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ABSTRACT

The action of the barotropic tide over seafloor topography is the major source of internal waves at the

bottom of the ocean. This internal tide has long been recognized to play an important role in ocean mixing.

Here it is shown that the internal tide is also associated with a net (domain integrated) momentum flux. The

net flux occurs as a result of theDoppler shifting of the internal tide at the point of generation by near-bottom

mean flows. Linear theory is presented that predicts the amplitude of the wave momentum flux. The net flux

scales with the bottom flow speed and the topographic wavenumber to the fourth power and is directed

opposite to the bottom flow. For realistic topography, the predicted peak momentum flux occurs at scales of

order 10 km and smaller, with magnitudes of order 1023–1022Nm22. The theory is verified by comparison

with a suite of idealized internal wave-resolving simulations. The simulations show that, for the topography

considered, the wave momentum flux radiates away from the bottom and enhances mean and eddying flow

when the tidal waves dissipate in the upper ocean. Our results suggest that internal tides may play an im-

portant role in forcing the upper ocean.

1. Introduction

Internal tides, or tidally generated internal waves,

are a ubiquitous feature of the World Ocean, generated

when the large-scale barotropic tide flows over rough

seafloor topography. The internal waves are generated

at the tidal frequency, or its harmonics (Bell 1975a), and

their horizontal wavelength is determined by the scale

of the local topography. The structure and behavior

of these waves depends on whether their vertical

wavelength is small or large compared with the ocean

depth. Larger-scale topography (;100 km) generates

waves with larger vertical wavelengths that feel the ef-

fect of the ocean surface and form low-mode internal

tides that, as the name suggests, are well described in

terms of a modal decomposition. These low-mode tides

propagate large horizontal distances and tend to dissi-

pate their energy remotely—for example, on continen-

tal shelves (Nash et al. 2004)—or interact further with

topography, scattering, or radiating smaller-scale waves

(e.g., St. Laurent and Garrett 2002). Smaller-scale to-

pography (;10km or smaller) generates tidal waves

with vertical wavelengths significantly smaller than

the ocean depth. These small-scale internal tides form

distinct, vertically propagating tidal beams and are

more likely to dissipate and otherwise interact with the

local flow. The energy flux associated with these waves,

and their breaking and dissipation in the deep ocean,

is thought to be important in maintaining the abyssal

circulation of the ocean (St. Laurent and Garrett 2002;

Kunze 2017). However, not all the small-scale internal

tide dissipates in the deep ocean and little attention

has been given to the waves that escape this region and

propagate into the upper ocean. Waves which span the

ocean depth are potentially important, since small-

scale internal tides are also associated with vertical

fluxes of momentum that can act to accelerate the

local flow when the waves dissipate, thereby driving

the upper ocean.

The momentum transport by internal waves and

the phenomenon of internal wave-driven flow has not

been a focus of oceanographic research but has a long

history in the atmospheric literature (e.g., White 1949).
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The waves in question are topographic lee waves,

but the principle can be generalized to all internal

waves. The seminal work of Eliassen and Palm (1961)

showed that waves carry both energy and momentum as

they propagate vertically. The momentum is extracted

from the solid earth through topographic form stress

when the waves are generated. This ‘‘wave momentum

flux’’ (or more correctly, the pseudomomentum flux; see

McIntyre 1981) is conserved as the waves propagate

in a uniform medium. Booker and Bretherton (1967)

showed that, in a vertically sheared flow, the waves will

approach a singularity at ‘‘critical levels’’ where their

phase speed goes to zero and the waves dissipate and

deposit their momentum. More generally, where back-

ground rotation is important, the same process occurs

at ‘‘inertial levels’’ where the Doppler (down)shifted

wave frequency matches the local Coriolis frequency

(e.g., Xie and Vanneste 2017).1 Thus, internal waves

provide a mechanism to force circulation at height

above their site of generation and, in the absence of

reflections, must do so to conserve momentum. These

concepts of wave forcing were formalized by Andrews

and McIntyre (1976) into the ‘‘non-acceleration theo-

rem,’’ which states that internal waves conserve their

directionally and temporally averaged (generalized) mo-

mentum flux in the absence of dissipative processes; the

generalized momentum flux is called the Eliassen–Palm

(EP) flux and is a combination of the vertical flux of

horizontal momentum and horizontal buoyancy flux.

The divergence of the EP flux has since been widely used

to evaluate the wave forcing of the atmospheric circula-

tion (e.g., Miyahara et al. 1993). The importance of wave

momentum fluxes in forcing the stratospheric circulation

is now well recognized, and parameterized wave drag

forms an important part of weather and climatemodeling

(e.g., McFarlane 1987; Bühler 2014).

In the oceanographic literature, the EP flux and

nonacceleration theorem have appeared only spar-

ingly. McPhaden et al. (1986) used these theoretical

tools to investigate the interaction of equatorial Kelvin

waves with zonal jets. Eden and Olbers (2017) used an

equivalent residual-mean theory to formulate a closure

for internal wave-mean flow interactions. More com-

monly, the EP formalism has been employed in the

context of diagnosing eddy fluxes (e.g., Maddison and

Marshall 2013).

Oceanic internal waves have long been recognized as

important in providing energy for deep-ocean mixing

(Munk 1981) and past studies have focused on energy

flux radiated from topography, with little consideration

of the momentum flux. Recently, the momentum flux

has been considered to a limited extent in the context of

lee waves. Lee waves are associated with a momentum

flux opposite to the direction of the flow responsible for

their generation (e.g., Bell 1975b). If the lee waves dis-

sipate local to their generation site, they act as a drag

on the flow. Building off the pioneering work of Bell

(1975b), Naveira Garabato et al. (2013) computed the

lee wave momentum flux using topographic survey

data and climatology for the global ocean. Their re-

sults suggest that the acceleration (or deceleration) of

the flow due to the dissipation of lee waves plays a

significant role in the dynamics of the Southern Ocean.

Trossman et al. (2016) parameterized the lee wave mo-

mentumflux in an eddying globalmodel, assuming that the

waves dissipate in the bottom 500m, thereby applying a

local drag on the flow. This leewave drag drives substantial

changes in the distribution of ocean kinetic energy in their

simulations. A further example of internal wave momen-

tum fluxes in the oceanographic literature is Muench and

Kunze (2000), who showed that forcing by internal waves

provides onemechanism to enhance and sustain thePacific

equatorial deep jets.

The forcing of mean flow by the radiating internal

tide specifically—as opposed to other waves—has seen

even less discussion in the literature. Grisouard and

Bühler (2012) examined the generation of mean flow

due to the direct damping of tidal waves by a Rayleigh

drag in an idealized setting. As with the lee wave

problem, the effective force on the mean flow is felt

in locations of wave dissipation which may be distant

from the generation site. Pinkel et al. (2012) measured

internal tide EP fluxes at the Kaena Ridge near Hawaii

and proposed that they may play a role in driving upper

ocean mean flow.

Here we directly compute the momentum flux of the

internal tide and investigate the mean flow response.

We show that the generation of the internal tide pro-

duces a net (time and space averaged)momentum flux in

the presence of a steady near-bottom flow. This result

follows from Bell (1975b) but was not discussed therein.

The presence of the bottom flow acts to Doppler shift

the generated waves and thereby biases the momentum

(and energy) fluxes into the upstream tidal waves. This

behavior is contrary to the usual picture of barotropic

tidal generation where waves are generated in a sym-

metric fashion with two equal and opposite tidal beams.

