V2N  log 1/ x + 2N(1 +E)(log( , )  1/ x)/ a(x)

E cll"(X) if  E > 0 ,

and

e _ r(X ) if  E < 0 .

The conditions (i) and (ii) imply that this process is of Class II
by Proposition 2.
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5. Theorems on the modulus o f local continuity

In this section we shall give some theorems corresponding
to the case of uniform continuity. Theorem 5 and 6 are concerned
with the local Holder continuity. M. B. Marcus [13] has proved
about this in case of D = [0, 1]. We shall adjust his results in
case of 0-(x) satisfying some regularity conditions. Theorem 7
gives a  deciding condition that determines whether ,p(x) belongs
to clY(X) or Ci(X ).

Let {X(s) ; se  D} be a G .p. with our assumptions (A. 1) and
(A. 2).

Theorem 5. (i) I f  0-(x) is  a  n.r.v.f., then f o r any f ixed point
so e D.

(5. 1)   X(s) —  X(so)  < 1
iv  - \ 2 1og 2 1/ !Iso-

holds with Probability one.

(ii) A ssume that c-(x ) is  a  n.s.v.f. w ith a structure function a(x)
which satisfies following condition:

a) a(x) is non-decreasing and satisfies

a ( x ' ) >  c a ( x )  uniformly f o r  0 6 < 1 .

b) a(x) _ , (x 0) (7> 1/ 2) .
v log 1/x

Then

(5. 2) lim I X(s) —  X(so) I
C 2 I

11' -  ' t i l l / 0 6 0 1 s —  411)95 01s—  SOH)

holds with probability  one, where

(5.3) cP(x) = v log ( 2 )  11x V 11a(x),

(iii) I f  o (x )  i s  n.s.v.f. w ith a  non-decreasing structure function
a(x) satisfy ing the condition of  Proposition 4, then

(5. 4)

lim I X(s) — X(so) I   < c
11, - 10 SOIN / lo g  1/11s—s0 il log( 2 , 1/1Is—so ll 1/11s—s011— '-

holds with probability one.
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N ext w e shall g ive the local lower bound of sample functions
of a G.p..

Theorem 6. ( i )  I f  ry(x) is  a n.r.v.f.,

(5. 6) X(s)— X(sa) lim
0- 01s - 41D 2 log ( 2 )1/ I Is —  4111-0 .0

holds with probability  one.

(ii) Assume th at  0-(x) i s  a  n.s.v.f. o f  a  structure function a(x)
satisfy ing the following condition:

(5.7)0  a(x + h)— a(x) < c„ha(x)1 x (x 1 O),

holds uniformly fo r  h > 0 .  Then

(5.8)1 7 - -im I X(s)— X(4)1 > >
11. - , 01140 c((lI5 — Soll) (11S— sol I) -

holds with probability one, where p (x ) is given by  (5.3).
N o w  w e  sh a ll g iv e  a  deciding condition which determines

( -1 P (X ) o r  _L'i(X )  fo r  th e  sam e  c la ss  o f G.p.'s as Theorem  3.
This theorem  includes the cases of Theorem  5, (i) and Theorem

6, (i).

Theorem  7. Under the same conditions of Theorem 3, we have

(5. 9) T egY(X) i f  I 1 (0-, (p) < + 00 ,

and q _0 (X ) i f  I  i (cr, (p) =- .

W e have the following corollaries o f Theorem 7 by the same

w ay as Corollaries 3 and 4.

Corollary 5. Under the same situation of Corollary 3, we have

(5. 10) -1( 0-2(x) x ( l o g ( 0 1 1  x ) - 1 1 2 (x) ,0- 2
log(2) 11 x

where ,7-(x) is  a s.v.f. and if

(5. 11) Fr-(x)

we get

(5. 12) c lY (X ,) =  c lY (X ) a n d  _LY(X,) = _LI(X2).



On the modulus of continuity o f  sample functions 507

In  particular,

(5. 13) Ia(x)log( D 11x1 C21

guarantees the relation (5. 12).

C o ro lla ry  6 .  On the other hand, (5. 12) does not hold if (x)

satisfies the condition (ii) of  Proposition 2 and

(5.14) I a(x)log o , l / x  I > c x (x O ) .

I n  c a s e  0-(x) b e in g  n o t a  n.r.v .f . w e  h a v e  on ly  restric ted
results a s  follows.

Theorem  8 .  Assume that cr(x) is  a n .s.v .f . with a structure

function a(x ) which satisfies the condition (i) of Theorenz 4 and a

following condition:

(i) There exists a positive constant 1>S>0 such that

a(x) (log o )  1/ x)1 - 1 ( x  1 , 0 )  .

Then

(5. 15) 50.(x) = vi 2 log o , 1/ x + N(1 +6) (log,„ 1/ x)I a(x)

Ectli(X ) i f  6 > 0

and
E ..P(X ) i f  6 <0 .

6. P re lim in a ry  le m m a s

B efore  w e prove th e  theorems, we shall prepare some useful
lemmas.

Lemma 1 (0-1 la w ) .  Let (p(x) be a continuous function satis-
fying lim cp(x)= +  0 . Then the random variables

C

(G. 1) lim IX(s)—X(t)1 

and

(6. 2) lim
I  X(s)— X(s 0 ) I 

Il - 4, ncr(11.9— solcP(Ils - 411)

are constants with probability one.

f o r a f ix e d  s, ,
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The p ro o f o f Lemma 1  is  based  on th e  fa c t  th a t  {X (s)}  is
expanded  un ifo rm ly  in  s  w ith  p ro b a b ility  o n e  in  th e  form

v x ( . ) .  w h e r e  lx.„} , {99 ,,(s )} a r e  eigen values and
norm alized eigen functions respectively  o f  following integral
equation,

(6. 3) Xrp(s) E[X (s)X (t)Ip(t)dt . (see [6], [21]) .
D

B y the definition of upper class o r low er c lass and I (Œ , yo)
or Ma, 99) w e have

Lem m a 2. (i) I f  q ) 1 ( 1 - 1 5 ( X ) ( c U I ( X ) )  and  902»y9 , then P 2 E
ctr(X) (cLP(X)).

(ii) 99,e _r(X )(-C 1(X )) and (p3» 994 , then q)4ES"(X)(1 7 (X)).
WO I f  I„(0- , q,) <+ co, we have 99» y  N log 1/x and Ur, (p 5) <+ 0.0
by setting (7)5 = (rp V  N g  11 x) A v  3N log 1/x.

( iv ) I f  I„((r, cp)= +00, then 1(0., +  co  and if q),E.fu(X ) then
ço E -Cm(X).
( y )  The similar facts to (iii) and (iv) hold fo r  11(0-, gi).

The p ro o f o f Lemma 2  i s  in  the sam e  w ay  a s  th a t  of T.
Sirao [17].

Lemma 3 (Borel-Cantelli). Let {A „} be a sequence o f events.

