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ABSTRACT

Here we investigate some aspects of stochastic acceleration of ultrarelativistic elec-

trons by magnetic turbulence. In particular, we discuss the steady-state energy spectra

of particles undergoing momentum diffusion due to resonant interactions with turbulent

MHD modes, taking rigorously into account direct energy losses connected with differ-

ent radiative cooling processes. For the magnetic turbulence we assume a given power

spectrum of the type W(k) ∝ k−q. In contrast to the previous approaches, however,

we assume a finite range of turbulent wavevectors k, consider a variety of turbulence

spectral indexes 1 ≤ q ≤ 2, and concentrate on the case of a very inefficient particle

escape from the acceleration site. We find that for different cooling and injection con-

ditions, stochastic acceleration processes tend to establish a modified ultrarelativistic

Maxwellian distribution of radiating particles, with the high-energy exponential cut-

off shaped by the interplay between cooling and acceleration rates. For example, if the

timescale for the dominant radiative process scales with the electron momentum as ∝ pr,

the resulting electron energy distribution is of the form ne(p) ∝ p2 exp
[
− 1

a (p/peq)a],
where a = 2 − q − r, and peq is the equilibrium momentum defined by the balance

between stochastic acceleration and energy losses timescales. We also discuss in more

detail the synchrotron and inverse-Compton emission spectra produced by such an elec-

tron energy distribution, taking into account Klein-Nishina effects. We point out that

the curvature of the high frequency segments of these spectra, even though being pro-

duced by the same population of electrons, may be substantially different between the

synchrotron and inverse-Compton components.
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1. Introduction

Stochastic acceleration of ultrarelativistic particles via scatterings by magnetic inhomogeneities

was the first process discussed in the context of generation of a power-law energy distribution of

cosmic rays (Fermi 1949; Davis 1956). Because the characteristic acceleration timescale for a given

velocity of magnetic inhomogeneities, say Alfvén velocity vA, is tacc ∝ (vA/c)−2, the stochastic

particle acceleration is often referred as a ‘2nd-order Fermi process’. For commonly occuring non-

relativistic turbulence, vA ≪ c, turbulent acceleration mechanism is often deemed less efficient

when compared to acceleration by shocks where the rate of momentum change δp/p ∼ vsh/c (hence

the name 1st-order Fermi process). However, here one also needs repeated crossing of the shock

front by the particles which can come about via scattering by turbulence upstream and downstream

of the shock. Thus, again the acceleration rate or timescale is determined by the scattering time

scale. For nonrelativistic turbulence vA ≪ c, relativistic particles p ≫ mc2, and high-β or weakly

magnetized plasma, this time is shorter than the stochastic acceleration time, which may not

be the case in many astrophisical plasmas. We note that in a relativistic regime, for example,

1st-order Fermi process encounters several difficulties in accelerating particles to high energies

(e.g., Niemiec & Ostrowski 2006; Niemiec et al. 2006; Lemoine et al. 2006), while at the same time

stochastic particle energization may play a major role, since velocities of the turbulent modes may be

high, vA . c. And indeed, 2nd-order Fermi processes were being discussed in the context of different

astrophysical sources of high energy radiation and particles, such as accretion discs (e.g., Liu et al.

2004, 2006), clusters of galaxies (e.g., Petrosian 2001; Brunetti & Lazarian 2007), gamma-ray bursts

(e.g., Stern & Poutanen 2004), solar flares (e.g., Petrosian & Donaghy 1999; Petrosian & Liu 2004),

blazars (e.g. Katarzyński et al. 2006b; Giebels et al. 2007), or extragalactic large-scale jets (e.g.,

Stawarz & Ostrowski 2002; Stawarz et al. 2004). We note, that although turbulent acceleration

is often a process of choice in modeling high energy emission in different objects, and in fact

there may be some other yet much less understood mechanisms responsible for generation of such

(like magnetic reconnection), evidences for the distributed (or in situ) acceleration process taking

place in several astrophysical systems are strong (see, e.g., Jester et al. 2001; Kataoka et al. 2006;

Hardcastle et al. 2007, in the context of extragalactic jets).

It was pointed out by Schlickeiser (1984, 1985), that continuous (stochastic) acceleration of

high energy electrons undergoing radiative energy losses tends to establish their ultrarelativistic

Maxwellian energy distribution, as long as particle escape from the acceleration site is inefficient.

This analysis concerned a particular case of acceleration timescale independent on the electrons’

energy, and the dominant synchrotron-type energy losses. Interestingly, very flat (inverted) elec-

tron spectra of the ultrarelativistic Maxwellian-type — often approximated as a monoenergetic

electron distribution — were discussed in the context of flat-spectrum radio emission observed

from Sgr A⋆ and several active galactic nuclei (see, e.g., Beckert & Duschl 1997; Birk et al. 2001,

and references therein). More recently, it was proposed that such ‘non-standard’ electron spec-

tra can account for striking high-energy X-ray emission of large-scale jets observed by Chandra

satellite (Stawarz & Ostrowski 2002; Stawarz et al. 2004), or correlated X-ray and γ-ray (TeV)
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emission from several BL Lac objects detected by the modern ground-base Cherenkov Telescopes

(Katarzyński et al. 2006a; Giebels et al. 2007). In addition, it was shown that narrow electron

spectra, e.g. Maxwellian distribution, can explain properties of extragalactic high brightness tem-

perature radio sources (Tsang & Kirk 2007a,b), alleviating the difficulties associated with the an-

ticipated by not observed inverse-Compton catastrophe (Ostorero et al. 2006).

Motivated by these most recent observational and theoretical results, in this paper we in-

vestigate further some aspects of stochastic acceleration of ultrarelativistic electrons by magnetic

turbulence. In particular, we discuss steady-state energy spectra of particles undergoing momentum

diffusion due to resonant interactions with turbulent MHD modes, taking rigorously into account

direct in situ energy losses connected with different radiative cooling processes. As described in the

next section § 2, we use the quasilinear approximation for the wave-particle interactions, assuming

a given power spectrum W(k) ∝ k−q for magnetic turbulence within some finite range of turbulent

wavevector k1 < k < k2, and consider turbulence spectral indexes in the range 1 ≤ q ≤ 2. In

section § 3 we provide steady-state solutions to the momentum diffusion equation corresponding to

the case of no particle escape but different cooling and injection conditions. In section § 4 some par-

ticular solutions are given corresponding to the case of a finite particle escape from the acceleration

site. In section § 5 we discuss in more details synchrotron and inverse-Compton emission spectra

of stochastically accelerated electrons, taking into account Klein-Nishina effects. Final discussion

and conclusions are presented in the last section § 6 of the paper.

2. General Description

Let us denote the phase space density of ultrarelativistc particles by f(~x, ~p, t), such that the

total number of particles is N (t) =
∫

d3x
∫

d3p f(~x, ~p, t). Here the position coordinate ~x and

the momentum coordinate ~p are not the position and the momentum of some particular particle,

but are fixed to the chosen coordinate space, and therefore are independent variables. In the

case of collisionless plasma, the function f(~x, ~p, t) satisfies the relativistic Vlasov equation with the

acceleration term being determined by the Lorentz force due to the average plasma electromagnetic

field acting on particles. This averaged field can be found, in principle, through the Maxwell

equations, and such an approach would lead to the exact description of the considered system.

However, due to strongly non-linear character of the resulting equations (and therefore substantial

complexity of the problem), in most cases an approximate description is of interest. In the ‘test

particle approach’, for example, one assumes configuration of electromagnetic field and solves the

particle kinetic equation to determine particle spectrum. Further simplification can be achieved if

one assumes presence of only a small-amplitude turbulence (δ ~E, δ ~B) in addition to the large-scale

magnetic field1 ~B0 ≫ δ ~B, such that the total plasma fields are ~B = ~B0 + δ ~B and ~E = δ ~E.

1Due to the expected high conductivity of the plasma one can neglect the large-scale scale electric field, ~E0 = 0 .
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In order to find the evolution of the particle distribution function in the phase space under the

influence of such fluctuating electromagnetic field, it is convenient to consider an ensemble of the

distribution functions (all equal at some initial time), such that the appropriate ensemble-averaging

gives 〈δ ~B〉 = 〈δ ~E〉 = 0 and f(~x, ~p, t) = 〈f(~x, ~p, t)〉+ δf(~x, ~p, t). It can be then shown via the ‘quasi-

linear approximation’ of the Vlasov equation that the ensemble-average of the distribution function

〈f(~x, ~p, t)〉 satisfies the Fokker-Planck equation (Hall & Sturrock 1967; Melrose 1968)2. If, in addi-

tion, the particle distribution function is only slowly varying in space (‘diffusion approximation’),

and the scattering time (or mean free path) is shorter than all other relevant times (or mean free

paths), the ensemble-averaged particle distribution function can be assumed to be spatially uniform

and isotropic in p, namely 〈f(~x, ~p, t)〉 = 〈f(p, t)〉, and the Fokker-Planck equation can be further

reduced to the momentum diffusion equation (see Tsytovich 1977; Melrose 1980; Schlickeiser 2002).