A similar problem has recently been examined by

Lamb and Dunphy (2018). They develop an idealized

two-dimensional model (without rotation) to show that

the Doppler shift associated with a surface-trapped

steady current causes asymmetry in the horizontal

1The terms ‘‘inertial level’’ and ‘‘critical level’’ are often used

interchangeably (e.g., Kunze 1985).
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energy fluxes. Here we look at the impact of bottom

flows on themomentum fluxes in amore realistic setting.

As noted by Lamb and Dunphy (2018), ‘‘the effects of

a mean flow . . . on internal wave generation by tide–

topography interactions have not been previously con-

sidered in numerical or theoretical studies.’’

One of the major complications in analyzing the

impact of internal waves in a numerical model is dis-

tinguishing the waves from the nonwave flow (which

includes both the time-mean and eddying flow). Here

we perform this separation using the Lagrangian fil-

tering methodology of Shakespeare and Hogg (2018,

2017a), which defines waves as motions that have a

frequency moving with the flow (a Lagrangian fre-

quency) exceeding the inertial frequency, consistent

with the hydrostatic internal wave dispersion relation.

This filtering results in a well-defined wave field and the

ability to rigorously evaluate wave quantities such as

the momentum flux. A well-defined wave field also

implies a well-defined nonwave (total minus wave) flow

and thus allows quantification of the nonwave flow

response to wave forcing, even when the wave field is

of a similar order.

The paper is set out as follows. In section 2 we employ

linear theory to derive an expression for the net mo-

mentum flux of the internal tide. In section 3 we

introduce a numerical model to verify this theory. In

section 3b we show that the impact of the wave mo-

mentum flux is to drive mean flow and enhance eddying

flow in the upper ocean. In section 4 we compare the

flow regime of the global ocean to that of our idealized

model. In section 5 we conclude.

2. Theory

Here we derive the expression for the momentum flux

associated with the internal tide. The key result to be

shown is that in the absence of a mean bottom flow,

momentum is equally and oppositely distributed into the

wave field, with zero net momentum extraction. How-

ever, when a mean bottom flow is present, net momen-

tum is extracted from the solid earth at generation. In

either case, the momentum is transferred to the mean

flow where the waves break or otherwise dissipate, but

can only drive a domain-averaged mean flow in the

latter case.

a. The Eliassen–Palm flux and wave-forced equations

The horizontal momentum equation for an (inviscid)

rotating fluid may be written as

�
›

›t
1 u � =

�

u
h
1 f ẑ3 u

h
52=

h
p , (1)

where (u, y, w) are the velocities in the (x, y, z) Car-

tesian coordinate directions, p the dynamic pressure,

and f the Coriolis frequency. The subscript h denotes

the horizontal component of the vector. Each field

(e.g., p) may be divided into a wave component ~p and

a nonwave (mean and eddy) p component; that is,

p5 ~p1 p. We assume that the product of an appro-

priately separated wave and nonwave field is zero in a

time–horizontal-space (xyt) average, denoted by angled

brackets; for example, h ~ppi[ 0. With this assumption,

the time–space-averaged momentum equation (1) may

be written as

›hu
h
i

›t
1

›

›z
hu

h
wi1 f ẑ3 hu

h
*i52

›hF
EP
i

›z
2 h=

h
pi , (2)

where FEP is the EP flux (Andrews and McIntyre 1976;

Xie and Vanneste 2017) defined by

F
EP

5

 

~u ~w2
f~y ~b

N2
, ~y ~w1

f ~u ~b

N2
, 0

!

5 ~u
h
~w1 f ẑ3

~u
h
~b

N2
,

(3)

for mean stratification h›zbi[N2, and the residual

velocity is

u
h
*5 u

h
2

›

›z

h~u
h
~bi

N2
. (4)

Terms involving horizontal derivatives of velocity do not

appear in the domain-averaged momentum budget (2)

owing to the xy averaging. The terms in (2) are, from left

to right, the acceleration of the nonwave (mean) flow,

divergence of the nonwave momentum flux, Coriolis,

divergence of the EP flux, and pressure differences

across rough topography and/or between domain edges.

Since our nonwave field includes both mean flow and

eddies, the nonwave momentum flux huhwi is likely to

be predominately associated with eddying flow.

Observant readers will note that a wave buoyancy

flux h~uh
~bi has been added to both sides of (2) to yield

the form shown. The reason for this addition is to ob-

tain the EP flux divergence as the wave forcing term on

the right-hand side since it is the EP flux—and not the

wave momentum flux, h~uh ~wi—that is equal to the force

exerted on the topography during internal tide gener-

ation (Bell 1975b). The radiating EP flux is conserved

for small-amplitude waves in a slowly varying mean

flow in the absence of dissipation (Bretherton 1969;

Bell 1975b). Therefore, the presence of vertical di-

vergences in the horizontally averaged EP flux h›zFEPi
indicates where the waves are dissipating, depositing

momentum, and thereby accelerating the nonwave

flow. The same cannot be said for the wave momentum
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flux h~uh ~wi, which is not conserved, even in the absence

of dissipation.

b. The EP flux of the internal tide

In the ‘‘usual’’ linear theory, the generation of in-

ternal tides produces zero net EP flux since momen-

tum is equally and oppositely distributed into two

tidal beams in the absence of any mean flow (even for

anisotropic topography, as shown below). Here we

consider a background state with uniform horizontal

flow U0 5 (U0, V0, 0), in addition to a tidal flow as-

sumed (without loss of generality) to be oriented in

the x direction Ut cos(vtt) x̂. We demonstrate that

this configuration leads to a net EP flux. This result is

consistent with prior work by Bell (1975b), who ob-

tains a similar result for the wave EP flux (wave

stress) for a system with mean and tidal flow that we

will calculate below, albeit using a different approach

and in a more general form. However, Bell (1975b)

does not use their equation to investigate the case with

both mean and tidal flow, but instead considers the

two separately.

The relevant hydrostatic equations, linearized about a

uniformly stratified state, are

›~u

›t
2 f~y1U

0
� =

h
~u52

1

r
0

›~p

›x
, (5a)

›~y

›t
1 f ~u1U

0
� =

h
~y52

1

r
0

›~p

›y
(5b)

052
1

r
0

›~p

›z
1 ~b , (5c)

› ~b

›t
1 ~wN2

1U
0
� =

h
~b5 0, and (5d)

05
›~u

›x
1

›~y

›y
1

› ~w

›z
, (5e)

where N is the buoyancy frequency, r0 the reference

density, and other parameters are as defined pre-

viously. Consistent with classical theory, the advection

due to the tidal flow is neglected under the assumption

of a small tidal excursion distance Ut/vt � L, where

vt is the (Eulerian) tidal frequency and L the length

scale of topography. Solutions to (5) are plane waves

moving with the background flow,

~w5<(ŵ(k, l,m,v) expf2i[k(x2U
0
t)

1 l(y2V
0
t)1mz2vt]g)

5<fŵ(k, l,m,V) exp[2i(kx1 ly1mz2Vt)]g,
(6)

where i5
ffiffiffiffiffiffiffi

21
p

, k and l are the x and y wavenumbers,

respectively, v is the intrinsic frequency, K5 (k, l, 0)

is the net horizontal wavenumber with modulus jKj5
K5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 1 l2
p

, m56NK/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 2 f 2
p

is the vertical wave-

number, and V5v1K �U0 is the absolute (Eulerian

frame) frequency. The boundary condition on the sys-

tem is that flow must be parallel to the topography

h(x, y) or, in the small amplitude approximation,

~wj
z50

5 [U
0
1U

t
cos(v

t
t)x̂] � =h

5<
�

2iKĥe2i(kx1ly) �
�

U
0
1U

t
x̂
1

2
(e2ivt t 1 eivt t)

��

,

(7)

or

ŵ5

8

>>>>>><

>>>>>>:

2iĥK �U
0
, for V5 0,

2iĥ
kU

t

2
, for V5v

t
,

2iĥ
kU

t

2
, for V52v

t
.

