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ABSTRACT

Velocity measurements from the continental shelf off Oregon taken during the Coastal Upwelling‘

Experiment CUE-2 in the summer of 1973 are utilized to investigate momentum, vorticity and mass
balance relationships for subinertial frequency (w < 0.6 cpd) current fluctuations. Measurements from
stations in water of depths of 54, 100 and 200 m are utilized. By a comparison of the magnitude of terms
involving horizontal velocities in the linear momentum and in the nonlinear, depth-integrated momentum
equations, support is found for the linear geostrophic balance of the alongshore velocity in the onshore-
offshore momentum equation and, in the depth range 100 m < H < 200 m, for a linear ageostrophic
balance in the alongshore momentum equation. Evidence is also found to support the validity of a linear
depth-integrated vorticity balance, again for depths 100 m < H < 200 m. In this balance, which is
similar to that in the theory for continental shelf waves, the interaction of the onshore velocity with
the onshore-offshore bottom slope of the continental shelf forms the primary vortex stretching
mechanism. The mass balance equation from idealized two-dimensional coastal upwelling models,
wherein the depth integral of the interior, inviscid onshore velocity U equals the offshore Ekman layer
transport —7/p, f, where 7 is the alongshore component of the wind stress, is investigated by comparing
the time-dependent behavior of U and +/p,f. It is found that the correlation of U and 7/p,f is of the
proper sign to support this relation and that, in general, the magnitudes of these two terms are similar,
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but that the correlation is not especially high, presumably due to three-dimensional effects.

1. Introduction

In this investigation we analyze velocity measure-
ments from the continental shelf off Oregon taken
during the Coastal Upwelling Experiment CUE-2 in

- 1973 to examine some characteristics of the momen-
tum, vorticity and mass balances which are fre-
quently utilized in theoretical or conceptual models
of the coastal flow regime.

The set of theoretical models with which we will
be concerned are those for subinertial frequency,
time-dependent motion on the continental shelf and
slope which describe the flow, away from surface
friction layers, as linear and inviscid and which
include, as a forcing mechanism, the alongshore
component of the wind stress at the coast (e.g.,
Walin, 1972; Gill and Schumann, 1974; Gill and
Clarke, 1974; Allen, 1976). These models involve
forced coastal trapped waves. Depending on the
exact assumptions about the stratification and
shelf topography, the forced waves may be baro-
tropic continental shelf waves, internal Kelvin
waves or more general, coupled forms of these
two types of wave modes (Allen, 1975; Wang and
Mooers, 1976). A growing number of recent ob-
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servational studies seem to indicate that the time-
dependent response to atmospheric forcing of water
in some coastal regions, such as that off Oregon,
may be approximately described by these theoreti-
cal models. This appears to be especially true
with regard to the prediction of the behavior of
the barotropic component of the alongshore velocity
field by the theory for forced and free continental
shelf waves (Smith, 1974; Kundu et al., 1975;
Huyer et al., 1975; Kundu and Allen, 1976).

A feature which is common to several of the
theoretical models of this type is the assumption
that the relevant alongshore spatial scales are larger
than the onshore-offshore scales. It follows, through
scaling arguments, that the lowest order onshore-
offshore momentum balance is geostrophic, i.e.,
that the alongshore velocity component is in
geostrophic balance. An additional common feature
is the assumption that the time variations are such
that the alongshore momentum balance is ageo-
strophic. In particular, if we consider a Cartesian
coordinate system (x,y,z), with corresponding
velocity components (u,v,w), aligned so that the
x axis is-in the onshore-offshore direction, the
y axis is alongshore and the z axis vertical, the
above assumptions imply that the lowest order x
and y momentum balances are
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Jv = pa, (1.1a)
v, + fu = —p,, (1.1b)

where p is the pressure divided by a reference
density p,, ¢t is time, f is the constant Coriolis
parameter, and the subscripts (x,y,f) denote part1a1
differentiation.

The importance of the ageostrophic term v, in
(1.1b) in the theory for barotropic continental
shelf waves has been emphasized by Gill and Schu-
mann (1974). The ageostrophic term is important
also in stratified coastal models (e.g., Walin, 1972;
Gill and Clarke, 1974; Allen, 1976), since v, is
an essential part of the lowest order balance for
free and forced internal Kelvin waves. For ex-
ample, in a free internal Kelvin wave, u = 0 and
the balance in (1.1b) is v; = —p,.