The resulting momentum diffusion equation describing evolution of the particle distribution

can be written as
∂

∂t
〈f(p, t)〉 =

1

p2

∂

∂p

[
p2 D(p)

∂

∂p
〈f(p, t)〉

]
, (1)

where the momentum diffusion coefficients D(p) approximates the rate of interaction with fluctu-

ating electromagnetic field. Several other terms representing physical process that may influence

evolution of the particle energy spectrum can be added to the diffusion equation (1). In particular,

one can include continuous energy gains and losses due to direct acceleration (e.g., by shocks) and

radiative cooling. Furthermore, if the diffusion of particles out of the turbulent region is approxi-

mated by a catastrophic escape rate (or time tesc), and if there is a source term Q̃(p, t) representing

particle injection into the system, then the spatially integrated (over the turbulent region) one-

dimensional particle momentum distribution, n(p, t) ≡ 4π p2 〈f(p, t)〉, is obtained from (see, e.g.,

Petrosian & Liu 2004)

∂n(p, t)

∂t
=

∂

∂p

[
D(p)

∂n(p, t)

∂p

]
− ∂

∂p

[(
2 D(p)

p
+ 〈ṗ〉

)
n(p, t)

]
− n(p, t)

tesc
+ Q̃(p, t). (2)

Let us further assume presence of an isotropic Alfvénic turbulence described by the one-

dimensional power spectrum W(k) ∝ k−q with 1 ≤ q ≤ 2 in a finite wavevector range k1 ≤
k ≤ k2, such that the turbulence energy density

∫ k2

k1
dkW(k) = (δB)2/8π is small compared with

the ‘unperturbed’ magnetic field energy density, ζ ≡ (δB)2/B2
0 < 1. The momentum diffusion

coefficient in equations (1-2) can be then evaluated (e.g., Melrose 1968; Kulsrud & Pearce 1969;

Schlickeiser 1989) as

D(p) ≈ ζ β2
A p2 c

r2−q
g λq−1

2

∝ pq , (3)

2The Fokker-Planck equation can be also derived straight from the definition of the function f(~x, ~p, t), assuming

that the interaction of the particles with turbulent waves is a Markov process in which every interaction (collision)

changes the particle energy only by a small amount, and that the recoil of the turbulent modes during the collision

can be neglected (Blandford & Eichler 1987).
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where λ2 = 2π/k1 is the maximum wavelength of the Alfvén modes, vA ≡ βA c is the Alfvén

velocity, and rg = pc/eB0 is the gyroradius of ultrarelativistic particles of interest here. Similar

formulae can be derived for the case of fast magnetosonic modes (e.g., Kulsrud & Ferrari 1971;

Achterberg 1981; Schlickeiser & Miller 1998). This allows one to find the characteristic acceleration

timescale due to stochastic particle-wave interactions, tacc ≡ p2/D(p) ∝ p2−q/β2
A. Similarly, the

escape timescale due to particle diffusion from the system of spatial scale L can be evaluated as

tesc = L2/κ|| ∝ pq−2, where the spatial diffusion coefficient κ|| = (1/3) c Λ is given by the appropriate

particle mean free path, Λ ≈ (1/3) ζ−1 rg (λ2/rg)q−1 ∝ p2−q, that can be found from the standard

relation D(p) = (1/3) β2
A p2 c/Λ (for more details see, e.g., Schlickeiser 2002).

For convenience we define the dimensionless momentum variable χ ≡ p/p0, where p0 is some

chosen (e.g., injection) particle momentum. With this, the (stochastic) acceleration and escape

timescales can be written as

tacc = τacc χ2−q , where τacc ≡
λ2

ζ β2
A c

(
p0 c

eB0 λ2

)2−q

,

tesc = τesc χq−2 , where τesc ≡
9L2 ζ

λ2 c

(
p0 c

eB0 λ2

)q−2

. (4)

Hereafter we also consider regular energy changes, strictly energy losses, being an arbitrary function

of the particle energy as given by the appropriate timescale tloss = tloss(p), namely 〈ṗ〉 = −(p/tloss).

We define further τ ≡ t/τacc, N(χ, τ) ≡ p0 n(p, t) V , and Q(χ, τ) ≡ τacc p0 Q̃(p, t) V , where V =∫
d3x is the volume of the system. With such, the momentum diffusion equation (2) reads as

∂N

∂τ
=

∂

∂χ

[
χq ∂N

∂χ

]
− ∂

∂χ

[(
2 χq−1 − χϑχ

)
N
]
− εχ2−q N + Q , (5)

or, in its steady-state (∂N/∂τ = 0) form, as

∂

∂χ

[
χq ∂N

∂χ

]
− ∂

∂χ

[(
2 χq−1 − χϑχ

)
N
]
− εχ2−q N = −Q . (6)

In the above, we have introduced

ϑχ ≡ τacc

tloss(χ)
and ε ≡ τacc

τesc
. (7)

Some specific solutions to the equation (5) were presented in the literature. Majority of

investigations concentrated on the ‘hard-sphere approximation’ with q = 2, i.e. with the mean

free path for particle-wave interaction independent of particle energy (Λ = ζ λ2/3; ‘classical’ Fermi-

II process). It was found, that in the absence of regular energy losses (ϑχ = 0), the steady-state

solution of equation (6) with the source term Q(χ) ∝ δ(χ − χinj), where δ(χ) is the Dirac delta, is

of a power-law form N(χ > χinj) ∝ χ−σ with σ = −(1/2) + [(9/4) + ε]1/2 (Davis 1956; Achterberg

1979; Park & Petrosian 1995). Note, that for ε ≪ 1 this can be approximated by σ ≈ 1+ε/3, which

is the original result obtained by Fermi (1949). In addition, with the increasing escape timescale,
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ε → 0, the steady-state solution approaches N(χ > χinj) ∝ χ−1. This agrees with the general

finding that for the range 1 ≤ q < 2 and the same injection conditions the steady-state particle

energy distribution implied by the equation (6) is N(χ > χinj) ∝ χ1−q, as long as the regular

energy changes and particle escape can be neglected (ϑχ = ε = 0; Lacombe 1979; Borovsky & Eilek

1986; Dröge & Schlickeiser 1986; Becker et al. 2006). The whole energy range 0 ≤ χ ≤ ∞ with the

appropriate (singular) boundary conditions is considered in Park & Petrosian (1995).

The analytic investigations of the momentum diffusion equation (5) in the q = 2 limit including

the radiative cooling have concentrated on the synchrotron-type losses ϑχ ∝ χ (see, however,

Schlickeiser et al. 1987; Steinacker et al. 1988). The extended discussion on the time-dependent

evolution for such a case (equation 5) was presented by Kardashev (1962). As for the steady-state

solution (equation 6), it was found that with Q(χ) ∝ δ(χ − χinj) and the range 0 ≤ χ ≤ ∞

N(χ > χinj) ∝ χσ+1 e
− χ

χeq U

[
σ − 1, 2 σ + 2,

χ

χeq

]
, (8)

where σ is the energy spectral index introduced above, the equilibrium momentum χeq is defined

by the tacc = tloss condition (yielding ϑχ = χ/χeq), and U [a, b, z] is a Tricomi confluent hyper-

geometrical function (Jones 1970; Schlickeiser 1984; Park & Petrosian 1995)3. For χ ≪ χeq, i.e.

for the particle momenta low enough to neglect radiative losses, the above distribution function

has, as expected, a power-law form N(χ > χinj) ∝ p−σ. For χ & χeq and ε ≪ 1, the particle

energy spectrum approaches N(χ > χinj) ∝ χ2 exp (−χ/χeq). That is, as long as particle escape

is inefficient, a two component stationary energy distribution is formed: a power-law ∝ χ−1 at

low (χ < χeq) energies, and a pile-up bump (‘ultrarelativistic Maxwellian distribution’) around

χ ∼ χeq. For shorter escape timescale no pile-up form appears, and the resulting particle spectral

index depends on the ratio ε of the escape and the acceleration time scales.

In the case of q 6= 2 and synchrotron-type energy losses ϑχ ∝ χ, the steady-state solution to the

equation (6) provided by Melrose (1969) was questioned due to unclear boundary conditions applied

(Tademaru et al. 1971; Park & Petrosian 1995). The special case of q = 1 with particle escape in-

cluded (and the infinite energy range 0 ≤ χ ≤ ∞) was considered further by Bogdan & Schlickeiser

(1985). It was found, that with the injection of the Q(χ) ∝ δ(χ − χinj) type, the steady state

solution of equation (6) is4

N(χ > χinj) ∝ χ2 e
− 1

2

“

χ
χeq

”2

U

[
1

2

(
χeq

χesc

)2

, 2 ,
1

2

(
χ

χeq

)2
]

, (9)

3The effects of regular energy gains were omitted here for clarity. Jones (1970); Schlickeiser (1984) and

Park & Petrosian (1995) included in their investigations regular energy gains representing very idealized shock accel-

eration process. Within the anticipated ‘hard-sphere’ approximation, these gains were assumed to be characterized

by the appropriate timescale independent on the particle energy, 〈ṗ〉gain ∝ p .

4The other (non-synchrotron) radiative losses terms included in the analysis presented by Bogdan & Schlickeiser

(1985) were omitted here for clarity.
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where the critical escape and equilibrium momenta χesc and χeq are defined by the conditions

tesc = tacc and tacc = tloss, respectively, yielding ε = 1/χ2
esc and ϑχ = χ/χ2

eq. This solution implies

N(χ > χinj) ∝ const at low particle momenta for which synchrotron energy losses are negligible

(χ ≪ χeq), independent of the particular value of the escape timescale. At higher particle energies,

an exponential dependence is expected, N(χ > χinj) ∝ χ2−(χeq/χesc)2 exp
[
−1

2 (χ/χeq)2
]
. Note,

that with an increasing escape timescale this approaches ∼ χ2 exp
[
−1

2 (χ/χeq)2
]
.

3. Inefficient Particle Escape

In this section we are interested in steady-state solutions to the momentum diffusion equation

(6) in the case of a very inefficient particle escape and a general (i.e., not necessarily synchrotron-

type) form of the regular energy changes ϑχ, which is however a continuous function of the particle

energy. With ε = 0, the homogeneous form of this equation can be therefore transformed to the

self-adjoint form
d

dχ

[
P (χ)

d

dχ
N(χ)

]
− G(χ) N(χ) = 0 (10)

with

P (χ) = χq S(χ) ,

G(χ) =

[
2(q − 1)χq−2 − d

dχ
(χϑχ)

]
S(χ) ,

S(χ) = χ−2 exp

[∫ χ

dχ′ χ′1−q ϑχ′

]
. (11)

We also restrict the analysis to the finite particle energy range χ ∈ [χ1, χ2], where 0 < χ1, χ2 < ∞.

The justification for this is that for a finite range of the turbulent wavevectors, say k ∈ [k1, k2],

the momentum diffusion coefficient as given in equation (3) is well defined only for a finite range

of particle energies (momenta). For example, gyroresonant interactions between the particles and

the Alfénic turbulence require particles’ gyroradii comparable to the scale of the interacting modes,

or k rg ∼ 2π. Hence, the lower and upper limit of the particle energy range could be chosen as

χ1 = 2πeB0/k1cp0 and χ2 = 2πeB0/k2cp0, respectively5. Since all of the functions P (χ), P ′(χ),

G(χ), S(χ) are continuous, and P (χ), S(χ) are finite and strictly positive in the considered (closed)

energy interval, the appropriate boundary value problem,

a1 N(χ1) + a2
dN(χ)

dχ

∣∣∣∣
χ1

= 0 ,

5In the case of the magnetosonic-type turbulence, interacting with particles via transit-time damping satisfying

the Cherenkov condition k rg ≪ 1, the low energy cut-off in the momentum diffusion coefficient could be chosen to

be the energy of the particle whose velocity is comparable to the velocity of the fast magnetosonic mode, which is

∼ vA for low-β, or magnetically dominated plasmas.