(8)

From (5) and (6), it may be shown that the hori-

zontal velocity amplitudes are related to the vertical

amplitude via

û
h
56

N

vK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 2 f 2
p (2vk1 ifl,2vl2 ifk)ŵ , (9)

and the wave buoyancy is related to the vertical velocity

amplitude via

b̂5
iN2

v
ŵ . (10)

The momentum flux may thus be computed as

~u
h
~w56

 

2KN

K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 2 f 2
p <fŵ exp[2i(kx1 ly2vt)]g2

1
f (2l,k)

vK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 2 f 2
p <fŵ exp[2i(kx1 ly2vt)]g

3Jfŵ exp[2i(kx1 ly2vt)]g
!

. (11)

At this point it is useful to define the time averaging

operator,

h i5 1

T

ðT

0

dt , (12)

where T is an integer number of wave periods, and take

the average value of the momentum flux,
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h~u
h
~wi56

2KN

K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 2 f 2
p

jŵj2
2

. (13)

We now perform the same operations for the cross

product of the buoyancy flux to obtain,

hf ẑ3 ~u ~b/N2i56
Kf 2N

v2K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 2 f 2
p

jŵj2
2

. (14)

The EP flux (3) is the sum of the momentum (13) and

buoyancy (14) fluxes,

F
EP

56h~u
h
~w1 f ẑ3 ~u ~b/N2i5 7

KN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 2 f 2
p

v2K

jŵj2
2

5 7
KN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 2 f 2
p

2v2K
jĥj2

8

>><

>>:

jK �U
0
j2 , for V5 0

k2U2
t

4
, for V56v

t

9

>>=

>>;

,

(15)

where the minus is for vertical wavenumber m. 0 and

the plus for m, 0.

Equation (15) for the wave EP flux is similar to the

expression for the stress at topography due to wave

generation in a combined mean and tidal flow ob-

tained by Bell [1975b, see (3) therein]. The Bell (1975b)

result is more general than our own since they do not

make the small-excursion and hydrostatic approxi-

mations. However, the form derived here is sufficient

for our purposes.

Equation (15) exhibits four different regimes, de-

pending on the magnitude of the Doppler shift jK �U0j.
Figure 1 illustrates the simplest situation of a mean and

tidal flow perpendicular a two-dimensional ridge h(x)

giving rise to radiating beams with slope

	
	
	
	

k

m

	
	
	
	
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(V2kU
0
)2 2 f 2

q

N
,

for Eulerian frequencyV (equaling vt for tides and 0 for

lee waves). Waves propagating in the1x (2x) direction

have k. 0 (k, 0). More complicated three-dimensional

topography will be treated below. The case of zero

mean flow (Fig. 1a) is the classical limit where a sym-

metric topography will produce two equal and opposite

tidal beams. For a weak mean flow (kU0 � f ; Fig. 1b)

the two beams will be tilted consistent with advection

by the mean flow (Doppler shifting), giving rise to a net

momentum flux in the upstream direction (since this

has the steeper beam). For moderate mean flow

(v2 f , kU0 , f ; Fig. 1c), the downstreambeambecomes

FIG. 1. The generation of waves by two-dimensional ridge topography h(x) associated with a mean bottom flow U0 of varying strength

and a barotropic tideUt cosvt. (a) Zeromean flowwith symmetric tidal generation. (b)Weakmean flow. The upstream (left) tidal beam is

upshifted in Lagrangian frequency to v1kU0. It has an increased slope k/m and larger EP flux. The opposite is true for the downstream

beam. (c) Moderate mean flow where the downstream beam becomes subinertial and is blocked. The upstream beam is steeply sloped.

(d) Strong mean flow resulting in lee wave generation. Upstream tidal generation is still present but typically weaker than the lee waves.
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subinertial and is blocked, leaving only a steeply sloped

upstream beam. Last, for strong mean flow (kU0 . f ;

Fig. 1d), lee waves are generated in addition to the up-

stream tidal beam. The lee wave momentum flux

(directed upstream; scales with U2
0 ) will likely be

significantly larger than the tidal flux (scales with U2
t )

since in this limit we expect U0 � Ut.

Here we focus on the cases shown in Figs. 1b and 1c

where the Doppler shift is small, jK �U0j, f , for which

there are no lee waves and the (tidal) EP flux is

F
EP

5
K

4K

Nk2U2
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(v
t
2K �U

0
)2 2 f 2

q

(v
t
2K �U

0
)2

jĥ(k, l)j2. (16)

This result (16) is obtained by summing over the posi-

tive and negative frequencies and taking upward

propagating solutions (i.e., phase velocity V/m, 0).

The EP flux defined by (16) is visualized in Fig. 2 for

isotropic topography [i.e., jĥj2(k, l)5 jĥj2(K)] of given

wavenumber K, here assumed to be 2p/10 km. The

momentum flux of the internal tide in a given direction

is shown as a black vector in that direction. Figure 2a

displays the usual tidal generation paradigm without a

mean bottom flow. The internal tide is generated in a

symmetric fashion with two equal magnitude beams in

the 6x directions (indicated by blue vectors). Thus,

there is zero net momentum flux in this situation. The

remaining plots show the momentum fluxes for the

same topography but in the presence of a background

mean flow (indicated by the red vector) of strength U0

and angle f, relative to the tide. The momentum fluxes

are drawn to the same scale as in Fig. 2a, enabling a

direct comparison. Figure 2b displays the situation

where a mean flow of 2 cm s21 is aligned with the tide

(in the1x direction). Internal waves in the direction of

the mean flow are downshifted in frequency, reducing

their momentum flux. Internal waves propagating

against the mean flow are upshifted in frequency, in-

creasing their momentum flux. As a result, the down-

stream beam is weakened and the upstream beam

strengthened, leading to a net upstream momentum flux

(shown by the green vector). If the mean flow is in-

creased to 5 cm s21, as shown in Fig. 2e, these effects are

amplified. The Doppler shift on downstream waves is

now sufficient to make their frequency subinertial, and

thus entirely block their generation. Specifically, the

condition for blocking is jK �U0j5KU0 cosu.vt 2 jf j,
where u is the angle between the wave vector and

bottom flow (indicated in the figure). Thus, the blocking

angle increases from 08 at small mean flow speeds to 908

at large flow speeds.