Note that the substitution of (1.1a,b) in the
continuity equation

‘ U, + v, + w, =0 (1.2)
gives
w, = f g, (1.3)

and that the lowest order flow is horizontally
divergent. Eqgs. (1.1a,b) and (1.3) differ, of course,
from the usual assumption for low-frequency mid-
ocean motions of geostrophic balance and, conse-
quently, of horizontal nondivergence at lowest
order.

An additional fundamental balance, from which a
governing equation is usually obtained, is that for
vorticity. One useful form of vorticity equation may
be derived by depth-integrating (1.3). For example,
if we consider the barotropic motion over a con-
tinental shelf where the depth H = H(x) is inde-
pendent of the alongshore coordinate y, the top
surface is bounded by a rigid lid (Gill and Schu-
mann, 1974), and there is negligible suction into
the surface Ekman layer, the depth integrated form
of (1.3) is

v = (Hz/H) fu. (1.4)

Eq. (1.4) expresses the time rate of change of
vorticity v, due to the stretching of fluid columns
by the motion of the fluid up or down the bottom
slope of the continental margin. This vortex stretch-
ing provides the mechanism for continental shelf
waves.

The conservation of mass provides another basic
balance in coastal regions. This balance is ex-
tremely important for the study of coastal up-
welling. The simplest conceptual form of mass
balance on the continental shelf results from an
assumption of two-dimensional flow,
sumption of zero velocity gradients in the along-
shore direction. In that case, with the rigid lid
approximation, the net onshore-offshore mass flux
at a position x on the shelf is equal to zero, i.e.,

i.e., an as- -
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0
J updz = 0, (1.5)
—H
where ur is the total onshore-offshore velocity com-
ponent. If we assume that x is located offshore
of the region where there is appreciable vertical
motion into the surface Ekman layer and that
the onshore velocity u, may be divided into an
inviscid component « and a frictional component

.which is confined to a thin surface layer, then (1.5)

reduces to

0
J udz =
-H

where 7 is the alongshore component of the wind
stress at the coast (assumed not to vary appre-
ciably on the onshore-offshore spatial scales con-
sidered here) and —7/fp, is the offshore transport
in the surface Ekman layer.

Egs. (1.5) and (1.6) are strong constraints which
are accompanied by a simple conceptual picture of
the onshore-offshore mass balance. If alongshore
velocity gradients are appreciable, however, then
the two-dimensional approximation will, of course,
be violated and (1.5) and (1.6) will not hold.

In this study, we analyze velocity measure- -
ments from the coastal upwelling experiment CUE-2
off Oregon in the summer of 1973 in an attempt
to investigate the validity of the time-dependent
momentum (1.1a,b) and vorticity balances (1.4),
utilized in theoretical models, and the two-dimen-
sional mass balance (1.6), frequently utilized in
conceptual models of coastal upwelling.

"T/fpo, (16)

2. Observations

The locations of the current meter moorings in
CUE-2 are described in Kundu and Allen (1976).
Here we utilize velocity measurements from sta-
tions Aster, Carnation and Edelweiss, located on
an east-west (onshore-offshore) line at 45°16'N in
water of depth 54, 100 and 200 m, respectively
(see Fig. 1). The east-west line is approximately
perpendicular to the coastline and local isobaths.
Currents and temperatures were measured with
Aanderaa current meters tethered to subsurface
moorings. Winds were measured at Newport,
Ore. (44°37'N).

The measurement depths are given in Table 12.
The record lengths are Aster, 29 June—26 August
(58 days); Carnation, 30 June—-28 August (59 days);
Edelweiss, 22 July-28 August (37 days). Note
that the records at Edelweiss are approximately

2 Measurements at Aster were previously reported in Kundu
and Allen (1976) to be at 20 and 40 m in water of depth 50 m.
The Aster measurements were, more accurately, at 24 and 44 m
in water of depth 54 m.
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FiG. 1. Location of current meter stations.

22 days shorter than those at Aster and Carna-
tion. The data processing is described in detail
in Pillsbury er al. (1974) and Smith (1974). It
includes filtering of the 5-10 min observations to
obtain hourly time series and refiltering these to
eliminate the tidal and inertial frequencies by
means of a filter having 121 weights with a half-
power point of 40 h [0.6 cycle per day (cpd)]. The
resulting series was then decimated to 6 h values.
We will be concerned here, therefore, with fre-
quencies o < 0.6 cpd.