– 8 –

b1 N(χ2) + b2
dN(χ)

dχ

∣∣∣∣
χ2

= 0 , (12)

is regular. If one of these conditions is violated, which is the case for the infinite energy range 0 ≤
χ ≤ ∞, the problem becomes singular, and the extended analysis presented by Park & Petrosian

(1995) has to be applied.

The two linearly-independent particular solutions to the homogeneous form of the equation

(10) are

y1(χ) = S−1(χ) ,

y2(χ) = S−1(χ)

∫ χ

dχ′ χ′−q S(χ′) , (13)

or any linear combination of these,

u1(χ) = y1(χ) + α y2(χ) ,

u2(χ) = y1(χ) + β y2(χ) (14)

(each involving arbitrary multiplicative constants). By imposing the boundary conditions (12) in

a form

a1 u1(χ1) + a2
du1(χ)

dχ

∣∣∣∣
χ1

= 0 ,

b1 u2(χ2) + b2
du2(χ)

dχ

∣∣∣∣
χ2

= 0 , (15)

parameters α and β can be determined. With thus constructed particular solutions to the equation

(10), one can define the Wronskian w(χ) ≡ u1(χ) u′
2(χ) − u′

1(χ) u2(χ), and next construct the

Green’s function of the problem,

G(χ, χinj) =
1

−χq
inj w(χinj)

×
{

u1(χ) u2(χinj) for χ1 ≤ χ < χinj

u1(χinj) u2(χ) for χinj < χ ≤ χ2
, (16)

where χ1 < χinj < χ2. This gives the final solution to the equation (6)

N(χ) =

∫ χ2

χ1

dχinj G(χ, χinj) Q(χinj) . (17)

Steady-state solutions exist, however, only for some particular forms of the injection function

Q(χ, τ). To investigate this issue, and to impose correct boundary conditions for the finite energy

range χ1 ≤ χ ≤ χ2, let us integrate equation (5) over the energies and re-write it in a form of the

continuity equation,
∂N
∂τ

+ F|χ2
− F|χ1

=

∫ χ2

χ1

dχQ(χ, τ) . (18)
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Here N ≡
∫ χ2

χ1
dχN(χ) is the total number of particles and the particle flux in the momentum

space is defined as

F [N(χ)] =
(
2χq−1 − χϑχ

)
N − χq ∂N

∂χ
. (19)

Note, that with the particular solutions u1(χ) and u2(χ) given in (14), one has

F [u1(χ)] = −α ,

F [u2(χ)] = −β , (20)

independent of the momentum χ or of the particular form of the direct energy losses function ϑχ.

Let us comment in this context on the ‘zero-flux’ boundary conditions of the type (12), namely

F|χ1
= F|χ2

= 0. These, with equations (15) and (20), imply α = β = 0, i.e., u1(χ) = u2(χ).

In other words, one particular solution y1(χ) satisfies the ‘no-flux’ boundary condition of the ho-

mogeneous form of the equation (10) for both χ1 and χ2. In such a case, the steady-state solu-

tion can be constructed using the function y1(χ) only if it is orthogonal to the source function,∫ χ2

χ1
dχ y1(χ) Q(χ) = 0. This condition, for any non-zero particle injection and y1(χ) = S−1(χ) as

given in the equation (11), cannot be fulfilled (cf. Melrose 1969; Tademaru et al. 1971). ‘Zero-flux’

boundary conditions for non-vanishing Q(χ) can be instead imposed if the particle injection is

balanced by the particle escape from the system (see § 3 below).

In the case of no particle escape, with the stationary injection such that
∫ χ2

χ1
dχQ(χ) ≡ A and

with the direct (radiative) energy losses ϑχ 6= 0, the boundary conditions can be chosen as

− F|χ1
= A , and F|χ2

= 0 , (21)

which give α = A and β = 0, and correspond to the conservation of the total number of particles

within the energy range [χ1, χ2]. Let us justify this choice by noting that the radiative losses

processes, unlike momentum diffusion strictly related to the turbulence spectrum, is well defined for

particle momenta χ < χ1 and χ > χ2. Hence, with non-vanishing radiative losses (as expected for

ultrarelativistic particles considered here), no flux of particles in the momentum space through the

maximum value χ2 toward higher energies is possible (radiative losses in the absence of stochastic

acceleration will always prevent from presence of particle flux above χ2). For the same reason, there

is always a possibility for a non-zero particle flux toward lower energies through the χ1 point, since

the stochastic acceleration timescale, even if being an increasing function of the particle energy, is

always finite at χ1 > 0. Note in this context, that the particle flux at χ1 implied by the chosen

boundary conditions (21) must be negative, F|χ1
< 0. That is, there is a continuous flux of particles

through the χ1 point from high to low energies, which — in the absence of particle catastrophic

escape from the system — balances particle injection. With these, one can find the Green’s function

as

G(χ, χinj)|loss =





S−1(χ)
(
A−1 +

∫ χ
χ1

dχ′ χ′−q S(χ′)
)

for χ1 ≤ χ < χinj

S−1(χ)
(
A−1 +

∫ χinj

χ1
dχ′ χ′−q S(χ′)

)
for χinj < χ ≤ χ2

, (22)
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where S(χ), introduced in the equation (11), can be re-written as

S(χ) = χ−2 exp

[∫ χ dχ′

χ′
tacc(χ

′)
tloss(χ′)

]
. (23)

3.1. Synchrotron Energy Losses

As an example let us consider synchrotron energy losses of ultrarelativistic electrons, which

are characterized by the timescale

tsyn = τsyn χ−1 , with τsyn ≡ 6π m2
ec

2

σT p0 B2
0

(24)

(e.g., Blumenthal & Gould 1970), and which define the equilibrium momentum χeq = (τsyn/τacc)
1/(3−q)

through the condition tacc = tsyn, yelding ϑ = χ/χ3−q
eq . The Green’s function (22) adopts then the

form

G(χ, χinj)|syn = χ2 e
− 1

3−q

“

χ
χeq

”3−q
(

1

A
+

∫ min[χinj, χ]

χ1

dχ′ χ′−(2+q) e
1

3−q

“

χ′

χeq

”3−q
)

= (25)

= χ2 e
− 1

3−q

“

χ
χeq

”3−q
(

1

A
+

χ−1−q
eq (−1)4/(3−q)

(3 − q)4/(3−q)
Γ

[
−1 + q

3 − q
, − (min[χinj, χ]/χeq)3−q

3 − q
, − (χ1/χeq)3−q

3 − q

])
,

where Γ[a, z1, z2] is generalized incomplete Gamma function. By expressing the above solution in

terms of Kummer confluent hypergeometrical functions M [a, b, z] using the identity Γ[a, z1, z2] =

a−1 za
2 M [a, 1 + a,−z2]−a−1 za

1 M [a, 1 + a,−z1] (Abramowitz & Stegun 1964), assuming χ1 ≪ χeq,

and noting that M [a, b, z] ∼ 1 for z → 0, one can rewrite it further as

G(χ, χinj)|syn ≈ χ2 e
− 1

3−q

“

χ
χeq

”3−q

× (26)

×
(

1

A
+

χ−1−q
1

1 + q
− min(χinj, χ)−1−q

1 + q
M

[
−1 + q

3 − q
,

2 − 2q

3 − q
,

1

3 − q

(
min[χinj, χ]

χeq

)3−q
])

.

Finally, noting that M [a, b, z] ∼ Γ(b) ez za−b/Γ(a) for z → ∞, and neglecting the A−1 term, one

finds a rough approximation

G(χ, χinj)|syn ∼





1
1+q χ−1−q

1 χ2 e−
1

3−q
(χ/χeq)3−q

for min(χinj, χ) . χeq

χ3−q
eq χ−2 for χeq ≪ χ < χinj

χ3−q
eq χ−4

inj e
1

3−q (χinj/χeq)
3−q

χ2 e−
1

3−q
(χ/χeq)3−q

for χeq ≪ χinj < χ

.

(27)

Hence, as long as min[χinj, χ] < χeq, one has G(χ, χinj)|syn ∝ χ2 exp
[
− 1

3−q (χ/χeq)3−q
]
. If, how-

ever, min[χinj, χ] > χeq, the Green’s function retains the spectral shape ∝ χ2 exp
[
− 1

3−q (χ/χeq)3−q
]

for χinj < χ, while is of a power-law form G(χ, χinj)|syn ∝ χ−2 for χ < χinj.
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Fig. 1.— Upper panel: Stochastic acceleration timescales for fixed plasma parameters (B0, ζ, βA,

χ1, χ2) but different turbulence energy index: q = 2 (thick solid lines), q = 5/3 (thick dashed

lines), and q = 1 (thick dotted lines). Thin solid line denotes radiative (synchrotron) energy losses

timescale considered. Lower panel: Particle spectra resulting from joint stochastic acceleration and

radiative (synchrotron) energy losses specified in the upper panel. The spectra correspond to the

monoenergetic injection Q(χ) ∝ δ(χ − 1) with fixed
∫

dp Q̃(p), and no particle escape. Thin solid

line denotes particle spectrum expected for the same injection and cooling conditions, but with the

momentum diffusion effects neglected, Ñ(χ).
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Fig. 2.— The same as Figure (1) except for Q(χ) ∝ δ(χ − 107).
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In Figures (1) and (2) we plot examples of particle spectra obtained from the above solution

for the system with fixed plasma parameters (B0, ζ, βA, χ1, χ2) but different turbulence energy

indices: q = 2 (‘hard-sphere’ approximation; thick solid lines in the figures), q = 5/3 (Kolmogorov-

type turbulence; thick dashed lines), and q = 1 (Bohm limit; thick dotted lines). As for the source

function, we consider two different forms, namely Q(χ) ∝ δ(χ−1) in Figure 1 and Q(χ) ∝ δ(χ−107)

in Figure 2, with the normalizations given in both cases by the same fixed
∫

dp Q̃(p). The emerging

particle spectra are compared with the ones expected for the same injection and cooling conditions,

but with the momentum diffusion neglected, Ñ(χ). Such a steady-state electron distribution can

be found from the appropriate equation

∂

∂χ

[
χϑχ Ñ(χ)

]
+ Q(χ) = 0 (28)

(see equation 5), for which one has the straightforward solution (Kardashev 1962)

Ñ(χ) =
1

χϑχ

∫ χ2

χ
Q(χinj) dχinj (29)

(thin solid lines in the lower panels of Figures 1-2).