FIG. 2. (a)–(g) Internal tide generation by a zonal barotropic tide in the presence of amean bottom flow ofmagnitudeU0 in the direction

F, as indicated on each plot. Black vectors represent themagnitude of wave EP flux associated with the wave vector (k, l) in that direction

assuming isotropic topography of fixedK5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 1 l2
p

5 2p/10 km. The fluxes are normalized with respect to the peakmagnitude without a

background flow where fluxes are exactly symmetric in (a). For nonzero bottom flow, internal tide generation is enhanced in the direction

opposite to the mean flow,and reduced in direction of the mean flow. Generation is blocked entirely within an angle u of the mean flow,

where cosu5 (vt 2 jf j)/(U0K). The blue vectors show the tidal beams in each case, and the green vector is the netmomentumflux obtained

by summing the two beams.
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Figure 2c shows the tidal EP flux for a 2 cm s21 mean

flow oriented at 458 to the barotropic tide. In this

situation, the tidal beams are similar in magnitude to

the 08 case but with different orientation. The beams

remain largely zonal but are deflected slightly oppo-

site to the mean flow direction, resulting in their sum

(the net EP flux; green vector) again being directly

opposite themean flow direction. A similar effect is seen

for the mean flow oriented at 908 (Fig. 2d). As for the 08

cases, the effects are enhanced when the mean flow is

increased to 5 cm s21 (Figs. 2f,g). In all cases the net

momentum flux is directed opposite to the mean flow.

THE NET EP FLUX

The net (space integrated) momentum flux arising

from (16) is the sum over all wavenumbers, or

Fnet
EP 5

1

4p2

ð
‘

2‘

ð
‘

2‘

K

K

Nk2U2
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(v
t
2K �U

0
)2 2 f 2

q

(v
t
2K �U

0
)2

jĥ(k, l)j2 dk dl . (17)

We now define U0 5U0(cosf, sinf) and K5 K(cosz,

sinz), whereby (17) becomes

Fnet
EP 5

1

4p2

ð
‘

0

ðp

2p

cos2z(cosz, sinz)

3

NK2U2
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

[v
t
2KU

0
cos(z2f)]2 2 f 2

q

[v
t
2KU

0
cos(z2f)]2

3 jĥ(K, z)j2KdK dz . (18)

Equation (18) implies that in the absence of a

mean flow, the net EP flux is identically zero for

any topography (whether isotropic or anisotropic).

To obtain this result note that jĥ(k, l)j5 jĥ(2k, 2l)j
for any real topography, or equivalently jĥ(K, z)j5
jĥ(K, z1p)j. Thus, with U0 5 0, the angular integral

in (18) becomes

ðp

2p

cos2z(cosz, sinz)jĥ(K, z)j2 dz

5

ð0

2p

cos2z(cosz, sinz)jĥ(K, z)j2 dz1
ðp

0

cos2z(cosz, sinz)jĥ(K, z)j2 dz ,

5

ð0

2p

cos2z(cosz, sinz)jĥ(K, z)j2 dz1
ð0

2p

cos2(z0 1p)[cos(z0 1p), sin(z0 1p)]jĥ(K, z0 1p)j2 dz0 ,

5

ð0

2p

cos2z(cosz, sinz)jĥ(K, z)j2 dz2
ð0

2p

cos2(z0)[cos(z0), sin(z0)]jĥ(K, z0)j2 dz0 ,

5 (0, 0).

Thus, ameanflowU0 is required for internal tide generation

at any smooth topography to result in a net momentum

flux—the result does not apply for abrupt topography of

the sort considered by St. Laurent et al. (2003).

Scaling for weak bottom flow and isotropic

topography

Deep ocean velocities are typically small (perhaps

a few cm s21), and it is thus useful to consider the

limit of (18) for small flow speeds. Specifically, we

will assume that KU0 � (vt 2 jf j), ruling out the

blocking regime discussed above (e.g., Figs. 2e–g), and

take a first order expansion of (18) for small KU0

to obtain

Fnet
EP ’ 1

4p2

ð
‘

0

ðp

2p

cos2z(cosz, sinz)
NK3U2

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
t 2 f 2

p

v2
t

"

12
(2f 2 2v2

t )KU
0
cos(z2f)

v
t
(v2

t 2 f 2)

#

jĥ(K, z)j2 dK dz . (19)
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As shown above, the non-U0-dependent part of (19)

integrates to zero and thus (19) simplifies to

Fnet
EP 5

21

4p2

ð
‘

0

ðp

2p

cos2z(cosz, sinz) cos(z2f)

3
NK4U2

t (2f
2
2v2

t )

v3
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
t 2 f 2

p jĥ(K, z)j2 dK dz . (20)

We further assume that the topography is isotropic,

jĥ(K, z)j 5 jĥ(K)j, permitting evaluation of the angular

integral in (20) to obtain

Fnet
EP 52

3NU2
t (2f

2
2v2

t )

16pv3
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
t 2 f 2
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K4jĥ(K)j2 dK
�
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V
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�
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,
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�

, (21)

where

a5
3

16p

N(2f 2 2v2
t )

v3
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

v2
t 2 f 2

p

ð
‘

0

K4jĥj2 dK . (22)

For weak mean flows over isotropic topography, (21)

implies that the net EP flux due to tidal waves is al-

ways at an angle of 1808 6 308with respect to the mean

flow. The scaling constant a in (22) can be evaluated

for a given topography and stratification, and used

in conjunction with (21) to predict the momentum

flux as a function of tidal and mean flow velocities.

If the generated internal tide dissipates locally (e.g.,

St. Laurent and Nash 2004) then (21) potentially pro-

vides a very simple parameterization for ‘‘tidal wave

drag’’ in large-scale numerical models, similar to the lee

wave drag implemented by Trossman et al. (2016),

among others.

In the next section we use a numerical model to in-

vestigate the tidal momentum flux and validate the

scaling given by (21)—in this numerical model we will

see that the internal tide tends not to dissipate locally

but instead radiates to the upper ocean.

3. Model results

We use the MITgcm (Marshall et al. 1997) in hydro-

static mode configured as a Southern Ocean–like

500-km-square zonally reentrant channel at 200-m hor-

izontal resolution, with 200 vertical grid points. The

basic model configuration is identical to that described

previously in Shakespeare and Hogg (2018). The reader

is referred to that paper for details, with only a summary

provided here. The model is forced by full-depth tem-

perature restoring sponges inside the north and south

walls of the domain that relax the temperature (density)

field toward prescribed profiles. There are no surface

buoyancy fluxes or wind stresses applied. The (constant)

Coriolis frequency is f 521:263 1024 s21, appropriate

to the Southern Ocean. The topography (shown in

Fig. 3e) consists of random roughness on scales of

10–100 km, in addition to an 800-m-high Gaussian

seamount in the center of the domain (see section 4 for

a comparison with realistic Southern Ocean topog-

raphy). The overall root-mean-square (rms) topo-

graphic height is 112m. The model is stabilized by a

prescribed uniform horizontal diffusivity of 0.1m2 s21

and a boundary-intensified horizontal viscosity as

shown in Fig. 3d. These choices of subgrid parame-

terizations minimize the spurious linear dissipation

of the wave field, while maintaining model stability

(Shakespeare and Hogg 2017b). The only change to

the model studied in Shakespeare and Hogg (2018)

is the addition of a zonal barotropic tide, ut(t)5

(Ut cosvtt, 0, 0), added as a body force in the mo-

mentum equations. Here we assume the dominant

M2 tidal frequency, vt 5 1:413 1024 s21, and consider

three tidal flow speeds: the reference case with no tide,

Ut 5 0, previously considered in Shakespeare and

Hogg (2018), a weak tide case of Ut 5 3 cm s21, and a

strong tide case of Ut 5 9 cm s21. The 3 cm s21 tide is

close to typical values in the (deep) Southern Ocean

(Egbert and Erofeeva 2002; Arbic et al. 2004). Ver-

tical profiles of the root-mean-square horizontal ve-

locities and stratification in each simulation are shown

in Figs. 3a–c. The tidal cases are spun up from the

zero-tide case for 3 months prior to analysis. The tidal

forcing inputs momentum to the model ocean purely

through its interaction with the bottom topography—

in a flat-bottomed model the (uniform) tidal flow would

merely advect flow back and forth. In the presence of

topography, tides will potentially affect the circulation

both through the generation of mean and eddying flow

local to the topography (i.e., tidal rectification; e.g.,

Young 1983; Chen and Beardsley 1995) and the radi-

ation of the internal tide.