For reference, the means, standard deviations
and principal axes for the eastward («) and north-
ward (v) velocities, computed for the respective
record lengths (from Kundu and Allen, 1976), are
given in Table 1. The time mean of a variable is
denoted by an overbar and the standard devia-
tion by a prime, e.g.,

u(x,r) = u(x) + a(x,0), & = @), (2.1a,b)

where ## is the time fluctuation. For simplicity
in notation, the caret on # is dropped when
referring to the measurements in Sections 4-7
where all variables without an overbar are con-
sidered to have the time mean removed.

It may be seen in Table 1 that the major prin-
cipal axes at Aster and Carnation deviate from
north by only a few degrees. For the analysis
here, therefore, we will use a Cartesian coordinate
system (x,y,z) with the alongshore coordinate y
aligned north-south, positive northward, with the
onshore-offshore coordinate x aligned east-west,
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positive eastward, and with z aligned vertically,
positive upward. The corresponding velocity com-
ponents are (u,v,w), respectively.

The density in this region is strongly controlled
by the salinity. Although time series measure-
ments of the temperature were made at the current
meters, corresponding measurements of the salinity
were not made; therefore, time series of density
are not available.

For use in connection with (1.6) and the mass
balance investigation, the north-south component of
the wind stress at Newport was computed from
the hourly values of the wind stress vector and
then low-pass filtered in the same manner as the
currents. The formula used is 7 = p,Cpluy?
+ vp®)V2 X vy, [dyn cm™2}, where (uy,vy) are the
wind velocity components, p, = 1.2 X 10* g cm™3
is the air density and C, = 1.4 x 1073,

3. Analysis

We assume that the motion away from surface
frictional layers is inviscid and is governed by
the equations

Uy + v, + w, =0, (3.1a)
u +uVu — fo = —p,, (3.1b)
v, +wVo+ fu=—p,, (3.1¢c)

0 = —p. — gp/p,, (3.1d)

where the Boussinesq approximation has been
made, p is the perturbation density such that
the total density pr = p, + p Where p, is a constant
reference density (po =1 g cm™), pp is the
difference in pressure from a hydrostatic state
with uniform density py,i.e., p = p,"'pr + gz where
pr is the total pressure, g is the acceleration of

TABLE 1. Means, standard deviations and principal axes.

Major
principal

Depth i v u' v’ axis*

Station (m) (cms™) (cms™!) (cms™!) (cmsT!) (deg)
Aster 24 6.0 -11.3 4.0 12.5 1
44 -0.6 -0.9 1.6 9.4 3
Carnation 20 32 -23.9 4.7 10.0 1
40 4.3 -10.9 3.0 10.5 2
60 2.7 -2.0 2.9 11.7 1
80 1.1 2.9 2.0 10.7 4
95 0.6 2.5 1.7 8.4 6
Edelweiss 20 2.4 -21.7 4.3 6.1 32
80 2.6 —4.6 23 5.5 11
120 2.0 2.5 1.9 54 2
180 -1.8 73 1.7 5.4 12
195 -1.7 5.5 2.4 4.9 22

* Measured counterclockwise from north.
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gravity and u the velocity vector with components
(u,v,w). The fluid may be stratified and in gen-
eral the perturbation density is a function of the
spatial coordinates and time, i.e., p = p(x,y,z,1).
An additional equation for p is required, of course,
to form a complete set of governing equations.
Because of a lack of time series measurements
of density, the time-dependent behavior of p will
not be considered and an equation for p will not
be utilized here. Velocity measurements will be
used to investigate balances implied by. the con-
tinuity and momentum equations (3.1).

'Below we derive various approximate forms of
(3.1) which are used in coastal problems. We also
derive approximate depth-integrated equations from
(3.1) and form a depth-integrated vorticity equa-
tion. The time scale of interest §, is considered
to be larger than an inertial period3, i.e.,

o6 > f L 3.2

The fluid is assumed to be bounded by a rigid
upper surface at z = 0 and a variable depth bottom
surface at z = —H(x,y). The inviscid interior flow
is assumed to extend in depth from z = —H to
z = —Hg where Hg is' a constant depth of the
surface frictional layer.