(i) I f  2 P(A „)G+ 0.0, then P(lim  A ,3=0.

(ii) a) P(A „)= + co,

b )  For each n  there exists finite subsequence 1„= { n<n,Gn,<•••

Gn i ( „) }  such that

(b. 1) ,N P(A,, n A i ) d,P(A „)

(b. 2 )  P(.61„ n i f i >ii,

then P(lim 1
n-f"' (42

T h e  p ro o f  is  o b v io u s  f ro m  Shwarz' in eq u a lity  (c .f . [13]
Lemma 1).

Lem m a 4 . (i) [12 , p .
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e - ' 212e - ' 2 1 2 < (13(x) (x> 0) ./ (x+ 1/x) — N/S-x

(ii) [3 , Lemma 3]
b) d3 (13(a)(1)(b) (a, b>0)

f o r any  —1<r<1/ ab, where d , is  an absolute constant independent
o f  a, b  and r.

(iii) [3 , Lemma 4]

b) d ,ex p  ( -

1— r

b2 ) (I)(a)
4

f or any  b >a >0  and 1>r>0.

( iv )  [17, Lemma 2]50  5 -  exp
r2

x= -

2(

2

1
r

—
x y

7-2

+

) )-12- }
dx dy

is  a  non-increasing function o f  r  f or f ix ed a an d  b (0<a<b).

( y )  [2, p. 508] (Slepian)
L e t R = f r 1 ,J 1  be a  N x N  symmetric positive definite matrix with

r i t - 1  ( i= 1, 2, •••, N ) .  Define

1
Q(c, = 5 c

 •••'—  V det R
1 exp I - - ( x , R 'x ) } d x ,• • •  d x N2

Then Q(c, R) is  an  increasing function of  the argum ents r J .

Lemma 5 .  L et s(x ) be a s.v.f.. Then it follows by (2. 1) that
f o r any  E >0  there ex ists a constant c(E)>0 such that

c(E)t s(tx) <  c ( e ) t ,'
s(x)

f o r any  t > l ,  0 < x t < d 5 .

Lemma 6 .  L e t f ( x )  b e  a  concave function w hich is non-
decreasing with f (0)=0.

(i) I f (x ,)+ f (x 2) — f(x3) — f(x,)I f ( I  x i + x,— x,— x,1)

(ii) f(x1) + f(x 2) —f(x 3) f (x ,+ x ,—  x ,)

i f  x ,+x ,>x ,>x ,V  x ,.
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Lemma 7. Fo r any  4 points A , B , A ' and B ' of Euclirlean

space,

(i) I A B ' + A ' B  A A ' B B ' I  4 A 7 - 27 17' LT 1 R ,

where R=max {A A ' + A 'B, AB' +131B, A'11+AT3',

(ii) If  A B ' _A A ' and A /B >B B ' then

AB' + A' B— AA' —1413' 2A 11. A ' B ' I r

where r =min {AA' + A 1B+BB').

PQ  denotes the distance o f  P  and Q.

Lemma 8 E q .  L et D cR N  be a compact convex subset which

contains an open subset. Then f o r any B(t, r)—  ise D:
tED,

CrIE)N >_ N,(B(1, r)) d7(r18)N

where d6 an d  d , are constants independent o f  r an d  E.

Lemma 9 [9 ] . M,>(•)_ N !(•)-M e(•) .

7. Proofs o f Theorems 1 and 2

First we shall prove Theorem 1. We can choose p>1 such
that 2p2 -1 < 1 + 6 / 2 . Set

(7.1) 8„ = exP I - p i ,  En =  f l . 2 I
6

, 99 ( x )=  2 -(2p2 -1)N log 1/x
= {(i, j, k ) ; k = n -1 , n , 8 „ } and

E7:1 = {co ; I X (tr)—  X(ri") I 41W) —  rin I)
x Irin ) — 611)1, k)EI„),

where {t1") , = 1, 2, •-•, N r .(D)}  is a m inim al E„-net o f  D .  Then
it follows from Lemma 4, (i) and Lemma 8 that

(7. 2)

and

(7. 3)

R (2 p 2 -  1 )N

P(E7:1) cs o  
v log 1/5.

0I„ < c 3 A .1-2p2)N

Therefore combining (7.2) and (7.3) we have
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(7.4) Ê 1 ,1 P (E 7 :1 )
c 3 o • c 3 2 1  log 1/(3.< + 00 •(i.J.k)ein

Using Borel-Cantelli Lemma, there exists a  integer no(6)), with
probability one, such that

(7.5) I X ( t " ) — W I ')  I (TO Itr — I) — ri k) I)

holds for any (i, j, k)e n > no .
Denote fet74,1 0 be a  sequence such that Hs— rin4011:<3E„ for

a  fixed se D. From th e  inequality IltM.A, —
+ Hs—  CA:II <3E., +3E„ 3 „,< S ,„  w e  have (4'1+1), i(n), n)

/„_,. Hence it follows from (7.5) and monotonicity of 0-(x) log 1/x
that

(7. 6) X(s) — X(t ) X(t(it-kTi))— X(t11).))

kÊ . 0- (8 k-t 2) 99 (8k , 2) •

But there exists a c 33(p) such that

(7. 7) 99(8k- 2) c33(P) ( \ log 1/4_, \, log i/ + ) ,
therefore we have

(7. 8)Ê 0-(8k+ 2) 99 (8 k+2) cn (P) GaWlog 1/ ,) •

While for any s, tE D satisfying 8„,,..11s— /II (n>no), there
exists tri ), t(,7, to such that

(7.9)E „ — toll = ils —  ill —  E„
lito —  ri711 E„ .

Thus we have

(7. 10) I X(s)— X(t) I
X ( s ) — X ( t )

 I +  X (r )—  X (t )
+ I W O —  X(t)

< 0-(11s— tip TO Is—  tI1)+2c„(P)G a (v log 1/ Hs— tu)
because o f  IV— t(4) 11 11t(in—eiTH Ils— t1I an d  (7. 8). This
completes th e  proof o f Theorem  1 . T h is  theorem is true
without concavity of 0-2(x) and is also true under the condition

E[(X (s)—  X(t))10 -(11s— th) instead of the equality.
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Remark 1  is easily obtained by setting

„ = exp {—H - i(p")} and 99(x) = %/ (4+ E) H (log 1/x)

instead o f (7. 1). The la s t part of Remark 1  is obtained from
the estimate I,, < c, exp {(1+E)H (log 1/801 (n-.00) by virtue
of (A. 1)(** ) .