As shown in the figures and follows directly from the obtained solution 25–27, joint stochastic

acceleration and radiative (synchrotron-type) loss processes, in the absence of particle escape, tend

to establish N(χ) ∝ χ2 exp
[
− 1

3−q (χ/χeq)3−q
]

spectra independent of the energy of the injected

particles and the form of the source function as long as it has a narrow distribution. Moreover,

for χ ≪ χeq the turbulence energy index q does not influence the spectral shape of the electron

energy distribution. Instead — with fixed normalization of the injection function Q̃(p) and fixed

plasma parameters (including magnetic field intensities B0 and ζ) — turbulence power-law slope q

determines (i) the equilibrium momentum χeq, (ii) normalization of the electron energy distribution,

and (iii) the spectral shape of the particle distribution for χ ≥ χeq. In particular, flatter turbulent

spectrum leads to higher value of the equilibrium momentum χeq, lower normalization of N(χ), and

steeper exponential cut-off at χ > χeq. Note also, that if particles with momenta χinj ≫ χeq are

being injected to the system, the resulting electron energy distribution may adopt the ‘standard’

form of the synchrotron-cooled source function (29) at highest momenta χeq ≪ χ < χinj (e.g.,

∝ χ−2 for the Q(χ) ∝ δ(χ − 107) injection in Figure 2).

3.2. Inverse-Compton Energy Losses and the Klein-Nishina Effects

Let us now investigate the effects of the inverse-Compton (IC) radiative energy losses in the

presence of a turbulent particle acceleration. At low energies when the Klein-Nishina (KN) effects

are negligible the IC case is identical to the synchrotron case with the magnetic energy density

B2/8π replaced by the photon energy density uph. The two cases differ when KN effects become
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important at high energies. To include these effects we approximate the radiative loss timescale as

tIC = τIC χ−1

(
1 +

χ

χcr

)1.5

, where τIC ≡ 3 m2
ec

2

4 σT p0 uph
and χcr ≡

mec

4 p0ǫ0
. (30)

Here the radiation field involved in the IC scattering was assumed to be monoenergetic, with the

total energy density uph and the dimensionless (i.e., expressed in the electron mass units) photon

energy ǫ0. The above formula properly takes into account KN effect up to energies χ ≤ 104 χcr

(Moderski et al. 2005). Clearly, as long as q < 1.5, balance between acceleration and cooling

timescales takes place at one particular momentum χeq = max(χTh, χKN), depending on weather

energy losses dominate over acceleration in the Thomson regime, χeq = χTh ≡ (τIC/τacc)
1/(3−q),

or in the KN regime, χeq = χKN ≡ χ
(3−q)/(1.5−q)
Th χ

−1.5/(1.5−q)
cr . For q > 1.5, there may be instead

two equilibrium momenta for a given one acceleration timescale, χeq, 1 = χTh and χeq, 2 = χKN,

or no equilibrium momentum at all, if tacc < tic within the whole considered range χ < 104 χcr.

Finally, for q = 1.5 (that corresponds to the Kraichnan turbulence), the ratio between IC/KN and

acceleration timescales is energy-independent, since both tacc ∝ χq−1 = χ1/2 and, as given in (30),

tIC(χ > χcr) ∝ χ1/2.

Assuming hereafter q 6= 3/2, one can find from the equation (23) that

S(χ) = χ−2 exp

{
1

3 − q

(
χ

χT

)3−q

F

[
3

2
, 3 − q, 4 − q, − χ

χcr

]}
, (31)

where F [a, b, c, z] is Gauss hypergeometric function. This gives the Green’s function

G(χ, χinj)|q 6=1.5
ic = χ2 exp

{
− 1

3 − q

(
χ

χTh

)3−q

F

[
3

2
, 3 − q, 4 − q, − χ

χcr

]}
× (32)

×
(

1

A
+

∫ min(χinj,χ)

χ1

dχ′ χ′−2−q exp

{
1

3 − q

(
χ′

χTh

)3−q

F

[
3

2
, 3 − q, 4 − q, − χ′

χcr

]})
.

Below we discuss some properties of the obtained solution by expanding the Gauss hypergeometric

functions as F [a, b, c, z] ∼ 1 for z → 0, and F [a, b, c, z] ∼ [Γ(c) Γ(b − a)/Γ(b) Γ(c − a)] (−z)−a +

[Γ(c) Γ(a − b)/Γ(a) Γ(c − b)] (−z)−b for z → ∞.

Let us consider first the case of a low-energy injection, such that χinj < min(χTh, χcr). The

Green’s function (32) can be then approximated roughly by

G(χ, χinj)|q 6=1.5
ic; χinj<

∼





1
1+q χ−1−q

1 χ2 e−
1

3−q
(χ/χTh)3−q

for χ < χcr

1
1+q χ−1−q

1 e
− 2√

π
Γ(3−q) Γ(q−1.5) (χcr/χTh)3−q

χ2 e
− 1

1.5−q
(χ/χKN)1.5−q

for χ > χcr

.

(33)

For χ < χcr the Green’s function has the same form as the synchrotron case, which is expected

in the Thomson regime. However, χ > χcr, the KN effects modify the high-energy segment of the

particle energy distribution. In particular, for q < 1.5 (e.g. q = 1 in Fig. 3) the spectrum is always
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Fig. 3.— Upper panel: Stochastic acceleration timescales for fixed q = 1 and different plasma

parameters (thick solid and dashed lines). Thin solid line denotes inverse-Compton energy losses

timescale considered with the assumed χcr = 104. Lower panel: Particle spectra resulting from

joint stochastic acceleration and inverse-Compton energy losses specified in the upper panel. The

spectra correspond to the monoenergetic injection Q(χ) ∝ δ(χ − 1) with fixed
∫

dp Q̃(p), and no

particle escape. Thin solid line denotes particle spectrum expected for the same injection and

cooling conditions, but with the momentum diffusion effects neglected, Ñ(χ).
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Fig. 4.— The same as Figure (3) except for q = 2.
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of a ‘single-bump’ form, possessing either a sharp or a smooth exponential cut-off depending on

whether we are in the Thomson or KN cooling regime, respectively. On the other hand, with q > 1.5

(e.g. q = 2 in Fig. 4) the acceleration and loss timescales can be equal at two different energies, in

which case the particle spectra become concave, flattening smoothly from the exponential decrease

∝ χ2 exp
[
− 1

3−q (χ/χTh)3−q
]

at χTh < χ < χcr to the asymptoticaly approached ∝ χ2 continuum

at χ > χKN. Such spectra are shown in Figure (3-4) for q = 1 and q = 2, respectively, assuming

monoenergetic injection with χinj = 1, χ1 = 10−2, χKN = 104, and χ2 = 108. In each figure we

use two different acceleration timescales (thick solid and dashed lines), but the radiative losses

timescale, tloss, as well as the normalization of the injection function,
∫

dp Q̃(p), are kept constant.

The emerging spectra are compared with the electron energy distribution Ñ(χ) corresponding to

the same injection and cooling conditions, but with the momentum diffusion neglected (equations

29; thin solid lines in the lower panels of the figures).

In the case of q 6= 1.5 and high-energy injection χinj > χcr, the appropriate Green’s fuction

retains again familiar shape G(χ, χinj)|q 6=1.5
ic;χinj>

∼ 1
1+q χ−1−q

1 χ2 e−
1

3−q
(χ/χT)3−q

at low particle mo-

menta χ < χcr. And again, at χ > χcr significant deviations from such a form may be observed, as

follows from the approximate form of the Green’s function

G(χ, χinj)|q 6=1.5
ic;χinj>

≈ χ2 e
− 1

1.5−q
(χ/χKN)1.5−q

e
− 2√

π
Γ(3−q) Γ(q−1.5) (χcr/χTh)3−q

× (34)

×
∫ min(χinj,χ)

χ1

dχ′ χ′−2−q exp

{
1

3 − q

(
χ′

χTh

)3−q

F

[
3

2
, 3 − q, 4 − q, − χ′

χcr

]}
for χ > χcr

(see equation 32 with the A−1 term neglected). The resulting particle spectra are plotted in Figures

(5-6), where we consider two limiting cases of q = 1 and q = 2, and assume monoenergetic injection

Q(χ) ∝ δ(χ − χinj) with χinj = 107. All the other parameters are fixed as before. As shown,

in addition to the spectral features discussed in the previous paragraph for the case of a low-

energy injection (Figures 3-4), the radiatively-cooled continuum may be observed at high particles

energies χ < χinj, depending on the efficiency of the acceleration process. The KN effects manifest

thereby by means of a characteristic spectral flattening over the ‘standard’ power-law form ∝ χ−2,

obviously only within the momentum range χcr < χ < χinj, in agreement with the appropriate

Ñ(χ) distribution (thin solid lines in the lower panels of Figures 5-6). Such a feature, being a

direct result of a dominant IC/KN-regime radiative cooling with the momentum diffusion effects

negligible, was discussed previously by, e.g., Kusunose & Takahara (2005); Moderski et al. (2005);

Manolakou et al. (2007).

Finally, for completeness we note that with q = 1.5 one can solve equation (23) to obtain

S(χ) = χ−2 exp

{
2

(
χcr

χT

)3/2
(

ArcSinh
√

χ/χcr −
√

χ/χcr√
1 + (χ/χcr)

)}
. (35)

This reduces to S(χ) ∼ χ−2 exp
[

2
3 (χ/χTh)3/2

]
for χ < χcr, and can be approximated by S(χ) ∼

0.54 χ−1 χ−1
cr for χ > χcr. The resulting particle spectra, shown in Figure (7) for the case of a
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Fig. 5.— Upper panel: Stochastic acceleration timescales for fixed q = 1 and different plasma

parameters (thick solid and dashed lines). Thin solid line denotes inverse-Compton energy losses

timescale considered with the assumed χcr = 104. Lower panel: Particle spectra resulting from

joint stochastic acceleration and inverse-Compton energy losses specified in the upper panel. The

spectra correspond to the monoenergetic injection Q(χ) ∝ δ(χ − 107) with fixed
∫

dp Q̃(p), and

no particle escape. Thin solid line denotes particle spectrum expected for the same injection and

cooling conditions, but with the momentum diffusion effects neglected, Ñ(χ).
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Fig. 6.— The same as Figure (5) except for q = 2.
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Fig. 7.— Upper panel: Stochastic acceleration timescales for fixed q = 3/2 and different plasma

parameters (thick solid, dashed, and dotted lines). Thin solid line denotes inverse-Compton energy

losses timescale considered with the assumed χcr = 104. Lower panel: Particle spectra resulting

from joint stochastic acceleration and inverse-Compton energy losses specified in the upper panel.