One frequently used scaling argument for coastal
problems is that the characteristic alongshore
spatial scale 8, is larger than the characteristic on-
shore-offshore scale §_, i.e.,

5, > 8. (3.3)

With (3.3), the order-of-magnitude estimate u =~ (8,/
8,)v, obtained from the continuity equation (3.1a),
implies that # < v. Assumptions (3.2) and (3.3) then
lead to the following approximate forms of (3.1b)
and (3.1c):

(3.42)
(3.4b)

where the v, term has been retained by the assump-
tion that f§, = v/u.
The standard linear form of (3.4b),

vy + fu = —p,, (3.5a)

results from the additional assumption of small
Rossby number, i.e., of V,/f8, < 1 where V, is a
characteristic alongshore velocity. Alternatively,
without the use of (3.3) first, the small Rossby
number approximation may be applied directly to
(3.1) to give, as the two momentum equations,
(3.5a) and the linear form of (3.1b),

Uy —f‘D = Pz

fo = ps,
vy +uVo+ fu= —p,,

(3.5b)

3 Possible Reynolds stress effects from higher frequency com-
ponents of the motion are not considered here.
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We now consider the vorticity balance. Because
we are not working with an additional equation
for the density we are not able to form an equa-
tion for the potential vorticity. It is possible,
however, to form a depth-integrated vorticity
equation from the continuity and momentum equa-
tions alone. The depth integration in this case is
over the supposed region of inviscid flow, i.e.,
—H =< z < —Hj. In cases where the flow is baro-
tropic this equation reduces to the appropriate
governing vorticity equation. It also directly ex-
presses the effect of vortex stretching by the inter-
action of the bottom velocities and the bottom
slope, which is the essential mechanism in con-
tinental shelf waves. To form a depth-integrated
vorticity equation it is-convenient to first integrate
the continuity and momentum equations (3.1) over
z from z = —H(x,y) to z = —H,. It is assumed
that there is negligible suction into the surface
layer, i.e., that w(z = —Hg) =0, and that at
z = —H the flow satisfies the inviscid boundary
condition w = —u-VH. Utilizing the continuity
equation (3.1a) to first express the nonlinear
terms in (3.1b) and (3.1c) in divergence form, we
obtain

U, +V, =0, (3.6a)
U, + NL* — fV = =P, + H,ps, (3.6b)
V,+ NL* + fU = =P, + H,pp, (3.6¢)
where
(U,V,P) = J_Hs(u,v,p)dz, (3.7a)
-H

NL* = (J u2dz) + (f uva’z) , (3.7b)

x v

NLY = (J uvdz) + (J vzdz) s (3.7¢)

ps = p(z = —H). (3.7d)

The integrals over z in (3.7b) and (3.7¢) and in
subsequent equations are understood to be from
—H to —Hg, as in (3.7a). Depth averages,
defined by

(v) = V/Hg, (u) = U/Hp,

where Hy = H — Hg, are also utilized later.

The depth-integrated momentum equations are
also useful to work with in an attempt to
evaluate the relative size of the nonlinear terms.
A direct calculation of the nonlinear terms in (3.1b)
and (3.1c) is hard to accomplish. In addition to
the difficulty in a coastal region of evaluating
horizontal velocity derivatives at fixed values of z,
the ageostrophic balance (3.4b) or (3.5a) implies
that the motion is horizontally divergent to
lowest order. This means, for example, in (3.1c)

(3.8a,b)
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that the wo, term in u-Vy will formally be of
the same order of magnitude as the other two terms
uv, and vy, which involve horizontal velocities.
Since w is not measured, that term cannot be
directly calculated. The depth integration, of course,
eliminates w and results in expressions in terms of
horizontal velocities only.

The evaluation of the nonlinear terms (3.7b,c¢) in
(3.6b,c) requires the calculation of alongshore
derivatives. Although there were velocity measure-
ments in CUE-2 from moorings displaced along-
shore, it is felt that the spacing of these moorings
and, more importantly, the large gradients in the
flow in the onshore-offshore direction relative to
those in the alongshore direction (Kundu and
Allen, 1976), make a direct evaluation of y
derivatives impractical.