Next we shall prove Theorem 2 .  Denote by { t r,  i= 1, 2, ••.,
M3 ,„(D)} a maximal 3E.-distinguishable set and choose sr such
that in" — s") 1 I =E„=2 - ". Set

(7. 11) = {co ; I X(Vi ) — X(.51"))1 — s )
x 99(11tr—s̀,")11)}

where (p(x)= %/ (1— E)N log
Setting

7(,7), E[(X(e,n ) )—  X (sr))(X (tr)—  X (s))]/ 02(8„)

we have

(7. 12) (T 2  (

4

-

5
E„)/20- 2 (60 1/2

from Lemma 6 , ( i) , Lemma 7 , ( i )  and concavity o f cr2(x). Now
define auxiliary random variables Z i =4-72, i = 1, 2, •••, M„„(D),
where {E, ni , i = 1, 2, •••} are mutually independent Gaussian random
variables with E [r]= E [n 2 ]= 11 2  and E M = E [n ]= O. Then by
Lemma 4 , ( 7), Lemma 8  and choosing E ' such that (1— E)(1+

< 1 , we have

(7. 13) 2 P( ri F„ 1) P(Zi q(E,,) for a n y  i)
j n

P( — 8'99( E „))± P(n i  (1+ e')yo(E„) for a n y  i)

< +

This implies that (4.7) holds with probability one, and if 0- (x ) is
a n.r.v .f ., choosing kE„-distinguishable set such that ỳ,".",< E ', we
can set 99(x) ( 2  —E)N log 1/x instead o f (7. 11). Remark 3  is
obtained only by setting 99(x)— v (1 —E)H(log 1/x) in the proof
of Theorem 2.
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8. Proofs o f Theorems 3 and 4

First we shall prove Theorem 3. For the proof of the first
part the following lemma plays an essential role. The idea of
this lemma is due to  T. Sirao [17].

Lemma 9. L e t (S , p ) b e  a com pact m etric space satisfy ing

N ,(K )c„(d (K )16 )N  f o r any  compact subset K  of  S, and let {X(s);
S ES } b e  a path continuous real valued G .p. w ith E [X (s )]= 0  and

E[X(s) 2 ] = 1 .  A ssum e that there  ex ists a  non-decreasing conti-
nuous function a (x ) su ch  th at N/ E[(X(s)— X(t)) 2

.J ..cr(p(s, t)) and
F 0.(1 )< + 0 0 . Set

(8. 1) A  =  {co ; sup X(s) x  +  d ,F ,(d (K ))1

f o r any compact subset K  o f  S, where d, is  a constant larger that

25/2 (v 2 + 1)\." IV, then there ex ists a constant d, independent o f  x
and K  such that

(8. 2) P(A) d9 (1)(x)

holds f o r any

(8. 3) 0Gxcr(d(K)) d 1 0 ,

where d,„ is  an  arbitrary  constant independent o f  x  and K .

P ro o f. Let {t r  ;  i = 1, 2, •••, N,n (K )}  be minimal En-net of K
and set

Em =  d(K) exp {—  2 '} ,  x . =  cl„(\ / -1 )2 " - ' ) /2 0-(6„_,) ,

A * =  {co; sup X(s) > x + x k }
,•ez: ik—I

M .»
 =  {0) ; X(t! " ) >  X+ h

iÊ‘
 t xk}

A„ = U ,
eS iS .

A„(00) = {co; m a x  X (t)>  x+  Ê xk} •ts is N, (K.) k=1

Since E xk<d 8 F,r (d (K )) and A„(00)c A, c
k

A* = U A„(00) and ILO:x:0c A„, we have
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(8. 4) P (A ) P (A * ) lim  P (A „ ) .„.7,707

Now we can estimate  P (A )  as follows.

(8.5)P ( A 0 )  P ( A „ _ , ) +  P ( A , ,  n ALI)
< P(A„_,)+ n

N E (K . )

< P(A„_,)+ P(Agl'"n

where m(i) is chosen such that p (tr, C a ) ) < C , .
Here we choose an auxiliary standard Gaussian random variable
Y  independent o f  X (t r )  such that X (t 0 ) = r X ( r n  x/i—r 2 Y,
where r = EFX(00 ) X ( a ) ] .  Since by definition

(8.6)r  =  1  —  —

1  

E[(X (tr)—  X (tZ;))) 2]
2
1  ,> 1 — — ro ,— 2

it follows from Lemma 4, (iv) that

(8. 7) P(Ar.1)n it;z""""")
< p(x(rin l > x +  x h ,  r.x(tr))± \/1 - x +  X k)

k=1

< 43(x)(13((1— ro)(x+ xh)/ — rox„I N/1—

Hence for any n> no = min I n  o- (E0 _1) <11 we have

(8. 8) 0 k = 1  • 0 n 0(13 ((1 r )(x + r v  1 —  r 2 r o x  k' 1 r2 )

(1)(x„/ 20- (E ,)— xo-(d(K))/ 2— d0 P(d(K))12)
_<_ (13(( —  1 ) d 8 2( "- 3 )/2 — 4/2— d8 F a.(d(K))12)
= cl)(P„) ,

where P,,— (\/ - 2 — 1) c182 ' - ' dd 2— d8 F,i (d((K)12).
Therefore combining (8. 5), (8. 7) and (8. 8) we have

(8. 9) P(A0) P (A „ )+  N ,(K )(1 3 (p .) 4 3 (X )

< P(A,, ° _,)+ 4)(x) 52 N, k (K)(1)(Pk) •
k= "0

Since P(A„ n _,) < 4)(x) E N,k (K )  and there exists a constan t d,
k
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independent o f K  such that
40-1

(8. 10) E N, k (K)-i-- N.k u o c lo k )  cl <± (>0 ,

we obtain the final result (8. 2).

Using this lemma we shall prove the first part of Theorem 3.
It is sufficient to show by Lemma 2, (iii) that q )E 9 )" (X ) if
/Jo-, < + co under the assumption

(8. 11) V 3N log 1/x > 99 \"N  log 1/x.

Let S= (Dx D, p) be a direct product of D  with metric p((t, s),

(e, si n= v Ilt — l'11 2 1- 11s ( t ,  ( l ' ,  s ' ) E D x  D  and {tr , i = 1, 2,
•••, N,„(D)} be a minimal E„-net o f D .  Set

(8. 12) t „  =

o ( 2 " )
5 „  =  2 ' '  —  26 „

\\/ n log 2/

{(i, .i); 5„+26„}

=  {se D: En)
Sr, = x (i* .i)

Y(s, t) — X(s)— X(t)( ( s ,  t ) Œ S')
crOls— tip

E7, j  = 16): s u p  Y(s , t)> 95(2 -  ' 1) ± 2d „Fc,(46 „)I 0-0 „+,— 4E „)}
(s,t)ES;:.;

Then it follows by concavity of 0-2(x) that

(8. 13) E[(Y(s, t)— Y(s', t')) 2 ]
2(0-2 (Ils — s'c r 2 (IIt — rip) < 40- 2 (p((s, (s', t ')))

0- (11s — t11) cr(Ils" - ii)
To apply Lemma 9 for E7 . 1 , we shall check the condition (8. 3).
Since lim E,,/5„. , =0  and d (S )  <2V 2E., there exists an absolute

VO- • ¢ P

constant d„ such that

(8. 14) 2,p(2-"-')•0-(46„)/ 0-(8„, —4E„) d,„

because of (8. 11) and the property o f  n.r.v.f.. Hence using
Lemma 9 we have

(8. 15) P(E7.1) d124 ) (P ( 2
 n  1 ) )  •
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Since

(8. 16) 0 I,,c „ ( s n +2E)N 6,72N

< C37 (2  n  - 2  "12-( , , -1)(N-1) E rN

we have

(8.17)2  E  P(E7.,)
1 ( 2  -.-,))(2 ' - 2 — ')2 - ÷"'N - "  e x p  { - -
2

cp2

‘  c3„ E
[ ' ( o (2 " )/  n log 2)] 2 N 99(2— ')

c38 /.(0- , 99) < + co .