The spectra correspond to the monoenergetic injection Q(χ) ∝ δ(χ − 1) with fixed
∫

dp Q̃(p), and

no particle escape. Thin solid line denotes particle spectrum expected for the same injection and

cooling conditions, but with the momentum diffusion effects neglected, Ñ(χ).
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low-energy injection Q(χ) ∝ δ(χ − 1), are therefore N(χ < χcr) ∝ χ2 exp
[
−2

3 (χ/χTh)3/2
]

at low

momenta, or of the power-law form N(χ > χcr) ∝ χ−σ′
at higher momenta where the KN effects

are important. Here σ′ ≡ tacc
tic(χ>χcr)

− 2 = τacc
τic

χ1.5
cr − 2.

3.3. Bremsstrahlung and Coulomb Energy Losses

At high densities or low magnetic field (in general low Alfvén velocities) electron-electron

and electron-ion interactions become important. These result in an elastic loss due to Coulomb

collisions or radiative loss via bremsstrahlung. At low energies the bremsstrahlung loss rate is

negligible when compared to the Coulomb loss rate, which is independent of energy for relativistic

charge particles (see e.g. Petrosian 1973, 2001). However, since the bremsstrahlung rate increases

nearly linearly with energy, above some critical energy bremsstarahlung becomes dominant. The

time scales associated with these processes approximately are

tcoul = τcoul χ, where τcoul ≡
p0

mec

2

3 σThc ng ln Λ
(36)

and

tbrem = τbrem , where τbrem ≡ π

3 αfsσThc ng
. (37)

Here ng is the background plasma density, the Coulomb logarithm ln Λ varies from 10 to 40 for

variety of astrophysical plasma, αfs = 1/137 is the fine structure constant, and the bremsstrahlung

rate includes electron-ion and electron-electron bramsstrahlung, and assumes completely unscreened

limit with approximately 10% (fully ionized) helium abundance (Blumenthal & Gould 1970). The

time scales are equal at energy pCoul = π ln Λ mec/(2 αfs). At higher energies the bremsstrahlung

loss becomes unimportant compared to the synchrotron or IC losses. For example, the synchrotron

loss becomes equal to and exceeds the bremsstrahlung loss at electron momenta p ≥ pbrem ≡
(me/mp)(αfs/β

2
A) mec so that for bremsstrahlung to be at all important we need 1000 < p/(mec) <

10−5 β−2
A , requiring βA < 0.003. Below we investigate in some details stochastic acceleration for

the conditions when the Coulomb and bremsstrahlung processes are the dominant loss processes.

At low energies, p < pCoul, Coulomb collision dominate. If p0 ≫ mec then in the range

mec ≪ p ≪ pCoul and for q > 1, the appropriate Green’s function becomes

G(χ, χinj)|q>1
coul = χ2 e

1
1−q

»

“

χ1
χeq

”1−q
−

“

χ
χeq

”1−q
– (

1

A
+

∫ min[χinj, χ]

χ1

dχ′ χ′−(2+q) e
1

1−q

»

“

χ′

χeq

”1−q
−

“

χ1
χeq

”1−q
–)

≈

≈ χ2 e
− 1

1−q

“

χ
χeq

”1−q
χ−1−q

eq (−1)2/(1−q)

(1 − q)2/(1−q)
Γ

[
−1 + q

1 − q
, − (min[χinj, χ]/χeq)1−q

1 − q
, − (χ1/χeq)1−q

1 − q

]
(38)

(see equations 22−23), where the equilibrium momentum χeq = (τcoul/τacc)
1/(1−q) is defined by the

tacc = tcoul condition, yielding ϑχ = χq−1
eq /χ. Note that since q > 1 are considered, the acceleration
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timescale is longer than the Coulomb interactions timescale for χ < χeq. Thus, in the case of a

low-energy particle injection with χinj < χeq, the emerging particle spectra are of the ‘cooled’ form

N(χ) = Ñ(χ) ∝ const (see equation 29 with ϑχ ∝ χ−1). If, however, higher-energy particles are

injected to the system, an additional flat-spectrum component N(χ) ∝ χ2 is formed at χ > χeq.

Let us finally note, that pure Coulomb energy losses and the Bohm limit q = 1 correspond

to the situation when ϑχ = const, and hence S(χ) = χ−2+(τacc/τcoul). The Green’s function (22)

adopts then the form

G(χ, χinj)|q=1
coul = χ

2− τacc
τcoul

(
1

A
+

∫ min[χinj, χ]

χ1

dχ′ χ
′−4+ τacc

τcoul

)
∼

∼ 1

σ′ χ−σ′

{
χσ′

1 for τacc/τcoul < 2

minσ′
(χinj, χ) for τacc/τcoul > 2

, (39)

where σ′ ≡ τacc
τcoul

− 2. Hence, if only τacc < 2 τcoul, a power-law particle energy distribution N(χ) ∝
χ−σ′

forms, with −2 < σ′ < 0. For any longer acceleration timescale, τacc > 2 τcoul, and for

the source function Q(χ) ∝ δ(χ − χinj), the emerging electron spectra are N(χ) ∝ const for

χ < χinj, and N(χ) ∝ χ−σ′
with σ′ > 0 for χ > χinj. This is consistent with the solution found by

Bogdan & Schlickeiser (1985), who considered also synchrotron emission and finite escape timescale

in addition to the Coulomb energy losses of ultrarelativistic electrons interacting with flat-spectrum

turbulence q = 1.

At higher energies and in the range pCoul ≪ p ≪ pbrem bremsstrahlung loss is the dominant

process and the equilibrium momentum defined by the condition tacc = tbrem for q < 2 becomes

χeq = (τbrem/τacc)
1/(2−q), yielding ϑχ = χ

−(2−q)
eq . Hence, the Green’s function (22) is

G(χ, χinj)|q<2
brem = χ2 e

− 1
2−q

“

χ
χeq

”2−q
(

1

A
+

∫ min[χinj, χ]

χ1

dχ′ χ′−(2+q) e
1

2−q

“

χ′

χeq

”2−q
)

≈ (40)

≈ χ2 e
− 1

2−q

“

χ
χeq

”2−q
χ−1−q

eq (−1)3/(2−q)

(2 − q)3/(2−q)
Γ

[
−1 + q

2 − q
, − (min[χinj, χ]/χeq)2−q

2 − q
, − (χ1/χeq)2−q

2 − q

]

(equations 22−23). In other words, for any injection conditions the expected electron energy

distribution is of the N(χ) ∝ χ2 exp
[
− 1

2−q (χ/χeq)2−q
]

form, except for the case when high energy

particles with χinj > χeq are injected to the system. Such high energy particles subjected to the

bremsstrahlung energy losses form then an additional ‘cooled’ high-energy power-law tail N(χ) ∝
χ−1 in the momentum range between χeq and χinj, in agreement with the appropriate form of Ñ(χ)

with ϑχ = const (see equation 29).

The situation changes for q = 2, since both the acceleration and cooling timescales are now

independent of electrons’ energy. In this case S(χ) = χ−2+(τacc/τbrem), and the Green’s function (22)

adopts the form

G(χ, χinj)|q=2
brem = χ

2− τacc
τbrem

(
1

A
+

∫ min[χinj, χ]

χ1

dχ′ χ
′−4+ τacc

τbrem

)
∼
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∼ 1

1 − σ′ χ−σ′

{
χ−1+σ′

1 for τacc/τbrem < 3

min−1+σ′
(χinj, χ) for τacc/τbrem > 3

, (41)

where σ′ ≡ τacc
τbrem

−2. This is consistent with the appropriate Green’s function found by Schlickeiser et al.

(1987) who, in a framework of the ‘hard-sphere’ approximation q = 2, considered also synchrotron

emission and particle escape in addition to the bremsstrahlung radiation. The solution (41) implies

that within the whole energy range the expected electron energy distribution is of the power-law

form N(χ) ∝ χ−σ′
, with the power-law index −2 < σ′ < 1. For any longer acceleration timescale,

τacc > 3 τbrem, and monoenergetic injection Q(χ) ∝ δ(χ − χinj), the emerging electron spectra are

expected to be of the N(χ) ∝ χ−1 form for χ < χinj, while N(χ) ∝ χ−σ′
with σ′ > 1 for χ > χinj.

4. Efficient Particle Escape

In this section we investigate steady-state solutions to the momentum diffusion equation of

radiating ultrarelativistic particles with a finite escape timescale (equation 6). Our analytical ap-

proach force us to consider only the limiting cases of turbulent spectral indices q = 2 or q = 1, as well

as to restrict the analysis of radiative losses to the synchrotron and/or IC-Thompson regime pro-

cesses, (ϑχ ∝ χ). We note that the global approximation to the solution of the momentum diffusion

equation not necessarily restricted to some particular values of the q parameter, with the regular

energy losses and particle escape terms included, were studied by Gallegos-Cruz & Perez-Peraza

(1995) by using the WKBJ method. Just us before, we consider finite energy range of particles

undergoing momentum diffusion, 0 < χ1, χ2 < ∞, strictly related to the finite wavelength range

of interacting turbulent modes. We construct the Green’s function accordingly to the procedure

outlined in the previous section § 3, with addition of the escape term (ε 6= 0) and with a different

boundary conditions. Specifically, we change equation (5) to

∂N
∂τ

+ F|χ2
− F|χ1

=

∫ χ2

χ1

dχQ(χ, τ) − ε

∫ χ2

χ1

dχχ2−q N(χ) , (42)

where the particle flux in the momentum space F [N(χ)] is defined in the same way as previously

(equation 19). As evident, the no-flux boundary conditions, F [N(χ1)] = F [N(χ2)] = 0, and

conservation of total number of particles, ∂N/∂τ = 0, (within the energy range [χ1, χ2]) implies

that the particle injection is completely balanced by the particle escape. We will assume this

to be the case in this section. Physical realization of these would imply presence of an another

efficient yet unspecified acceleration process operating at χ < χ1, which prevent negative particle

momentum flux through the χ1 boundary. As shown below, the solutions we obtain agree with the

ones discussed in the literature for singular boundary conditions for the infinite momentum range