It is possible, however, to make some progress
in the estimation of the term ( f v?*dz), in NL¥ with
the use of two ad hoc assumptions. Since it is
expected, based on the results (3.4a,b) of the scale
analysis utilizing (3.3), that the nonlinear terms in
the y momentum equation will be relatively more
important than those in the x momentum equation,
an approximate evaluation of NL* should be help-
ful. If it is assumed that

H, =0, (3.9a,b)

it is possible to relate the y derivative in (3.7¢) to
an x derivative through the continuity equation
(3.6a). Eq. (3.9a) can be justified, to some extent,
by the form of the topography in this region
(Fig. 1), by the fact that the orientation of the
principal axes of the fluctuation is nearly along
the y axis, and by some of the results in Section
5. Assumption (3.9b) is partially rationalized by
the fact that the fluctuating alongshore velocity
components at Carnation and Edelweiss have been
found to be very nearly depth-independent (Kundu
et al., 1975; Kundu and Allen, 1976). That be-
havior is illustrated by the nearly depth-independent
values of v’ in Table 1.

With assumptions (3.9a,b) and with (3.6a), we

obtain
(J vzdz) ~ —2(0)“ udz)z, (3.10)

NLY = NLY = (J uvdz)

v, = 0,

so that

- 2(”) U.z'a

xr

G3.11)

and NLY may be evaluated using x derivatives only.
A mass transport vorticity equation may be ob-
tained by cross differentiating (3.6b) and (3.6c):

(V. — U,); + NLY — NL%

= —Hypg, + Hypp,, (3.12)

S. ALLEN AND PIJUSH K. KUNDU 17

where approximations (3.9) have not been used. If
we appeal to the order-of-magnitude arguments
based on (3.3), which result in an assumption of
geostrophic balance for v in (3.4a), Eq. (3.12) may
be simplified to

Voo + NLY = —Hypg, + H, fop. (3.13)

Since the results in Section 4 support the geostrophic
balance (3.4a), it is expected that (3.13) will be a
relevant approximation to (3.12).

The term on the right-hand side of (3.13) involving
ppy may be expressed in terms of velocities with
the use of the momentum equation (3.4b). An
evaluation of the nonlinear terms in (3.4b) is again
impractical using present velocity measurements
and, to proceed, an additional approximation is
required. It is found in Section 4 that, in the
momentum equation (3.6¢), the nonlinear term
NLY is generally smaller than the linear terms. We
appeal to that result to justify the use of the
linear momentum equation (3.5a) in the substitution
for py, and to justify the neglect in (3.13) of
NLY relative to V.. In the neglect of NLY it is
assumed that V, and NLY do not change their
relative magnitude when x derivatives are taken.
Consequently, with the use of (3.5a) and (3.8a) we
may write (3.13) as an approximate linear, depth
integrated vorticity equation:

(V)¢ = (Hy/Hg)(fup + vg — (v),)

+ (H,/Hg) fog. (3.14)

4. Momentum balance

We first investigate the balances in the linear
form of the momentum equations (3.5a) and (3.5b)
by comparing the relative size of the velocity terms
vg, fu and uy, fo.

The time derivatives in (3.5a) and (3.5b) are
approximated by applying a central difference
approximation, with a time increment of 6 h to the
(low pass filtered) data. For example, we use

v(t) = Aw = [v(z + Ar) — v(z — AD)]/2A¢, (4.1)

where At = 6 h. Errors from the time-difference
approximation are discussed in Appendix B.

Time variations of v, fu, u, and fv from the
data at Car 80 (the current meter at depth 80 m at
station Carnation) are given in Fig. 2. The appro-
priate combinations of these terms, which appear
in (3.5), are denoted by

YT = U + fI/l, XT = Uy — fU (4.2a,b)

and Y; is also plotted. In addition, included for
comparison is a plot of the alongshore component
of the wind stress (with the mean 7 = —0.37 dyn
cm~? removed). It may be seen that at Car 80 o,
and fu are of the same magnitude and that there is
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FiG. 2. Time series of v, fu, u,, fv and Y, = v, + fu at Carna-
tion (80 m) and of the north-south component of the wind
stress 7 at Newport. ' :

a clear tendency for these two terms to balance each
other. In contrast, it may also be seen that in
general fv has a substantially larger magnitude than
u, and that, as a result, the term i, could not be
important in the x momentum equation.