A s the same manner as (8. 14) we have

(8. 18) 2d, F„(4E„).7)(2 )/ a-( .,- 4E „) c .

This yields p+ cap e  cU"(X), but I Jo-, < + 00 implies /„(cr, 99 -

c40/99)< + 00• Hence we have pecU"(X ) if I ( ° - ,  92)< + co.
Next we shall prove the  last part o f Theorem 3. F or this pur-
pose we shall use  Lemma 3 , (ii) and notice that it is sufficient
to prove under the  assumption (8. 11) by Lemma 2, (iv). L e t  u s

assume that / (o- , 99)= + 00 and  le t {e,'" i = 1, 2, M2,„(D)} be a
maximal 2En -distinguishab1e se t o f D .  Set

E nc r ( 2 - ' )  

(n -1) log 2/

L „ = l(i, j); 2 ' Iftr 2 - "1

and

= {co ; X(tr) — X0V)>0-(11tr— 6'1'109901C°— 'V II»

for (i, j)e  L .  Since we see

(8. 19)

and

exp 1- - P2(2-")}P ( F )
2 \ 99(2- ")

L„ c41 (2 - n- 2-"--1)2 6,72N

we have

(8. 20) 2  E  P(F7. 1 )

(i.DEL„
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(2' — 2 " - ')2 - " - " exp 1
2' 992 (2- ")}

> c„ E
0 ,N T (2 -9 s)

c.../.(0- , 99) + •

To check the condition (b) of Lemma 3, the four point pro-
perty plays an important role, which was pointed out by L Kubo.
Now we shall enumerate the events {F7 .1} in  some linear order

such that /i > // if Iltr— trijiltf,""— t" ) 11, where F(h)(Fit'')
correspond to F ( F 1 ). Let us fix (i, j) and sufficiently large n,

and let us write for simplicity that

I It (i") — t r I = , — 4""I1=r 0 ,7 , — l;:"11 = r . 0

I itr iitr
a n d  VS") — rgm'l I = r j . ,.

Now set
=  n +  3 log n (8. 21) ( a  is  the exponent of n.r.v.f. a(x)) ,

a log 2
= E[(X(tr) — X(ty")) (X (41 3 ) ) —  X (tr))]I a(r , i )cr(r p s )

= {(p, q)E L„,; 1— k I (k —1)1 n, +1} ,

= l(p, q)E L„, ; 1/p(r i .; )(7)(rp .,) —  1Kr; }  .

Since we get by concavity of 0-2(x)

(8.22)c r ( r " A r i , , A r i , p ) / 0 - ( r t . j ) ,

combining (8. 11), (8. 22) and Lemma 5 we have

(8.23)''Y '":So(r1.,)(7)(rp,q) a ( 2 - m ° - 1 ) P ( 2 " " ° - 1 ) 9 9 ( 2 - n + i ) 1 ,

if m> in, .
Using Lemma 4, (ii) we have

(8.24)P ( F 7 , , n P , 7 „ ) cl3 P(F7. j )P ( F )

for any m >m o . On the other hand if  (p, q ) e  U ,  the following
are satisfied whose proofs are given below :

(8. 25) d,,r,.;

(8. 26) d„ri,i ,
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(8. 27) r ;., Tj q » r1, ,
(8.28)< n +  d , „  where c115 is independent of n .

By Lemma (6), (i) and (8.22) we have

< .1, J0•2 ( I r  g + r— r . .q1)
2o-(7-,, i )cr(rp s )

< cr 2 (4r,. i r p ,,,1 R)
2a-(r t . ; ) o-(r p s ) •

where R = (r,, t ,+ r i .p ) V(r i ., + r ." ) .  This implies (8.25). It follows
(8.26) from

(8. 30)

Analogously we have

7;71: < c r ( r " )

a (r 1 ) •

cr2 (r • ,,) + oAr — cr2 (r . 9 )(8. 31) ''T/2 7;,7: \J 3 0-2(r i . J )

which yields (8.27). It follows (8.28) from (8.26).
Now we shall estimate itL4;?,. for n< m < n+ + 1.

For this end we divide following four cases.

Case 1. r ; .,,,Vr j 1<ri .i . Using concavity of a-2 (x ) we have

(8.32)7 ; : .'v < g )  + o-2(r,.„)
2cr(r p ,,)0-(r ; A )

<  i _o- 2 (r i ,„) — o-2 (r„.,) ( 1  ± / — 1)=
20-(r p  c r ( r  1 ;)

Since combining (8.26) and r r i .„, r i .;  w e  have

(8. 33) V1+0-2(1-,,0)/0-2(roq)-1 c 43 cr(r,.. p )/0-(rp ,,)
(0<c„<1),

there exists a constant c44 >0 such that

(8.34)7 ; 7 : 1- c44 cr2  (r 1)1 o-2 (r  ;)  .

As the same manner as (8.34) we get

(8.35)7 : , 7 ; 1— c„cr2 ( r  . 9 )1 a-2 ( r  ;) .

Case 2. First we shall assume that

(8.29)

•

r1 s •



On the  modulus o f  continuity o f  sample functions 519

By concavity of 0-2 (x ) and Lemma 6, (ii) we have

(8. 36)' y 0 -2 (r , q ) + cr2 (r 1 4 ) — oAr,,p ) — 0-2 (r i ,q )
20-2 (r p .,)

< 0-2 (r :  )+ 0 -'(r 0-2(r ,,q ) — o-2 (r ) + 2o-2

1—
20-2(r p .q )

<1— 0-2 ( r ,  + r  g — r.)+ o - 2 (r . i ,g + r p s —r t ,q )
. 1) j  .13 

2o 2 (r 1 1 )

We shall show th at it is  imposible to find d„.<
1
 s u c h  t h a t
 +

(8.37)

and

(8. 38)

Because, combining (8.37), (8.48) and from Lemma 7, (ii) we have

(8. 39)
<2r,,irp.,

This implies by (8. 25) that

(8.40)r p s d„(r i ,i +r,, p )
<d„(1+d„)r i <d„r i ,i ,

which contradicts to (8. 26). Therefore we have

(8. 41) <  _  0-2 (d„r,,,,)
20-2(r,. )