The simulations are analyzed using Lagrangian fil-

tering to isolate the internal tide. This filtering tech-

nique identifies internal waves as any signal with a

frequency moving with the flow (a Lagrangian or in-

trinsic frequency) exceeding the Coriolis frequency

f [see Shakespeare and Hogg (2018) for a detailed

description of the method]. The remainder of the

flow is defined as the nonwave component which in-

cludes both mean and eddying flow. The filtering is

performed on hourly time data over an integer num-

ber of tidal periods (99 h or 8.0M2 tidal periods) to

limit biases due to the strong tidal signal and repeated
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for six individual 99-h periods to account for longer

time-scale variability.

Figure 4 shows snapshots of the kinetic energy,

strain rate, and vorticity at 10-m depth in each of the

three simulations. Each plot is split into three panels

showing the nonwave (left), total field (total 5

wave 1 nonwave; center), and wave (right) constit-

uents. In each simulation the kinetic energy is domi-

nated by an eddying current flowing eastward through

the domain. Strong nonwave strain rate and vorticity

is visible along this current and in the surrounding

eddy field. The amplitude of the wave fields increases

with larger tidal flow speeds. For the 9 cm s21 tide,

internal waves appear throughout the domain as

background scatter in the total flow fields and are

largely uncorrelated with the more coherent nonwave

flow (e.g., Fig. 4f).

a. The net internal tide momentum flux

Here we investigate the EP flux of the simulated in-

ternal tide and compare it to our theoretical predictions

from section 2. The zonal andmeridional components of

the EP flux at 2500-m depth are displayed in Fig. 5 for

the 3 cm s21 (top) and 9 cm s21 (bottom) simulations.

The nonwave flow at 2500m is shown by the super-

imposed vectors. The depth of 2500m is chosen as it is

300m above the highest point of the topography and

thus outside the bottom boundary layer. Figure 5 illus-

trates that, where the nonwave flow is eastward, the

zonal EP flux is predominantly westward, and where the

FIG. 3. Numerical model configuration. Profiles of rms time- and space-averaged velocities (a) u and (b) y for

each simulation. (c) Average stratification N2. (d) Profiles of horizontal space-averaged horizontal viscosity Ah

and uniform diffusivity kh. (e) The depth of the zonally reentrant domain. The bottom is flat near the north and

south walls where temperature-restoring sponges are applied.
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nonwave flow is predominantly northward, the EP flux is

predominantly southward (and vice versa in each case).

Furthermore, larger magnitude EP fluxes are observed

where the nonwave flow itself is stronger. Thus, consis-

tent with the theoretical prediction, the net EP flux is

oriented against the nonwave flow and scales with the

nonwave flow speed. We note that the rough bottom

topography is limited to the region 60 , y , 440 km

with a flat bottom outside (see Fig. 3e), and thus no

substantial wave fluxes are observed along the meridi-

onal edges of the domain in Fig. 5.

We now quantify the relationship between the non-

wave flow and the EP flux, and compare with the theory.

The first step is to spatially-average the time-mean

EP fluxes and nonwave flow (as shown in Fig. 5) over

40 km 3 40 km boxes, and plot the resulting data as a

histogram (Fig. 6). Only data from the region with rough

topography (60 , y , 440km) are included. The merid-

ional and zonal EP fluxes are correlated against the cor-

responding velocity for each tidal simulation. For both

components of the EP flux and both tidal flow speeds,

the data shows a clear linear relationship. The lines of

FIG. 4. Snapshots of (a)–(c) kinetic energy (m2 s22), (d)–(f) strain rate
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(›xy1 ›yu)
2
1 (›xu2 ›yy)

2
q

normalized by jf j, and
(g)–(i) vorticity ›xy2 ›yu normalized by jf j from the (left) no tide; (center) 3 cm s21 tide; and (right) 9 cm s21 tide simulations at a depth

of 10m. In each plot, three panels are shown for each case: nonwave at left, total 5 wave 1 nonwave at center, and wave at right.
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best fit are plotted in blue on Fig. 6 with correlation

coefficients of 0.56–0.72. Figure 6 demonstrates that the

rate of change of zonal EP flux with (nonwave) zonal

velocity is larger than the rate of change of meridional

EP flux with (nonwave) meridional velocity, as pre-

dicted by theory (21) (although the ratio of the best-fit

slopes is less than the theoretical value of 3). The data

from both EP flux components and tidal flow speeds can

be amalgamated into a single plot using the theoretical

scalings from (21) that FEP [Fx
EP 5 3Fy

EP 52aU0U
2
t .

Figure 6c shows FEP/U
2
t plotted against flow speed, the

slope of which should equal the constant a defined by

(22). We compute the theoretical value of a using the

mean value of N at 2500m of 1023 s21 and the equiv-

alent isotropic spectrum of the model topography to

obtain atheory 5 0:0109 sm21. The resulting theoretical

scaling for the EP flux is shown as a red dashed line on

Fig. 6c. This value is 30% larger than the line of best fit

to the data (shown in blue) which has a slope of afit 5

0:0071 sm21. A value smaller than the theory is to

be expected since we are only assessing the radiating

flux at 2500m so are not capturing any momentum

flux associated with waves that might dissipate below

this depth, nor are we accounting for possible surface

reflections.

Figure 7 displays zonal transects of the EP flux from

the 9 cm s21 tidal simulation. The transect locations are

indicated by dashed lines on Fig. 5. The first transect

(Figs. 7a,b) is taken in the center of the domain (y 5

250 km) across the seamount. Beams are visible propa-

gating both east and west from near the top of the

seamount. Approximate two-dimensional ray paths are

FIG. 5. The internal tide EP flux (Nm22) at 2500-m depth averaged over 99 h: (a) x component for 3 cm s21 tide,

(b) y component for 3 cm s21 tide, (c) x component for 9 cm s21 tide, and (d) y component for 9 cm s21 tide. Black

vectors show the mean flow at each location. The EP flux generally opposes to the mean flow and is stronger for

stronger mean flows, as predicted by theory. Dashed gray lines in (c) and (d) indicate the locations of transects

shown in Fig. 7.
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displayed as black lines. These approximate paths are

calculated assuming a 10-km wavelength and using only

the domain-mean stratification and the time-mean zonal

flow, that is, with the slope defined by

dz

dx
5

kN(z)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

[v
t
2 ku(x, z)]2 2 f 2

q , (23)

in order to highlight the impact of the Doppler shift

on the internal tide. The ray paths correctly identify

that the eastward beam is steeper than the westward,

consistent with a (small) westward component of the

mean flow. The meridional EP flux associated with

the eastward beam is strongly negative, owing to the

strong northward mean flow on the east side of the

seamount.