(Jones 1970; Schlickeiser 1984; Bogdan & Schlickeiser 1985; Park & Petrosian 1995), as long as we

are dealing with particle momenta χ ≫ χ1 and χ ≪ χ2.
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4.1. ‘Hard-Sphere’ Approximation

‘Hard-Sphere’ approximation for the momentum diffusion of ultrarelativistic electrons under-

going synchrotron energy losses corresponds to the fixed q = 2 and ϑχ = χ/χeq (see equations 4

and 24). With these, the equation (6) adopts the form

χ2 N ′′(χ) + χ−1
eq χ2 N ′(χ) +

(
2 χ−1

eq χ − 2 − ε
)

N(χ) = −Q(χ) . (43)

The two linearly-independent particular solutions to the homogeneous form of the above equation

are

y1(χ) = χσ+1 e
− χ

χeq U

[
σ − 1, 2σ + 2,

χ

χeq

]
,

y2(χ) = χσ+1 e
− χ

χeq M

[
σ − 1, 2σ + 2,

χ

χeq

]
, (44)

where U [a, b, z] and M [a, b, z] are Tricomi and Kummer confluent hypergeometrical functions, re-

spectively, and σ ≡ −(1/2) + [(9/4) + ε]1/2. Introducing next their linear combinations, u1(χ) =

y1(χ) + α y2(χ) and u2(χ) = y1(χ) + β y2(χ), one may find that the no-flux boundary conditions

F [u1(χ1)] = F [u2(χ2)] = 0 are fulfilled for

α = (2 + σ)
U [σ, 2σ + 2, χ1/χeq]

M [σ, 2σ + 2, χ1/χeq]
, and β = (2 + σ)

U [σ, 2σ + 2, χ2/χeq]

M [σ, 2σ + 2, χ2/χeq]
. (45)

This gives the Green’s function of the problem as

G(χ, χinj)|q=2
esc =

Γ(σ − 1)

Γ(2σ + 2)
(α − β)−1 χ−2

inj χ−2σ−1
eq eχinj/χeq ×

×
{

[y1(χ) + α y2(χ)] [y1(χinj) + β y2(χinj)] for χ1 ≤ χ < χinj

[y1(χinj) + αy2(χinj)] [y1(χ) + β y2(χ)] for χinj < χ ≤ χ2
. (46)

In order to investigate the above solution, let us consider first the case χ1 ≪ χinj ≪ χeq ≪ χ2,

and use the standard expansion of the confluent hypergeometrical functions: U [a, b, z] ∼ z−a and

M [a, b, z] ∼ Γ(b) ez za−b/Γ(a) for z → ∞, while U [a, b, z] ∼ Γ(b − 1) z1−b/Γ(a) and M [a, b, z] ∼ 1

for z → 0 (Abramowitz & Stegun 1964). In this limit one gets

G(χ, χinj)|q=2
esc, χinj<

∼





1
2σ+1 χ−σ−2

inj χσ+1 for χ1 < χ < χinj
1

2σ+1 χσ−1
inj χ−σ for χinj < χ ≪ χeq

Γ(σ−1)
Γ(2σ+2) χσ−1

inj χ−σ−2
eq χ2 e−χ/χeq for χeq . χ < χ2

. (47)

Thus, by moving the critical momenta χ1 and χ2 toward 0 and ∞, respectively, the resultant Green’s

function approaches asymptotically — as expected — the corresponding Green’s function for singu-

lar boundary conditions obtained by Jones (1970); Schlickeiser (1984) and Park & Petrosian (1995).

In particular, one can find that with the monoenergetic injection Q(χ) ∝ δ(χ − χinj), the resulting
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Fig. 8.— ‘Hard-sphere approximation’ (q = 2): particle spectra resulting from joint stochastic

acceleration, particle escape, and synchrotron energy losses. The spectra correspond to the mo-

noenergetic injection Q(χ) ∝ δ(χ − χinj) with fixed normalization, fixed acceleration and cooling

rates, but different escape timescales (parameter ε = 3, 0.1, 10−4; dotted, dashed, and solid lines,

respectively). For illustration, χ1 = 10−2, χinj = 1, χeq = 106, and χ2 = 108 have been selected.
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Fig. 9.— The same as FIgure (8) except for χinj = 106.
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electron energy distribution is then of the form N(χ < χinj) ∝ χσ+1 and N(χ > χinj) ∝ χ−σ up

to maximum momentum χeq. Moreover, for the increasing escape timescale ε → 0, one has σ ≈ 1

and the pile-up bump N(χ) ∝ χ2 exp [−χ/χeq] emerging around χ ∼ χeq energies. This is shown

in Figure (8), where we fixed normalization of the monoenergetic injection
∫

dp Q̃(p), acceleration

and losses timescales, but varied the escape timescale (ε = 3, 0.1, 10−4; dotted, dashed, and solid

lines, respectively). For illustration we have selected χ1 = 10−2, χinj = 1, χeq = 106, and χ2 = 108.

When high energy particles are injected to the system, such that χ1 ≪ χeq ≪ χinj ≪ χ2, one

may find useful asymptotic expansion of the Green’s function

G(χ, χinj)|q=2
esc, χinj>

∼





Γ(σ−1)
Γ(2σ+2) χ−σ−2

eq χσ+1 e−χ/χeq for χ1 < χ . χeq

χ−2 χeq for χeq ≪ χ < χinj

χ−4
inj χeq eχinj/χeq χ2 e−χ/χeq for χinj < χ < χ2

. (48)

That is, for the monoenergetic injection Q(χ) ∝ δ(χ − χinj) with χinj > χeq the resulting electron

energy distribution is of the form N(χ) ∝ χσ+1 exp [−χ/χeq] for χ . χeq. However, within the

energy range χeq < χ < χinj the power-law tail N(χ) ∝ χ−2 emerges, representing radiatively

(ϑχ ∝ χ) cooled high-energy particles injected to the system, undergoing negligible (when compared

to the energy loss rate) momentum diffusion. At even higher energies, χ > χinj, the particle

spectrum cuts-off rapidly. This is shown in Figure (9), where, as before, we fixed normalization

of the monoenergetic injection
∫

dp Q̃(p), acceleration and losses timescales, but varied the escape

timescale (ε = 3, 0.1, 10−4; dotted, dashed, and solid lines, respectively). For illustration we have

selected χ1 = 10−2, χeq = 102, χinj = 106, and χ2 = 108. Note, that the esape timescale, and hence

parameter ε, influences now the slope and normalization of particle energy distribution only in the

‘low-energy’ regime χ < χeq, such that the spectrum approaches ∝ x2 for ε → 0.

4.2. Bohm Limit

Bohm limit for the momentum diffusion of ultrarelativistic electrons undergoing synchrotron

energy losses corresponds to q = 1 and ϑχ = χ/χ2
eq (see equations 4 and 24). The difference with

the ‘hard-sphere’ approximation is that the balance between acceleration and escape timescales,

tacc = tesc, define now yet another critical energy, χesc = ε−1/2 and equation (6) takes the form

χN ′′(χ) +
(
χ−2

eq χ2 − 1
)

N ′(χ) +
(
2 χ−2

eq χ − χ−2
esc χ

)
N(χ) = −Q(χ) . (49)

The two linearly-independent particular solutions to the homogeneous form of the above equation

are

y1(χ) = χ2 e
− 1

2

“

χ
χeq

”2

U

[
η, 2,

1

2

(
χ

χeq

)2
]

,

y2(χ) = χ2 e
− 1

2

“

χ
χeq

”2

M

[
η, 2,

1

2

(
χ

χeq

)2
]

, (50)
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where η ≡ 1
2(χeq/χesc)

2. Defining u1(χ) = y1(χ) + α y2(χ) and u2(χ) = y1(χ) + β y2(χ), one finds

that the no-flux boundary conditions F [u1(χ1)] = F [u2(χ2)] = 0 corresponds to

α = 2
U
[
η + 1, 3, 1

2 (χ1/χeq)2
]

M
[
η + 1, 3, 1

2 (χ1/χeq)2
] , and β = 2

U
[
η + 1, 3, 1

2 (χ2/χeq)2
]

M
[
η + 1, 3, 1

2 (χ2/χeq)2
] . (51)

This gives the Green’s function of the problem as

G(χ, χinj)|q=1
esc =

1

4
Γ(η) (α − β)−1 χ−2

inj χ−2
eq e

1
2
(χinj/χeq)2 ×

×
{

[y1(χ) + α y2(χ)] [y1(χinj) + β y2(χinj)] for χ1 ≤ χ < χinj

[y1(χinj) + αy2(χinj)] [y1(χ) + β y2(χ)] for χinj < χ ≤ χ2
. (52)

Let us consider first the case χ1 ≪ χinj ≪ χeq ≪ χ2 for which he Green’s function of equation

(52) can be then approximated as

G(χ, χinj)|q=1
esc, χinj<

∼





1
2 χ−2

inj χ2 for χ1 < χ < χinj
1
2 for χinj < χ ≪ χeq

2η−2 Γ(η) χ−2+2 η
eq χ2−2 η e−

1
2
(χ/χeq)2 for χeq . χ < χ2

. (53)

Note that, as expected, in the limits χ1 → 0 and χ2 → ∞, the Green’s function (52) approaches

asymptotically the solution obtained for singular boundary conditions by Bogdan & Schlickeiser

(1985). As shown in Figure (10), for a monoenergetic injection Q(χ) ∝ δ(χ − χinj), the resulting

electron energy distribution is N(χ < χinj) ∝ χ2 and N(χ > χinj) ∝ const up to maximum mo-

mentum χeq, with the spectral indexes independent of the value of the escape timescale. However,

for energies near and above χeq the spectra depend on the value of η. For η → 0, ı.e. when the

escape timescale is large, the familiar bump N(χ) ∝ χ2 exp
[
−1

2(χ/χeq)2
]

emerges around χ ∼ χeq

energies (solid line). In the opposite case, when η > 1 (or χeq > χesc), no pile-up bump is present,

and the electron spectrum cut-offs exponentially at χesc momenta (dashed and dotted lines). Here,

as before, we fixed the normalization of the monoenergetic injection
∫

Q̃(p) dp, and the acceleration

and loss timescales, but varied the escape timescale such that χesc = 105, 106, and 107 (dotted,

dashed, and solid lines, respectively). We choose χ1 = 10−2, χinj = 1, χeq = 106, and χ2 = 108.