To estimate r i s ,  it needs to get the sharper inequality than
(8. 36). That is , we have

(8.42)7 ; 7 :  1— 1  
2a(r,..) C rfr  p  .0 { (1 2  (r 172 (r Cr2 (7 .

oAr J .„) + 0-2 (r,..; ) — 0-2 (r i . )—(a(1-1 .1 ) —o-frp o l

Using concavity of o-2 (x) an d  Lemma 6, (ii) we have

(8.43)c r 2 (r,..p ) C r 2  p (r ,q )  >  0 . 2 (7 .
 p  . q )  0-2 (r  —  r  p ) 0,

,q
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(8. 44) 0-2(rJ.,)+ 0-2 ( r  f ) — (TV  , p ) + r . 1 — r;  .0 )

and

(8. 45) (0-(r .;)— cr(r p ,,)) 2c r ' f r  p .,)(11 1+ a 2 (r  q) — 1)2

GT-2 ( r  , )

c46 0- 2 (r i ,1 —r p ,g ) (c,o < .

Hence combining (8. 42), (8. 43). (8.44) and (8. 45) we have

(8.46)<  1_ 0-2 (r i ,, + r i ,i —r i ,p ) —c4 6 cr2 (r 1 ,1 —r p ,,)
2a2 (r,, i )

20-2 (r,. ; )

1—
( 1 — c r 2 ( r r ; . 1 ' )  

, if
2c2(r,, i )

I f  r,, p > r  .4, ,  we have the same estimate as (8.41) and (8.46)
by substitution of (i, p )  and (j, q).

Case 3 . r 1 ,,, r i . 1 < r 1 .0 . W e notice th a t (8. 34) and (8. 46)
are still valid without any change.

Case 4. r i .0 -<ri ,i  r i s . This case is reduced to Case 3 by
substitution of (i, q ) and ( j, p ) .

Therefore through the all case it follows from Lemma 8 and
Lemma 5 that

(8. 47) 0 LM,)1: C 47(°. -  1 (C 48\7  k n Cr(2 - ) ) ) 2 N c , „ k ` s o

Next we shall estimate (In 1)1 0 ). It follows that

(8. 48) R r i .1 (log 1/r 1 ) 2 ,

where R is defined in (8.29). Because, i f  (p , q)OEL4), »Ism ° then
by (8.29) we have

0-2(4r,,,.,, (log 1/r,, i ) - **) \ ,/
71( 7.4; c51   <  1 .

0-'(r p .,7)
Therefore we have

(8.49)0  a c s#,.., (log 1/r( ,i )**) 2 NE,;,2 N cs ,nc54

Hence it follows by (8. 11), (8. 47), (8.49) and Lemma 4, (iii) that
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,non + d i s  v k  + 1

k - 1  ( p ,q ) L'irE L
LI E nm-n (p,

0(x ) =  G - 1 [G (g)(x))+ log
s r

1N-1 exp —
,

—T . - 0012
du]

i c r ( u ) )1
2
Ncr _

( v/logL1 1 0 99

1where G(x)= x 2 + log x, we get J ( ° - ,  (1))=  00 and litn ,y(x)— T, 2 (x)
04,

=  +  .  Therefore by (8. 50), Lemma 1 and concavity of 0-'(x), it
follows that v " 9 2 ( x ) + c „ ( 0 2 ( x ) — ( 7 9 2 ( x ) ) E  ...Ca(X ) for some c58 > 0, this
yields 99(x)e _E "(X ). Thus we get the proof of the last h a lf of
Theorem 3.

The first p art o f Corollary 3  is  an  immediate consequence
of Theorem 3. To prove the last p art o f Corollary 3, w e set
f ( x ) =  (a— a(e - ")) du . Since we can wright

0
(8. 52) 0-2(x) =  c(x) exp (— f (log 1/x)}

where c(x ) is  a  continuous functions such that c „>c (x )>c > 0,
we have

(8. 53) 0-27'( °-2(x)  — exp r —f - '(f  (log 1/x) + —1 logr.,) 1/x + c*(x))}
\ log 1/xI . 2

exp — (log 1 /x  
l o g o ,  1 / x ) )  e x p  f a ( x )  l o g 2  1/x1

2a a(a—  a(x))

a r i(  c r i ( x )  
'V log 1/x/

i f  I a(x) logo  1/x1 c'„, which proves the last part of Corollary 3.
Corollary 4 follows from the fact that there exists x, such that

(8.54)f  - 1  (f (  log 1/x) + —
1
- logo , 1/x  c*(x))

2 -

=  log 1/x + 
l o g o ,  1 / x  +  2 c* (x )

[d „E  c 4 k'50 exp { — essk} + c5311r54 exp {— c06\/-7}]P(F7..0

c57P(F7, j ) .

Using Lemma 3, we have

(8. 50) P(lim Ph ) ) . 11cl3 .

On the other hand we notice that by setting

(8.51)

2(a — a(x))
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where, log 1/x -'(f(log  1/x) + log(2 )1/x+c(x)), and that we

can chose c„ by virtue of (4. 14) such that

ço)<+ I.(0-2, = o r  /„(0-1 , (p) = + 00 ,
I n (0- 2 , (p) < +  0 0  for

(8. 55) 99(x) = 2 N  log 1/x+ ( -2a
N + 1) logo , 1/ x+ c„ logo , 1/x .

Finally we shall prove Theorem 4 .  The proof of this theorem
is essentially based on the same method a s  that of Theorem 3.
So we shall use the same notation and denote by (- ), or ( ' )  if
we need slightly modified notations. Set

Ii(x) =d u ,

En =  exp { —/Cl(h(n log 2 )±-- log (n log 2)))

992(x) = N/2N log 1/x+ 2N(1-FE)(log„,11x)1 a(x) •

Since by the condition (i) it follows that

(8. 56) h '(h (log  1/x)+-- log o , 1/x -F c)

<  log 1/x+ 
( 1 + e )  l o g o , 1 / x  

2a(x)

for any E>E'>0, we have (19,(2- n - 1 )00É.)/0-(8.,1 — H e n c e

using Lemma 9 we get

(8.57) P(E7, j ) ci1R(1)(99,(2' - ')) .

Since

(8. 58) In
c63(2-n-2-"12-(n-4-1)rN-1) -472N

it follows that

(8. 59) 2  E  P ( E )  c „  (2 - n— 2- n- ')2 '"- »
cmer„

x exp {2N(log 2+ 1+ E' logo ) 2"_ 1  2 (2 -.-1 ))} (p,(2"»"')n 2  11 (2 _.) 2  qûr

< +  0 0  .
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While from Lemma 11 we have

(8. 60) F',(4 9 9 , ( 2 ' - ') <  c .  
v a(2 - "-1 )

Th is  yields p,(x)± c66/(9).(x) a(x)) <q) 2 ,E 9.7(X ), fo r  a n y  E> 0,
then the first part of Theorem 4 was proved.