The second transect (Figs. 7c,d) is taken in the north

of the domain (y 5 400 km) where the mean flow is

strongly westward (.5 cms21) everywhere. Figure 7c

shows that, not only is the mean EP flux eastward, but in

addition, there are no clearly distinguishable westward

tidal beams. This result is unsurprising given that, ac-

cording to the theory in section 2, we expect blocking of

downstream tidal beams for U0 . (vt 2 f )/k, which

equals 2.4 cm s21 for 10-km wavelengths and 9.5 cm s21

for 40-km wavelengths. Thus, the present transect is in

the ‘‘blocking regime’’ and essentially all small-scale

downstream beams should be blocked, as indicated

schematically in Fig. 2e (but with the reverse mean flow

direction).

The strong zonal flow at depth also leads to very steep

beams, as indicated by the approximate ray paths (solid

black lines) in Figs. 7c and 7d. The ray path that would

result in the absence of the zonal flow [u5 0 in (23)] is

shown as a dashed black line. The horizontal distance

traveled by the beam is only 40 km in the presence of

the zonal flow, versus over 100km without the flow.

Thus, in regions of strong zonal mean flows, the wave

EP flux is large and is communicated almost vertically

to the ocean directly above. However, in other regions

(e.g., Fig. 7a), the EP flux can be transmitted over a

substantial distance horizontally, changing the spatial

FIG. 6. Histograms of the net EP flux radiated from topography as a function of flow speed: (a) Fx
EP againstU and (b) Fy

EP against V for

the 9 cm s21 tide; (d) Fx
EP againstU and (e) Fy

EP against V for the 3 cm s21 tide. The EP flux and flow velocity are computed as averages over

40 km3 40 km boxes at 2500-m depth. As predicted, fluxes scale linearly with, and generally oppose, the deep mean flow. A linear fit to the

data (blue) with slope s and correlation coefficient r is shown. (c) Amalgamation of all data based on the theoretical scaling; i.e., Fx
EP/U

2
t ,

3Fy
EP/U

2
t all scale as 2aU0 according to (21). The theoretical value of a computed from (22) is 0.0109 sm21 and is shown as a red line on

the plot.
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structure of the EP flux in the upper ocean relative to

the deep.

While the spatial structure of the EP flux will change

with height as the waves propagate, the domain-averaged

value will be conserved in a slowly varying mean flow in

the absence of wave dissipation (Andrews andMcIntyre

1976; Bretherton 1969). The domain-averaged EP

fluxes are shown in Fig. 8 for the two tidal simulations.

FIG. 8. The domain-averaged EP flux for the (a) 3 and (b) 9 cm s21 simulations. The time average is taken over

594 h. Note that the x-axis range is an order of magnitude larger in (b) than (a).

FIG. 7. Zonal transects of the (a),(c) zonal and (b),(d) meridional EP flux (Nm22) in the 9 cm s21 tidal simulation

at (top) y5 250 km and (bottom) y5 400 km.A selection of approximate rays paths calculated from (23) are shown

as black lines. The black dashed line in (c) and (d) is the ray path that would occur in the absence of the Doppler

shift by the zonal flow. The zonal flow is indicated by brown arrows.
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The meridional EP flux (dashed line) is negligible in

both simulations consistent with the small domain-

averaged meridional bottom flow. The zonal EP flux

(solid line) is positive in both simulations consistent with

the westward bottom flow. Between the top of the to-

pography (2800m) and 500-m depth, the zonal EP flux

decays to 74% (59%) of its original value in the 9 cm s21

(3 cm s21) simulation. These losses are predominately

from leakage of waves into the sponges at the meridio-

nal edges of the domain where they are dissipated.

Nonetheless, the majority of the wave momentum flux

is transmitted to the upper ocean (above 500m). Here

the waves interact with the strong velocity and den-

sity gradients of the near-surface region, dissipate and

ultimately transfer momentum to the nonwave flow.

Figure 8 shows large divergences of the EP flux in the

upper ocean, especially in the top 50m.

The upward propagating internal tide can also re-

flect off the surface of the model ocean. We quantify

this effect by filtering the wave fields to obtain the

upward and downward propagating components. This is

achieved similarly to Shakespeare and Hogg (2018) by

taking a Fourier transform in time and z at each (x, y),

and filtering based on the sign of the vertical phase speed

v/m. The individual EP flux corresponding to the up-

ward and downward propagating waves may then be

computed and is shown in Fig. 9 for the 3 cm s21 tide

simulation. The upward and downward fluxes are of a

similar order, indicating the presence of substantial re-

flections. The relative magnitude of the reflected waves

(at 2500-m depth) is quantified in Fig. 9c via the ratio of

the downward to upward EP flux. The ratio is close to

minus 1 (implying perfect reflection) where the flow is

uniformly barotropic and highly variable in regions of

FIG. 9. Zonal EP flux (Nm22) for the 3 cm s21 simulation, averaged over a 99-h period. EP flux associated with (a) upward and

(b) downward propagating waves at 2500-m depth. (c) The ratio of upward to downward EP flux at 2500m. Hashing indicates regions

where the zonal flow—averaged over 40 km 3 40 km boxes—is baroclinic (changing sign with depth). The solid black curve shows the

3 cm s21 contour of zonal flow at 2500m. (d) The domain-averaged zonal EP flux integrated separately where it is positive (eastward) and

negative (westward). A surface reflection of upward positive (negative) EP flux becomes a downward negative (positive) EP flux as

indicated in the schematic. (e) The ratio of downward to upward EP flux for the eastward and westward components.
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baroclinic flow (indicated by hashing). This result im-

plies that waves are dissipating more in the upper model

ocean when the flow in a given region is baroclinic, such

that a wave generated in a bottom flow of a given di-

rection, will likely end up in a near-surface flow in the

opposing direction (thus permitting inertial-level dy-

namics; see section 4). The upward/downward wave

filtering further permits identification of eastward and

westward propagating waves, according to the sign of

the EP flux—for example, an upward wave with a

positive EP flux is going east, and if it reflects off the

surface, will become a downward wave with negative

EP flux (i.e., downward transport of positive zonal

momentum). Thus, the ratio of the domain-averaged

upward positive EP flux to the domain-averaged

downward negative EP flux gives a measure of the

degree of reflection of eastward propagating waves

(and similarly for westward propagating). Figure 9d

displays the magnitude of each of the up (down) and

east (west) components of the zonal EP flux, with the

ratios shown in Fig. 9e. Upward and westward waves

appear to reflect about 75% of their EP flux, consistent

with their generation being predominantly in regions of

barotropic flow (e.g., Figs. 9a,c). By contrast, upward

and eastward waves reflect about 50%, and thus the

domain-averaged zonal EP flux is positive as shown

previously (Fig. 8a). Analogous results apply for the

9 cm s21 tide simulation (not shown).

b. Internal tides enhance upper-ocean flow

We first consider the consequences of the upper-ocean

EP flux divergence for the domain-averaged zonal mo-

mentum budget. A divergence of the wave EP flux acts as

a stress on the nonwave flow, as per the zonal part of (2),

›hui
›t

1
›

›z
huwi2 f hy*i1



›P

›x

�

1
›hFx

EPi
›z

5 0: (24)

The pressure gradient term in (24) is associated with

zonal pressure differences across bottom topography

(form stress) and is zero above the height of the topog-

raphy. This term is responsible for momentum transfer

between the solid earth and the flow—whether wave,

mean or eddying. The nonwave momentum flux di-

vergence in (24) ›zhuwi is expected to be predominantly

associated with eddies. However, mesoscale eddies have

multimonth time scales and as such, unlike waves, are

not separable from the time-mean flow in the present

simulations which have only 25days of output for anal-

ysis. Thus, only the combined nonwave flux divergence

is calculated. All quantities are time averaged over a

period of 25 days. In the tidal simulations there is a slow,

near-barotropic evolution of the mean state over this

time meaning that the time-rate-of-change term in (24)

must be maintained.