In the case when χ1 ≪ χeq ≪ χinj ≪ χ2 the asymptotic expansion of the Green’s function

(52) yields

G(χ, χinj)|q=1
esc, χinj>

∼





2η−2 Γ(η) χ−2η
inj χ2η−2

eq χ2 e−
1
2

(χ/χeq)2 for χ1 < χ . χeq

χ−2η
inj χ2

eq χ2η−2 for χeq ≪ χ < χinj

χ2η−4
inj χ2

eq χ2η−2 e
1
2

(χinj/χeq)2 e−
1
2

(χ/χeq)2 for χinj . χ < χ2

. (54)

Again as above, the spectrum is different in the case of high energy injection. For example, as

shown in Figure (11), for the monoenergetic injection Q(χ) ∝ δ(χ − χinj) with χinj > χeq the

resulting electron energy distribution is of the form N(χ) ∝ χ2 exp
[
−1

2(χ/χeq)2
]

for χ . χeq,
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Fig. 10.— Bohm Limit (q = 1): particle spectra resulting from joint stochastic acceleration,

particle escape, and synchrotron energy losses. The spectra correspond to the monoenergetic

injection Q(χ) ∝ δ(χ − χinj) with fixed normalization, fixed acceleration and cooling rates, but

different escape timescales (critical momenta χesc = 105, 106, 107; dotted, dashed, and solid lines,

respectively). For illustration, χ1 = 10−2, χinj = 1, χeq = 106, and χ2 = 108 have been selected.
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Fig. 11.— The same as Figure (10) except for χinj = 106.
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while N(χ) ∝ χ2η−2 for χeq ≪ χ < χinj. It is interesting to note that the Bohm limit case behaves

differently from the q = 2 case and analogous injection condition. The escape timescale affecs now

(via the parameter χesc, or η) the normalization of the low-energy (χ < χeq) segment of the particle

spectrum but not its power-law slope. It determines, on the other hand, the ‘radiatively-cooled’

part of the particle distribution in the range χeq < χ < χinj, which is, however, very close to the

standard ∝ χ−2 for any χesc ≫ χeq (or η ≪ 1). Here, as before, we fixed normalization of the

monoenergetic injection
∫

dp Q̃(p), and the acceleration and loss timescales, but varied the escape

timescale such that χesc = 105, 106, and 107 (dotted, dashed, and solid lines, respectively). Also

we set χ1 = 10−2, χinj = 1, χeq = 106, and χ2 = 108.

5. Emission Spectra

In the previous sections § 3 and § 4, we showed that stochastic interactions of radiating ultrarel-

ativistic electrons (Lorentz factors γ ≡ p/mec ≫ 1) with turbulence characterized by a power-law

spectrum W(k) ∝ k−q result in formation of a ‘universal’ high-energy electron energy distribution

ne(γ) = n0 γ2 exp

[
−1

a

(
γ

γeq

)a]
, (55)

as long as particle escape from the system is inefficient and the radiative cooling rate scales with

some power of electron energy. Here the equilibrium energy γeq is defined by the balance between

acceleration and the energy losses timescales, while the parameter a depends on the dominant

radiative cooling process and the turbulence spectrum. In particular, for either synchrotron or

IC/Thomson-regime cooling one has a = 3 − q. In the case of dominant IC/KN-regime energy

losses (with q < 1.5) one has instead a = 1.5 − q. Below we investigate in more details emission

spectra resulting from such an electron distribution.

5.1. Synchrotron Emission

Assuming isotropic distribution of momenta of radiating electrons with energy spectrum ne(γ),

the synchrotron emissivity can be found as

jν, syn(ν) =

√
3 e3B

4π mec2

∫
dγ R

(
ν

νc γ2

)
ne(γ) (56)

where νc = 3eB/4πmec,

R(x) =
x2

2
K4/3

(x

2

)
K1/3

(x

2

)
− 0.3

x3

2

[
K2

4/3

(x

2

)
− K2

1/3

(x

2

)]
, (57)

and Kµ (z) is a modified Bessel function of the second order (Crusius & Schlickeiser 1986). Rel-

atively complicated function (57) can be instead conveniently approximated by R(x) ≈ 1.81 ×
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(
1.33 + x−2/3

)−1/2
e−x (Zirakashvili & Aharonian 2007), allowing for some analytical investigation

of the integral (56). In particular, one may find that the synchrotron emissivity in a frequency

range ν < νsyn ≡ νc γ2
eq is of the form jν, syn(ν < νsyn) ∝ ν1/3, as expected in the case of a very hard

(inverted) electron energy distribution at low energies, ne(γ < γeq) ∝ γ2. At higher frequencies,

however, the synchrotron spectrum steepens. In order to evaluate such a high-frequency spectral

component, we use the introduced approximation for R(x), electron spectrum as given in (55), and

with these we re-write synchrotron emissivity (56) as

jν, syn(ν) ≈
1.81

√
3 e3B γ3

eqn0

4π mec2

∫
dy g(ω, y) exp [−ω h(ω, y)] , (58)

where ω ≡ ν/νsyn, y ≡ γ/γeq, g(ω, y) ≡ y2 (1.33 + ω−2/3y4/3)−1/2, and h(ω, y) ≡ y−2 + ya/(ω a).

With such a form it can be noted that for large ω, i.e. for ν > νsyn, the integral of interest can

be perform approximately using the steepest descent method (see Petrosian 1981). This gives

jν, syn(ν > νsyn) ≃
1.81

√
3 e3B γ3

eqn0

4π mec2

√
2π

ω h′′(ω, y⋆)
g(ω, y⋆) exp [−ω h(ω, y⋆)] ≃

≃
0.54 e3B γ3

eqn0

mec2
√

2 + a

(
2ν

νsyn

) 6−a
4+2a

[
1 +

(
2ν

νsyn

)− 2a
6+3a

]−1/2

exp

[
−2 + a

2a

(
2ν

νsyn

) a
2+a

]
, (59)

where y⋆ = (2ω)1/(2+a) is a global maximum of h(ω, y), and h′′(ω, y) = ∂2h(ω, y)/∂y2. Thus, the

high-energy synchrotron component drops much less rapidly than suggested by the emissivity of a

single electron, R(x) ∝ e−x. For example, assuming synchrotron (and/or IC/Thompson-regime)

dominance a = 3 − q, the synchrotron emissivity reads very roughly as

jν, syn (ν > νsyn) ∝ ν1/2 exp
[
−1.4 (ν/νsyn)1/2

]
for q = 1, (60)

or6

jν, syn (ν > νsyn) ∝ ν5/6 exp
[
−1.9 (ν/νsyn)1/3

]
for q = 2. (61)

In the case of the IC/KN-regime dominance, a = 1.5−q, the emerging high-energy exponential cut-

off in the synchrotron continuum can be even smoother than this, for example jν, syn (ν > νsyn) ∝
ν1.1 exp

[
−2.9 (ν/νsyn)0.2

]
for q = 1. These spectra are shown in Figure (12) for fixed parameters

B, n0, and γeq, where both integration of the exact form of R(x) as given in equation (57) was

performed (solid lines), and also approximate formulae following from (59) were evaluated for

comparison (dashed lines). Different cases for the parameter a are considered in the plot, namely

(a) a = 3 − q with q = 1, (b) a = 3 − q with q = 2, and (c) a = 1.5 − q with q = 1. As shown,

synchrotron spectra are curved and extend far beyond equilibrium frequency νsyn. In the case of

6As shown by Petrosian (1981), the following spectral form is also true for synchrotron emission by semirelativistic

electrons.
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Fig. 12.— Synchrotron spectra resulting from the electron energy distribution (55) for fixed pa-

rameters B, n0, and γeq. Solid lines correspond to integration of the exact form of R(x) as given in

equation (57), while dashed lines to the approximate formulae following from (59). Different cases

for the parameter a are considered in the plot, namely (a) a = 3− q with q = 1, (b) a = 3− q with

q = 2, and (c) a = 1.5 − q with q = 1.
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the dominant IC/KN-regime cooling with q = 1, the νjν(ν)−ν synchrotron spectrum peaks around

∼ 103νsyn. We emphasize that the approximation (59), although obviously not accurate in a range

ν . νsyn, works relatively well at higher frequencies, where the standard δ-approximation for the

synchrotron emissivity, νjν, syn(ν) ∝ [γ3 ne(γ)]γ∝ν1/2 , fails.

5.2. Inverse-Compton Emission

Let us consider inverse-Compton emission of isotropic electrons up-scattering monoenergetic

and isotropic photon field with energy density uph and dimensionless photon energy ǫ0 ≡ hν0/mec
2.

The appropriate emissivity can be then found from

jν, ic(ν) =
3 chσT

16π mec2
uph

∫

1
2
ǫ

“

1+
√

1+(ǫ ǫ0)−1
”

dγ
ǫ

γ2ǫ2
0

J (ǫ, ǫ0, γ) ne(γ) , (62)

where ǫ ≡ hν/mec
2, and J (ǫ, ǫ0, γ) is the IC kernel

J (ǫ, ǫ0, γ) = 2I ln I + I + 1 − 2I2 +
L2I2 (1 − I)

2 (1 − LI)
with L ≡ 4ǫ0γ and I ≡ ǫ

L (γ − ǫ)
(63)

(e.g., Blumenthal & Gould 1970).

Let us discuss first the case when the KN effects are negligible. The IC kernel can then be

approximated by J (ǫ, ǫ0, γ) ≈ 2
3(1−ω/y2), with y ≡ γ/γeq, ω ≡ ǫ/ǫic/Th, and ǫic/Th ≡ 4ǫ0 γ2

eq which

is the characteristic energy of soft photon inverse-Compton up-scattered in a Thomson regime by

electrons with Lorentz factor γeq. Hence, with the electron energy distribution of the form (55),

one can find that

ǫjǫ, ic/Th(ǫ) =
2

π
cσTh uph n0 γ5

eq

∫
√

x
dy ω2

(
1 − ω

y2

)
exp

[
−1

a
ya

]
≈

≈ 2

π
cσT uph n0 γ5

eq a−1ω2
{

a1/a Γ
[
a−1, a−1 ωa/2

]
− a−1/a ω Γ

[
−a−1, a−1 ωa/2

]}
, (64)

where Γ[a, z] is incomplete Gamma function. With the expansion Γ[a, z] ∼ Γ[a] for z → 0

(Abramowitz & Stegun 1964), one can approximate further

ǫjǫ, ic/Th(ǫ < ǫic/Th) ∼ 2

π
cσTh uph n0 γ5

eq a
1−a

a Γ
(
a−1
) ( ǫ

ǫic/Th

)2

. (65)

In other words, the IC emissivity at low photon energies is of the form jǫ, ic/Th(ǫ < ǫic/Th) ∝ ǫ.