Next we shall prove the last part of Theorem 4 .  Set

= exp — k - '(h(ii log 2) + 1 -4- lo g  (n log 2))) (EGO) .
2

Since by the condition (i) it follows that

log (n log 2) ) }(8. 61) exp (n log 2 + (1+E) 
2a(2- ")

exp (n log 
2  ±  (1 — E ) lo g  ( n  l o g  2 ) ) }

(6<0)
2a(2- ")

we get

(8. 62) f ] P(F7,j)

c ,  E (2' — 2 - - 1 )2 - "-N - 1 ) exp {2N(log 2"+ 1±6  log ( 2 ) 2") 1
2  a (2 - ")

1 _ _x exp {— 99",2(2 " I)1/p,(2 - ") = + 00 (6 <0) .

To check the condition (b) of Lemma 3, we shall follow step
by step the last part of the proof o f Theorem 3. Set

(8. 63)

a(2- ") log 2

Since by the condition (ii) we get

(8.64) logo; 1/x _ _ E log 1/x (6 <0) ,
a(t)

it follows analogously in (8. 23) that

(8. 65) (7),(r,,i)99,(rp,,)

< eGocr(2 - m - ') 0-(2-")

Y

h(x, y) = a ( e - ")du ,

2 log nmo= n+
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lo g   ,1< c„ii exp {— h(n log 2, n log 2 + 2 
n

n .

a(2 - ) )1
< 1 , i f  m> 0) 0 .

By virtue o f (8. 61), we have

(8. 66) ./,̀„,!?, c,o(0-- '(c7i v k/n  0-(2')/E)) 2 N
< (.12 exp {N(1 +E) log k a(2 - 1 + NE log (n log 2)/2a(2- ")).

fo r 1 <k < n' - 0 1 2  +1 , (0  is defined in Condition (E)). Therefore
we get

n+d,5 - 11 2 +1
(8. 67) E  E P(F7,, n

k- (p,q)eLV,)k

c73 SLI  exp IN(1+E) log k 1 a(2"")+ NE log (n log 2)/2a(2 - ")— c„k}
k=1

d19 P(F7 0 ) (E <0) . x P(F7,,)

c„ log n}While if R = (r i . e + r , p )V (r,, p + r exp {— n log 2+  a ( 2 _„)

and ?n <m 0 , it follows by (8. 29) that

(8. 68) v" Pe (r ,.;)99e(r p,q)
• a(2 -

1
- C75log "l a

2

") )(Pe(2 - n - )9),(2— "0 - ')/20- (2- n )
• c„n exp { — h((n + c„ log n1 a(2 -"")) log 2)— li(n log 2))}
• 1

for a suitably chosen constant c„, and we have

(8. 69) i;ti." )c „ (e x p  { —  n log 2+ c„ log n 1 a(2- ")} 1 e,,y2N

c„ exp {c„ log n /a(2")}
< c„ exp {c„ni - 0  log n} .

Accordingly we get by Lemma 4, (iii),

(8. 70) E E  P(F7,, n F7 5 )
(p,q)er.(,„'

< {c 2 log n exp {co„te - P log n— c8 i n' - 0 9  / a ( 2 )  log 21P(F7 d )
• cl21 P(F7 4 ) .

Hence combining (8.62),  (8. 67) and (8. 70) we have 952 e_C"(X)
for E < O . This completes the proof of Theorem 4.
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9. Proofs o f Theorems 5  and 6

The proofs of Theorems 5 and 6 are based on those of M. B.
Marcus theorems [1 3 ]. To prove Theorem 5 we shall use the
following Lemma due to  X . Fernique. Let (S, p ) be a compact
metric space such that

(9. 1) N ( K )  c l , e ( K ) )N

for any compact subset K  of S, and {X (s ) seS} be a  path con-
tinuous G.p. with E[X(s)]= 0 such that E[(X(s)— X(t))=] 0-2 (p (s , t)),
where cr(x) is  a  non-decreasing continuous function satisfying
F,(1)< 00.

Lemma 10 . [5]

P(sup1X(s)1 x (1  al j„ ± 4F ,(d(K))I Ylog— p)) 9 d „ P
2 N cl(x)

for any p> 1 and x> \ /1+ 4N log p ; where I II l I K  sup E[x(s)x(t)] I.

Now we shall prove Theorem 5. Set

(P(x) \ { ( lo g w  1/x) V F o.(x)/0-(x))).

= S„ = ( S E S ; (3.,,_11s — s011. 8„1

Y(s) — X(s)— X(s0) SES,, .

Since we get

(9. 2) E[ Y(s) 2 ] =  1,

E[(Y(s)— Y(t)) 21

til)
a(ils — so li) 0-(11t — so li)

0-2(11s— t11)1(72(&.+1) for s, tOES„,

using Lemma 10 for pg.— n it follows that

(9. 3) P(sup 1 Y(s)1 et32(I)(8 )1»
+ES,,

< 9d 2 n2 Nigcl)(x„) ,

where
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c„A/log n cP(8..) 
v  log n q F,(28,31 0-(8,.+ 0 •

By the definition of we have

(9. 4)
cv V2  log  n

x " 1+4 \ / C3Vc„ •

Hence for suitably chosen q, cs ,„ and c„ we have

(9.5)P ( s u p  Y ( s ) i  c ( 6 j ) < ± x .

In particular in case of (i) we can set c .  arbitrarily closed to 1
because c 3 can be chosen arbitrarily small for large n. The proof
follows from Lemma 12 and Lemma 3.

Next we shall prove (i) of Theorem 6. Set

[M x) = (2— E)log ( ) 1/ x ,

jell = 1, = s0 +2 - "eED

= E[(X(s„)— X(s,))(X(s,„)— X(s0 ))]1 cr(2- ") cr(2- m)

F" =---  {co ; X (s„)—  X (4)1 o-(2- ")q),(2 - ")} .

Then we have

(9.6)' *  P(F") = 43(99,(2 - "))

=4 )(V (2—E) log (n log 2)) = + 0 ° .

Since it follows that

(9 . 7) Ynm  =

we have

0 .2(2-n)  a -2(2- ns)— e(2 2 "$) 
2a(2- ").0-(2 -1")

4J2(2- n )P2(2 - m )
0-(2') (2 -  E )\ , log (n log 2) log (ni log 2 )/ (2 " )

< 1 f o r  m .

This follows from Lemma 4, (h) that

(9. 8) P(F" n F m )  d 3 P(F")P(Fm ).

Since there exists a constant c„ such that 7 „.„, c;-(2-  "11 o-(2-")
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1/2 for m>n-Fc 8„  we have

(9.9)(  E + E ) P (F "n P ")
=

,
c 8 4 P(Fn n Fm ) 

3 log n exp log n1 P(F")
a log 2

(1 1) (F") .