Figures 10a–c display the domain-averaged zonal

momentum budget in (24) for the no tide, 3 cm s21, and

FIG. 10. The domain-averaged zonal momentum balance for the (a) 0, (b) 3, and (c) 9 cm s21 simulations as per (24). The time average

is taken over 594 h.
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9 cm s21 tidal simulations, respectively. In the absence

of a tide (Fig. 10a), the primary balance in the upper

ocean is between nonwave momentum flux divergence

(black dashed line; eddies) and a northward residual

flow (red; Coriolis). In the deep ocean below 3000m, the

balance is between pressure differences across topog-

raphy (blue) and a predominantly southward residual

flow. ThewaveEP flux divergence (green) begins to play

at role for the 3 cm s21 tide (Fig. 10b), with comparable

magnitude to the nonwave flux divergence in the upper

50m. The combined nonwave and wave flux divergence

is balanced by a northward residual flow. The balance in

the deep ocean remains the same as in Fig. 10a, albeit

with higher magnitudes. As foreshadowed above, there

is a near barotropic deceleration of the zonal flow (pink)

in the interior of the model ocean, balanced by a

northward mean flow. For the strongest 9 cm s21 tide

(Fig. 10c), the near-surface balance is between the wave

EP flux divergence and a strengthened northward sub-

surface flow, peaking at 20-m depth. The nonwave flux

divergence (eddies) is also enhanced relative to the

weaker tide simulation (Fig. 10b). The interior and bot-

tom balances in Fig. 10c remain very similar to Fig. 10b.

Figure 10 also shows that the nonwave momentum

flux divergence term increases in the upper ocean with

increasing tidal forcing, suggestive of a stronger eddy

field. To quantify changes in near-surface eddying

flow, Fig. 11 displays probability density functions

(pdfs) of the strain rate and vorticity (denoted V) at

10-m depth for each simulation, averaged over hourly

snapshots (a single snapshot of these 10-m variables

was shown in Fig. 4). Both the total (i.e., wave 1

nonwave; dash) and nonwave (solid) flow properties

are displayed. The difference between the two values

indicates the direct contribution of waves to the total

flow strain rate and vorticity—which is small, except

for the strain rate contribution for the 9 cm s21 tide.

However, the impact of the radiating internal tide in

forcing near-surface eddying flow is indicated by the

changes to the nonwave component with changing

tidal forcing. Figure 11 shows that the distribution of

nonwave (eddy) strain rate and vorticity shifts toward

larger values with increasing tidal forcing—that is,

eddying flow is enhanced.

We can connect changes in nonwave (eddy) vorticity2

directly to the radiating wave momentum flux by taking

FIG. 11. Normalized probability density functions of 10-m depth flow properties of the total (wave 1 nonwave;

dash) and nonwave only (solid) in the three simulations: (a) strain rate s5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(›xy1 ›yu)
2
1 (›xu2 ›yy)

2
q

and

(b) vorticity V5 ›xy2 ›yu.

2A similar approach can be taken for the strain rate, with com-

parable results.
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the curl of the momentum equation (1) and horizontal

space–time averaging,

›V
›t

52
›

›z
h=3F

EP
i
z
1 other non-wave contributions,

(25)

or in terms of the modulus of the vorticity,

›jVj
›t

5


�
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›

›z
(=3F

EP
)
z

�

sign(V)
�

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

wave forcing:FjVj

1 other non-wave contributions. (26)

The ‘‘other nonwave contributions’’ in (25) and (26)

includes large vorticity contributions from, for exam-

ple, horizontal divergence of the mean flow. However,

here we only compute the wave-forcing contributions

to the vorticity shown explicitly in (25) and (26).

Equation (26) shows that preexisting vorticity struc-

tures will be enhanced where the forcing due to waves

(i.e., minus the divergence of the curl of the EP flux)

has the same sign as the vorticity in that location.

Given a positive wave forcing FjVj, the mean vorticity

of the flow need not change, but both cyclonic and

anticyclonic structures will be enhanced on average

(as seen in Fig. 11b). Figure 12 displays vertical profiles

of the domain-averaged modulus of the vorticity jVj
and the corresponding wave forcing FjVj. The vorticity

increases over all depths with increasing tidal forcing,

but increases most substantially in the upper ocean. The

wave EP flux is acting to directly enhance the vorticity in

the upper ocean, especially the upper 100m. The magni-

tudes of wave forcing (i.e., FjVj ; f yr21) imply that the

waves can turn over the upper-ocean vorticity on a time

scale of months—comparable to typical eddy time

scales (e.g., Imawaki 1983). Figure 12c shows the

mean vorticity averaged over the upper 500m plotted

against the corresponding mean wave forcing. There

is a consistent increase in the vorticity with increasing

wave forcing. The mean upper-ocean vorticity in-

creases by 15% for the 3 cm s21 tide, and 44% for the

9 cm s21 tide, relative to the no-tide simulation. Other

eddying flow properties including strain rate and ver-

tical shear are increased commensurately (not shown).

4. Discussion

In section 3b we showed that the upward wave mo-

mentum flux acts to directly enhance the vorticity of

the upper ocean. This enhancement relies on waves

preferentially dissipating and depositing momentum

FIG. 12. Enhancement of upper-ocean eddying flow with increased tidal forcing. (a) Time- and space-averaged nonwave vorticity

modulus jVj. (b) Time- and space-averaged wave forcing of the vorticity FjVj, as per (26). (c) Upper-ocean integrated wave vorticity
Ð 0

2H
jVj/f dz/H, where H 5 500m, plotted against the integrated forcing for each of the simulations.
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in an orientation aligned with the local flow. There is

at least one mechanism that will lead to such a bias

in wave stresses: dissipation at inertial levels (Jones

1967; Booker and Bretherton 1967; Xie and Vanneste

2017). Waves propagating up and into sheared regions

such as jets or eddies in the upper ocean are down-

shifted in (Lagrangian) frequency when propagating

with the flow, and upshifted when propagating against.

The downshifting is associatedwith an increase in vertical

wavenumber, and the upshifting a decrease. If the flow

speed grows sufficiently large at some location, a wave

propagating with the flow will be downshifted to the in-

ertial frequency, at which point the vertical wavenumber

approaches infinity and the wave must dissipate—this lo-

cation is an inertial level. There is no equivalent process

to force the dissipation of waves propagating against the

flow. Thus, on average, upward propagating waves will

tend to enhance preexisting flow structures by applying

(on average) a stress upon dissipation in the direction of

the local flow. Upper-ocean mean shears are thereby

enhanced, leading to increased vorticity (as shown in

Fig. 12) in addition to strain rate and vertical shear. This

inertial-level mechanism is consistent with our result that

waves are more likely to dissipate in regions of baroclinic

mean flow as compared with barotropic (Fig. 9).