This is the flattest IC/Thomson-regime spectrum, being analogous to the flattest synchrotron one

jν, syn(ν < νsyn) ∝ ν1/3. At higher photon energies, noting that Γ[a, z] ∼ za−1 e−z for z → ∞, one

may find instead

ǫjǫ, ic/Th(ǫ > ǫic/Th) ∼ 2

π
cσTh uph n0 γ5

eq

(
ǫ

ǫic/Th

) 5−a
2

exp

[
−1

a

(
ǫ

ǫic/Th

)a
2

]
. (66)
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Fig. 13.— Inverse-Compton spectra produced in the Thomson regime, resulting from the electron

energy distribution (55) for fixed parameters B, n0, and γeq. Solid lines correspond to the formulae

(64), and dashed lines to the rough approximation (66). Two different parameters a = 3 − q are

considered in the plot, corresponding to the turbulence energy index q = 1 and q = 2 (cases (a)

and (b), respectively).
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Fig. 14.— Inverse-Compton spectra produced in the KN regime, resulting from the electron energy

distribution (55) for fixed parameters B, n0, and γeq. Solid lines correspond to the exact evaluation

of the integral (62), and dashed lines to the rough approximation (67). Different cases for the

parameter a are considered in the plot, namely (a) a = 3 − q with q = 1, (b) a = 3 − q with q = 2,

and (c) a = 1.5 − q with q = 1. For illustration γcr/γeq = 0.01 has been selected.
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Therefore, the exponential cut-off of the IC/Thomson-regime component is now steeper than the

exponential cut-off of the synchrotron component originating from the same particle distribution.

In particular, with a = 3 − q one gets jǫ, ic/Th(ǫ > ǫic/Th) ∝ ǫ1/2 exp[−1
2 (ǫ/ǫic/Th)] for q = 1, while

jǫ, ic/Th(ǫ > ǫic/Th) ∝ ǫ exp[−(ǫ/ǫic/Th)1/2] for q = 2 (that can be compared with the corresponding

synchrotron emissivities provided above). These spectra are shown in Figure (13) for fixed pa-

rameters B, n0, and γeq. Here the solid lines correspond to the formulae (64), and dashed lines

to the rough approximation (66). Two different parameters a = 3 − q are considered in the plot,

corresponding to the turbulence energy index q = 1 and q = 2 (cases (a) and (b), respectively).

Finally, we comment on the emission spectra produced in a deep KN regime of the IC scattering,

i.e. when γ > γcr ≡ 1/4ǫ0, by the highest-energy electrons γ & γeq. In such a case, the emissivity

has to be evaluated by performing the integral (62) with the exact IC kernel as given in equation

(63). A rather crude approximation for such can be obtained by utilizing the δ-approximation for

the resulting IC/KN-regime photon energy, namely ǫ = γ. In particular, with the electron energy

distribution as given in (55), and with all the previous assumptions regarding monoenergetic and

isotropic soft photon field, one finds

ǫjǫ, ic/KN(ǫ & γeq) ≃ mec
2

4π

γ2 ne(γ)

tIC(γ)

∣∣∣∣
γ=ǫ

≃

≃ 1

3π
cσT uph n0 γ5

eq

(
ǫ

γeq

)5 (
1 +

ǫ

γeq

γeq

γcr

)−1.5

exp

[
−1

a

(
ǫ

γeq

)a]
, (67)

where tIC(γ) is the inverse-Compton cooling timescale as introduced previously in equation (30).

As shown in Figure 14, as a result the IC/KN-regime spectra cut-off sharply above ǫ = γeq photon

energies, imitating exponential cut-off in the energy distribution of radiating particles. Here the

exact calculations are plotted as solid lines, and rough approximation (67) as dashed ones. We fix

parameters B, n0, γeq, γcr/γeq = 0.01, and again, different cases for the parameter a are considered;

(a) a = 3 − q with q = 1, (b) a = 3 − q with q = 2, and (c) a = 1.5 − q with q = 1. We also choose

for illustration γcr/γeq = 0.01.

6. Discussion and Conclusions

In this paper we study steady-state spectra of ultrarelativistic electrons undergoing momen-

tum diffusion due to resonant interactions with turbulent MHD waves. We assume a given power

spectrum W(k) ∝ k−q for magnetic turbulence within some finite range of turbulent wavevectors

k, and consider variety of turbulence spectral indices 1 ≤ q ≤ 2. For example, q = 1 corresponds

to the ‘Bohm limit’ of the stochastic acceleration processes, q = 2 represents the ‘hard-sphere ap-

proximation’, while q = 5/3 and q = 3/2 to the Kolmogorov or Kreichnan turbulence, respectively.

Within the anticipated quasilinear approximation for particle-wave interactions, such a turbulent

spectrum gives the momentum and pitch angle diffusion rates ∝ pq−2, or the acceleration and es-

cape timescales tacc ∝ p2−q and tesc ∝ pq−2. In the analysis, we also include radiative energy losses,
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being an arbitrary function of the electrons’ energy. In most of the cases, however, or at least in

some particular energy ranges, the appropriate timescale for the radiative cooling scales simply with

some power of the particle momentum, tloss ∝ pr. For example, r = −1 corresponds to synchrotron

or inverse-Compton/Thomson-regime energy losses, r = 0 (roughly) to the bremsstrahlung emis-

sion, r = +1 (roughly) to the Coulomb interactions of ultrarelativistic electrons, while r = 1/2 may

conveniently approximate inverse-Compton cooling in the Klein-Nishina regime on monoenergetic

background soft photon field.

We find that when the particles are confined to the turbulent acceleration region (tesc → ∞),

the resulting steady-state particle spectra (for a finite momentum range of interacting electrons) are

in general of the modified ultrarelativistic Maxwellian type, ne(p) ∝ p2 exp
[
− 1

a (p/peq)a], where

a = 2−q−r 6= 0. Here peq is the momentum at which the acceleration and radiative loss timescales

are equal, tacc(peq) = tloss(peq). This form is independent of the initial energy distribution of the

electrons as long as this distribution is not very broad and the bulk of initial particles have p < peq.

However, if high energy particles with p > peq are injected to the system, there will be significant

deviations from this simple form. For example, for a δ-function initial distribution the spectrum

will have a power-law tail ∝ pr−1 in addition to the modified Maxwellian bump. Also, if the ratio

of acceleration and energy losses timescales is independent of the electron energy, in other words, if

2−q = r, then the resulting particle spectra are of the form ne(p) ∝ p−σ′
, where σ′ ≡ (tacc/tloss)−2.

Finally, if the particle escape from the acceleration site is finite but still inefficient, a power-law tail

∝ p1−q may be present in the momentum range pinj < p ≪ peq, again in addition to the modified

Maxwellian component. When the radiative losses timescale is not a simple power-law function of

the electron energy, the emerging spectra may be of a more complex (e.g., concave) form.

We also analyze in more details synchrotron and inverse-Compton emission spectra of the

electrons characterized by the modified ultrarelativistic Maxwellian energy distribution. In order

to summarize briefly our findings, let us define the critical synchrotron frequency of the electrons

with the equilibrium Lorentz factor γeq ≡ peq/mec, namely νsyn ≡ (3eB/4πmec) γ2
eq, and the critical

dimensionless energy of the monochromatic (hν0 ≡ ǫ0 mec
2) soft photon field inverse-Compton up-

scattered (in the Thomson regime) by the γeq electrons, ǫic/Th = 4 ǫ0 γ2
eq. With these, one can

note that the low-frequency synchrotron emissivity is of the form jν, syn(ν < νsyn) ∝ ν1/3, as

expected in the case of a very flat (or inverted) electron energy distribution ne(γ < γeq) ∝ γ2.

Such flat electron spectra seem to be required to explain several emission properties of relativistic

jets in active galactic nuclei (Tsang & Kirk 2007a,b). At higher frequencies, we find a rough

approximation jν, syn(ν > νsyn) ∝ ν(6−a)/(4+2a) exp
[
−2+a

2a (2ν/νsyn)a/(2+a)
]
. Thus, the high-energy

synchrotron component drops much less rapidly than suggested by the emissivity of a single electron,

and the emerging high-frequency tail of the synchrotron spectrum is of a smoothly curved shape.

It is therefore very interesting to note that almost exactly this kind of curvature is observed at

synchrotron X-ray frequencies in several BL Lac objects (Massaro et al. 2004, 2006; Perlman et al.

2005; Tramacere et al. 2007a,b; Giebels et al. 2007), in particular those detected also at TeV photon

energies.
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As for the inverse-Compton emission of ultrarelativistic electrons characterized by the modified

Maxwellian energy distribution, we find that in the Thomson regime it is of the form jǫ, ic/Th(ǫ <

ǫic/Th) ∝ ǫ, and jǫ, ic/Th(ǫ > ǫic/Th) ∝ ǫ(3−a)/2 exp
[
− 1

a

(
ǫ/ǫic/Th

)a/2
]
. Both very flat low-energy

part of this component and also its curved high-energy segment may contribute to the observed

γ-ray emission of some TeV blazars (Katarzyński et al. 2006a; Giebels et al. 2007)7. We also note,

that the curvature of the high frequency segments of the synchrotron and inverse-Compton spectra,

event though being produced by the same energy electrons and in the Thomson regime, are different.

Such a difference is even more pronounce when the Klein-Nishina effects play a role, since in such

a case an exponential decrease of the high-energy photon spectra is the strongest, jǫ, ic/KN(ǫ >

γeq) ∝ ǫ7/2 exp
[
− 1

a (ǫ/γeq)a], imitating exponential cut-off in the energy distribution of radiating

particles.
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Katarzyński, K., Ghisellini, G., Tavecchio, F., Gracia, J., & Maraschi, L. 2006a, MNRAS, 368, L52
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