Combining (9. 6), (9.8) and  (9. 9) we get Theorem 6, (i). To prove
Theorem 6, (ii) set

q)(x ) = V 11a(x ),  r  =  inf ; a(r) =  1/log n1

F "  =  { C O  X (s0-Fr„e)— X (s0+rne) c860- (r.)99(r.)}  •

Then we have

(9. 10) p (F .) =  4a ( c 8 0 -(r „) q9(r,,)\
cr(r„— r„,)  1  •

By the definition of r„ and (5. 7), we get

1 1 _(9. 11) — a(r„)— a(r,)
log n  log (n±1)

<  r  a ( r „ , )
r n -1

C24r , , — r , , ,
—  log (n-F1) '

This follows

(9. 12) 2c24n log n .
r„ —  r„± ,

While if  rn + 1 <r n /2 we have

(9. 13) 0-2(r „) <   o - '(r  „ )  <
0-2 (r „—  „,) (r„12)

and if r„ ,> r„I 2  we get by virtue of (9. 12)

(9. 14) 0-2(r.) < exp {2 na ( s ) / s  cis)
0-

2 (r „—  „ ,) r„,„4 - 1

< c„ exp 1 
 2  

 l o g  
 2 r

1
I.log n r„— r„,
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Hence combining (9. 10), (9. 13) and (9. 14) it follows by choosing
c„ suitably that

(9.15)P ( F " )  =  Ê 43 (c90 \ log n) = +c°

while by concavity of o-2 (x) w e  have

(9. 16) P(F"nFm ) ..P(F")P(F'").

These imply that

(9. 17) lim X(so +r„e)— X (so +r„,,e) >
0-(r„)99(r„)

with probability o n e . B y the definition of q (x ) and r„ we see

H a i   (p(r„)i i m  A llog(n+1)  = 1 .(9. 18)
(p(r„..,) log n

T herefore it fo llow s from  (9. 17), (9. 18) and  symmetricity of
X (s) that

(9. 19) lrn. X(s
°
 +r e)— X (so) >  

"

/ 2i "
0- (r,No(r,i) 

or

(9. 20)l i m  X(so + r„_,e) — X(so) >  c 6
/2

c(r„)(74„)

with probability o n e . Thus we have

(9. 21) l im  X ( s ) —  X(so) > c„/2
1:- - 011 0 3 0-(11s— s011)99(11s— soll)

Analogously, by choosing r,, = 2- ", we have

(9. 22) lim X(s) — X(s0) 
11, --ou 40 cr(i Is— soil) v 10g(2) 1/1Is — sol —

with probability one. T h is completes the  proof of Theorem 6,
(ii).

n y c o

1 0 .  Proofs o f  Theorems 7  a n d  8

Now we shall prove Theorems 7 and 8 by means of follow-
ing  th e  proofs o f Theorems 3 and 4 step  by step . A n  alogous
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consideration in case of Theorem 3, implies that it is sufficient
to prove Theorem 7 for p (x ) such that

(10. 1) v logo , 1/x «Ç9(x) < N, 3 log,,,l/x •

First we assume that // (0-, 99) <  +  00. One sets

"(10.2)a ( 2 - )=
".!log (n log 2)/

T „= { sE D ; .

Let { t r,  1= 1, -••, N ,(T „)}  be a minimal En —net of T„, and set

S,,,, = { sET „; II

= { 6); sup Y(s) 9 9 (2 ')  +  d 8 F,,(2.9„)/0-(2' - ' — E„)} ,

X(S) - ',C(S0)Y(s) — se S„. ; .orals — 41)

Then we have

(10. 3) E[(Y (s)— Y (t))2] ()Ails— III) )  

soll)

o lls — t11)10- 2 (2' 2 - 6„)
and

(10. 4) q)(2 - "- ') 0-(26„) <  d

Therefore using Lemma 9 we get

(10. 5)

Since

(10. 6)

we have

(10. 7)

P(E7) d 2 5 (
1)(s0(2 " 1 ) )

N,.(T„) c„(2 - H- 1 16„)N

E  P (E7) 

x c13(q)(2- " - '))

C o h (o -  , 99) < co

This yie ld s 99E clY(X) b y  th e  same reason as the proof of
Theorem 3.
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Next we assume that I AG., 9))= ± co, and one sets

(10. 8) a (2 " )  
v'log (n log2 ) )

S „ = {se D ; Ils—soil 2 - n+2 } .

Let {sr ; i = 1, 2, M (S „)} be a maximal e„-distinguishable
set of S,, and set

114" —  sol I = ,
F7 = { (,); X (sr) — X(s0) c r ( r ) )9D(rr)} •

Then we have

(10. 9) P(F7) 4)(7(2  l))

and

(10. 10) M,.(S„) c94(2 '/ E n )N

Combining (10. 9) and (10. 10) it follows that

exp {— - (p2(2- n'')}
\h 2  E  P(F7) E c95

EL4/99(2—÷1)

c061/(0- > 99 )  = •

Now we shall check the condition (b) o f Lemma 3  (ii).  Set

7 r =  EUX (sr)—  X (s0))(X (sr) —  X(4))]1(1(r1") )0 V in

=  { sr ; 1— k 1 n y r 1—  (k  — 1)1  n}  , Vlog n + 1 ,

S
( 2

) =  { sr ; 1 / 9 5 (r )y ( r )  ryr'' 1— 1/N/log
rn  = n+ 3 logw n/(a log 2) ,

for fixed n , i such that r r  > r r .  Since by the concavity o f 0-2 (x)

we see

(10. 11) 1 1 „, 0-2( r ') +  cr2 (rr")—  0- 2 (r ;"— )

2cr(rr)cr(rY ")) 

cr(6"))10-(rr) ,

it follows from (10. 1) that

(10. 12) 7rw (r1"))§9(rr) (7(2'  . 2) 99(2- " 2)99(2- m ")/o-(2- " ')
<  1.
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Using Lemma 4, (ii) we have

(10.13)P ( F 7  n F 7 )  cl3 P(F7)P(F7)

for In mo . While there exists a  constant c„ such that

(10. 14) 'Y crfrinkr(4 "))
< cr(2 - " 97+2)1 o- (2' )  <  1/2

and from concavity of a-2(x) we have

(10. 15) ,y7s)
2(4")< —  r7 ) ) — 0-2 (r y"))(N,' 1+ a-2 (r'" — r'»)) 0-2 (rr)) — 1) 2

1—
20-(rr)cr(r )

. 1—co - 2 (rr —ry' ) )10-2 (2 - " " ) f o r  n < m < n + c„ .

This yields

(10. 16) c9.( 0 - - 1 (A/2?
 cr(2 - "") )/Emrc„n

k"' f o r  n_<_mn+c.,.