Such enhancement by the internal tide need not de-

pend on the presence of a net momentum flux associated

with a mean bottom flow. Symmetric tidal generation

with no net momentum flux will likely still produce an

enhancement of the eddy field by preferential dissipa-

tion of the two equal and opposite tidal beams in mean

flows oriented in the same direction as wave propaga-

tion. Indeed, enhancement of upper-ocean flow struc-

tures by internal wave momentum fluxes has previously

been proposed by Muench and Kunze (2000), assum-

ing an isotropic Garrett–Munk background wave field

(Garrett and Munk 1972). Local ‘‘mean’’ flows may also

be forced by the dissipation of a single large amplitude

tidal beam (such as at the Kaena Ridge, Hawaii; e.g.,

Pinkel et al. 2012)

We now consider the relevance of the parameter re-

gime explored in the present simulations to the real

ocean. The dependence of the wave EP flux on flow

parameters is given by (18). A key dependency in this

expression is the power spectrum of the topography jĥj2.
Figure 13a displays the spectra of the model topography

FIG. 13. Comparison of topography used in the present model with idealized topographic

spectra for the Southern Ocean (Goff and Jordan 1988): the power spectra is defined by

(32) of Shakespeare and Hogg (2017b) with parameter values Hrms 5 305 m, m5 3:5,

k0 5 2:33 1024 m21, l0 5 1:33 1024 m21, and f0 5 3208. (a) Comparison of azimuthally

averaged (equivalent isotropic) spectra. (b) Comparison of the net EP flux calculated from

(16) assuming N 5 1023 s21, a zonal mean flow U0, and zonal tidal flow Ut as indicated in

the legend (cm s21) and either the model topography (M) or Southern Ocean topography

(SO) as shown in (a). The 9 cm s21 tidal case shown in red has the same integrated EP flux as

in the 9 cm s21 simulation (1023Nm22).
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(dashed line) consisting of an 800-m seamount (re-

sponsible for the amplitude at large scales) and ran-

dom white noise topography down to a minimum 10-km

scale (chosen so as to eliminate lee wave generation).

The model spectra are compared with the idealized

abyssal hill spectra (solid line) ofGoff and Jordan (1988)

with values appropriate to the Drake Passage region

[as per (32) of Shakespeare and Hogg 2017b]. The rms

height of the chosen Southern Ocean topography is

305m compared with 112m for the model topography.

Figure 13b displays the net zonal EP flux as a function

of wavenumber computed from (18), assuming a weak

zonal tide of 1 cms21 (typical deep ocean tides are per-

haps 2 cm s21; e.g., Arbic et al. 2004) and zonal mean

flow of either 1 cm s21 (typical) or 5 cm s21 (large). The

larger rms height of the abyssal hill spectra and slow

fall-off at high wavenumber (i.e., k23.5) leads to sub-

stantially larger predicted EP fluxes compared to the

model topography. Increasing mean flow speed shifts

the peak momentum flux from the abyssal hill spectra

to larger scales—from 3.5-km wavelength at 1 cm s21

to 12-km wavelength at 5 cm s21. In either case, there

are substantial EP fluxes at scales of tens of kilometers

and smaller. The red curve in Fig. 13b shows the EP

flux corresponding to the model topography and a

9 cm s21 tide as studied in present simulations, with a

mean flow speed of 1 cm s21 chosen to replicate the

average zonal EP flux of 1023Nm22 (as per Fig. 8). The

EP fluxes for the Southern Ocean abyssal hill spectra

are an order of magnitude larger (;1022Nm22 or about

10% of typical wind stresses over much of the Southern

Ocean), despite using a much smaller 1 cm s21 tidal

amplitude.

However, there are a number of effects that will re-

duce the radiated flux. First, at sufficiently small scales

and/or high flow speeds, the generation of upstream

propagating (and upshifted) waves will also be blocked

as their frequency exceeds the buoyancy frequency and

nonhydrostatic effects (not considered in the present

theory) become important. Thus, there will be a sharp

cutoff in the EP flux at wavenumbers exceeding

k;N/U0 which equates to k; 1021 m21 for a 1 cm s21

flow. Higher tidal harmonics will also be generated

when k;vt/Ut ; 1022m21 for a 1 cm s21 tide. In addi-

tion, lee waves will be generated when kU0 . f and will

also contribute to the momentum flux. Nonetheless,

integrating the total momentum flux for the 1 cm s21 tide

and 1 cm s21mean flow (solid black curve) only up to lee

wave cutoff (k5 f /U0; 500-m wavelength) yields a sig-

nificant integrated flux of 0.0045Nm22 for the abyssal

hill topography, a factor of 4 larger than in our most

extreme simulation (e.g., Fig. 8b). Thus, the parame-

ter regime explored in our simulations, insofar as wave

momentum fluxes are concerned, is well below what is

present in the ocean.

As noted above, our simulations include only topo-

graphic scales exceeding 10 km, and the resulting waves

predominately radiate to the upper ocean. It is likely

that smaller-scale (;1 km or less) tidal waves would

have a greater tendency to dissipate locally compared

with the larger-scale waves modeled here. Thus, for re-

alistic topography which contains a range of scales, we

anticipate that larger-scale tidal waves will radiate and

small-scale tidal waves may dissipate locally. Such local

dissipation would act as a drag on themean bottom flows

responsible for the wave momentum flux, similar to lee

wave drag (e.g., Naveira Garabato et al. 2013; Trossman

et al. 2016). Therefore, tidal momentum fluxes could be

important both in 1) forcing the upper ocean, as shown

in the present study, and 2) acting as a drag on quasi-

steady bottom flow. Further research is needed to de-

termine what scales or wave amplitudes separate these

two regimes, and how the momentum flux is partitioned

between local drag and remote forcing.

5. Conclusions

In the presence of a nonnegligible mean flow, gener-

ation of the internal tide is associated with a net mo-

mentum flux directed against the mean flow. For a weak

mean flow, the net momentum flux scales with the speed

of the mean flow and the topographic wavenumber to

the fourth power [see (21)]. For large enough mean

flows, tidal generation in the direction of the bottom

flow can be blocked entirely (see Fig. 2) resulting in a

single upstream tidal beam. The theory was validated

with a suite of wave-resolving simulations of an ideal-

ized zonally reentrant channel. The theory predicts

significant momentum fluxes for typical abyssal hill to-

pography, even for weak (1 cm s21) tidal andmean flows

(Fig. 13). Thus, momentum fluxes due to the internal

tide should be ubiquitous in the ocean. Previously,

momentum fluxes due to internal waves have mostly

been discussed in the context of lee waves (e.g., Naveira

Garabato et al. 2013), which require order-of-magnitude

larger velocities, and are thus less common in the deep

ocean.

In our simulations, the momentum flux associated

with the internal tide that radiates from the bottom to-

pography is ultimately deposited in the upper ocean

where waves interact with large near-surface flows and

density gradients. This process leads to a near-surface

wave-induced mean volume transport at right angles to

the wave momentum flux (e.g., Fig. 10). Furthermore,

the wave momentum flux acts to significantly enhance

near-surface eddying flow. It is proposed that this
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enhancement is a result of waves preferentially dissi-

pating when propagating in the same direction as the

local flow, consistent with inertial-level dynamics, and

thereby amplifying eddying structures. The upper-ocean

vorticity is increased by 44% in the simulations for the

9 cm s21 barotropic tide and 15% for the 3 cm s21 tide.

In summary, internal tides will both drive mean near-

surface flows and enhance the strength of upper-ocean

eddying flow in regions with nonnegligible bottom flows

over seafloor topography. Internal tides will also provide

a drag on near-bottom flows, if the waves dissipate lo-

cally. Further investigation is warranted to quantify the

magnitude of this effect over the global ocean and work

toward a parameterization of internal tide momentum

fluxes for global ocean models.
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