Combining (10. 14), (10. 15) and (10.16) we have

(10. 17)
n + c9 7  V lo gn + 1

E
'n=n j e s ; . a  no-- n

• [C„ Ec 11,,koN  exp

E  ) P ( F 7  n F7)
jeg.; )

c,,, + 
3 l o g (

2

) n

 (log n)N7 "a log 2
X exp { — %/log n} ] P (F )

▪ d„P(F7).

This yields the proof of Theorem 7.
The proofs of Corollaries 5, 6 and Theorem 8 are  given by

the analogous method for Corollaries 3, 4 and Theorem 5. So we
omit them.

11. Proofs of Propositions 1- 4

It is obvious from Lemma 5 that if i ( x )  is  a  n.r.v.f. there
exists a constant c1e3 such that a(x)<c,..< + 00 and that if  G r (x )  is
a  n.s.v.f. w e get
(11.1)l i m  F

œ (
x)10-(x) imo-(xe-")•d u  +0.0

o 4o c-(x)+ 0
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by Fatou's Lem m a. This shows Proposition 1.
To prove Propositions 2 and 3 the following Lemma is useful.

Lemma 1 1 .  A ssum e that cr(x) i s  a  n.s.v.f. w ith a structure
function a (x ) satisfy ing the conditions (ii) (b) of  Theorem 5 and (ii)
of Proposition 2. Then

(11.2)u ( x )  =  Fx(x)Icr(x)SciO 41V a(x) •

P ro o f. By the expression (2. 11) of a s.v.f. we get

(11.3)a ( x ) exp a(s)Isds}du
0 ze-

1+72
=  c,„„v log 1/x exp 1— (log 1/x) a(e °gi/g)ds}dy.

Set

(11. 4)
1,-y2

f (y )  = a(e-s'°g"x)ds.
1

For a fixed x ,  f ( y )  is  a  strictly increasing function o f y  with
continuous positive derivative and so the inverse function f ; 1 (z)
has the same properties. In (11. 3) changing the variable y to
z = (log 1/ x ) f x (y), (11.3) yields

(11.5)V l o g  1 / x  e x p  1 —  log (1/x)fx (y)}dy

= Ylog 1/x e- zcif ; 1(z/log 1/x) .

Since by the assumption (ii) (b) o f Theorem 5 we get
1+72

(11.6) z  =  (log 11 x)fx (y )> , 7 1 s d s  =  7 log (i+y ) (x ,

it holds that

(11.7)f n z l l o g l l x )  exp (z/27) (x I 0) .

Therefore we have

(11.8)c z f n z / l o g  1 / x ) d z < ± 0 0 ,
0

Integrating by part the right hand of (11. 5), we get
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(11.9)y  log 1/x dfnzllog11 x)

=  \  log 1/x fn z / lo g  1/x) dz

( lo g l iX ) f  1 )

=  \ log 1/x f;'(z/log 11 x)dz

\,./ log 1/x e-xf ;71 (z f log 1/ x)dz
Clog 

lix,fx(i) 

=  1 1 +1 2 .

To estimate I „  set f(z/ (log 1/x))= y. I f  z  changes a value 0
to (log 1 / x ) f 1 ( 1 )  then y takes a value 0 to 1. Then by the assump-
tion (ii) of Proposition 2  we have

(11. 10)   — f x (y) c 1, a(x) .v2f o r  0 <y <1 .
log 1/x

Hence we have
 C log  1/x)f , (1 )

(11. 11) < y "log 1/x dz
0 c106a(x) log 1/x

,—
<  v    .

2v'c 106 a(x)

Next by (11. 7) and (11. 10) we get

 -(11. 12) 1 2  <  \  log 1/x dz
(logn.),,o 6 a(x)

< , / 2e (  2 7   VI'  1  
— 'V c 10:  27 —1 )a ( x ) .

Thus combining (11. 9), (11.11) and (11.12) one gets the proof of
Lemma 1 1 .  Proposition 2  is an immediate consequence of Lemma
1 1 .  If o (x ) satisfies the condition of Proposition 3  we have

(11. 13) .5-(x) \ log 1/x C107.

To estimate the lower bound o f  (11. 13), it is sufficient to
show the inequality

(11. 14) a(x) G,(\/ log 1/ x)/0- (x)
> c108\/ log 1/x

under the assumption of Proposition 3.
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In fact we see

(11. 15) log 1/x)1 cr(x)
_ c ,(y 2 — log 1/ x)} d yc , 1 exp

log 11 x

c, 0 9 e 4 r e - Y 2 dy \log1I x  •
\./-

This completes the proof of Proposition 3.
To prove Proposition 4 it is sufficient to show the following

Lemma.

Lemma 12. Assume that a ( x )  i s  a  n.s.v .f . w ith a structure
function a(x ) which satisfies the condition of Proposition 4. Then
it follow s that

(11. 16) 6- (x) cnov i log 1/x (1og, 0 1/x) ••• (1og ( ) 1/x) ,

(11. 17) G ( .Vlog 1/x)/ 0- (x) ciiiVlog 1/x (log(2)1/ x) • • • (log( ) 1/x) .

Proof. Set

g(y ) = \ /y(logy) • • • (logc„,_3 ,y)(log ( „i _1 ) y)C7
exp (x) =  e(x ) , em (x ) = exp (em- '(x )).

It follows from (11. 3) that
1-0,2

a(x) ciosVlog 1/x exp 1— (log 1/x) a(e-s'agyx)ds} dy
0

 1 1)loglis
= C105\/10g 1/X exp {— a(e-nduldy

y2+1 )logvx

C105V 1 0 g  1 / X  exp — a(e-nduidy

= Ji+J2•

Obviously we see

(11. 19) ciosvilog 1/x.

By the condition of Proposition 4, we have

(11.20) J 2  <  C i a 5 V 1 0 g  l i X  exp — S' Y 2 i ° g v x g'(u)/ g(u)dul dy
1 lo g lis

c\/log 1/x (log(01/ x) • • • (log ( „,)  1/x) .
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This yields (11. 16).
Finally we shall prove (11. 17). It follows that

(11. 21) G,(\, log 1/ x)/ 0 - (x)

c,„
° ° g ( l o g  1 / x )

 exp (— (a (c ," " )— g k ).-/ ) d u l d y
101,/- 7-1,/x g (Y 2) g(u)

exp {_ (a(e-u)— g'((u)
u )

)d u ) d y

ci i , g(log 1/x) 2 Çj  " ' l

 P I  logvx 

g ( y2)

g

" 1  a .

V"-1(logo„_,,y2)`7-Cedy> c i „g(log 1/x) (log ( „ ) 1/xy. -- 7 gr( yy

c114Vlog 1/x (log,z ) 1/x) • (log o „) 1/x) ,

where an = e ( 1  em - 3 ( ( lo g ,_ 0 1/x)")) .

This completes the proof o f Lemma 12.
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