VOLUME 8§

The standard deviations of the terms v,, fu, u,,
Jv, X; and the ratios v}/ fu’, u)/fv' are given in
Table 2 for the different stations. The normalized
cross-correlation coefficients between v, and fu and
between u, and fv, denoted by brackets, e.g.,
{ve, fu} =v fu/vifu', are also given. The statistical
significance of the correlation coefficients is dis-
cussed in Appendix A. The time periods covered
in the calculations with the low-passed data are
Aster, 2 July-24 August (53 days); Carnation,
3 July-25 August (54 days); Edelweiss, 27 July
to 25 August (30 days).

The impressions from Fig. 2 are borne out by the
standard deviations (SD’s) and correlation coef-
ficients. At Car 80, v, and fu are significantly
negatively correlated and have SD’s of similar
magnitude, with the SD of fu being larger. It
may be expected, therefore, that these terms have
some tendency to balance and to cancel each
other in the sum Y,. This is the case and the
SD of Y, is smaller than that of fu. ,

In general, the standard deviation of fu is some-

* what larger than that of v, for all the measure-

ment points. At each station the SD of v, is
closer in magnitude to that of fu at the deeper
current meters, with the exception of the very
bottom current meters at Carnation and Edelweiss.
The SD of v, is fairly uniform with depth while
that of fu increases in magnitude as the depth
decreases. This trend is illustrated in Table 2 by the
variations in v}/ fu’ with depth and could be an-
ticipated from the relative depth independence of
v’ and the general increase of u' at shallower
depths .(Table 1). The absolute value of the cross-
correlation coefficient {v,, fu} also tends to be larger
at the deeper points. If, as in (3.5a), p, is the
term that balances Y,,* then evidently there are
baroclinic contributions to the alongshore pressure
gradient which result in an increase in the magnitude
of p, for decreasing depth. This would imply that
the fraction of the onshore flow which is geostrophi-
cally balanced increases at the shallower depths
(below the surface layer).

At all three stations {v,,fu} falls to near zero
values at 20 m. This presumably reflects the fact
that additional physical effects, not included in
(3.5a) and (3.5b), enter the momentum balance
at 20 m. These effects are probably the result of
turbulent frictional processes associated with the
surface layer. At the bottom current meters at
Carnation and Edelweiss, there is a decrease of
the ratio v}/ fu’ and the correlation { v;, fu}, which
is probably due to frictional effects from the bottom

4 The possibility of using coastal sea level measurements
from a set of tide gages along the Oregon coast to ob-
tain information about p, is being investigated by Dr. A.
Huyer (private communication).
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TABLE 2. Standard deviations and cross-correlation coefficients.

’

Depth Su' Vi b e

Station (m) v (10~* cm s7%) Yy fu' {ve, fu} u (107 cm s72) X7 Nid {us, fv}
Aster 24 1.15 4.12 4.35 0.28 0.07 0.59 12.79 12.85 0.05 -0.08
44 0.90 1.65 1.70 0.55 -0.21 0.23 9.71 9.68 0.02 0.14

Carnation 20 0.98 4.81 4.91 0.20 0.00 0.68 10.24 10.26 0.07 0.01
40 0.96 3.09 2.96 0.31 -0.29 0.47 10.83 10.77 0.04 0.15

60 1.15 2.95 2.68 0.39 -0.42 0.52 12.01 11.91 0.04 0.21

80 1.01 2.01 1.70 0.50 -0.53 0.37 10.98 10.90 0.03 0.25

95 0.75 1.69 1.53 0.44 -0.43 0.25 8.70 8.64 0.03 0.25

Edelweiss 20 0.60 3.81 3.90 0.16 0.05 0.47 5.76 5.73 0.08 0.11
80 0.62 2.18 2.04 0.28 —0.36 0.37 5.04 4.93 0.07 0.34

120 0.75 1.99 1.91 0.38 -0.29 0.40 5.48 5.39 0.07 0.24

180 0.74 1.73 1.58 0.43 -0.40 0.35 5.52 5.42 0.06 0.32

195 0.66 2.30 2.20 0.29 -0.30 0.38 5.03 4.92 0.08 0.32

boundary layer (Kundu, 1976). At Aster 40,
v/ fu’ obtains the largest value measured, but
{v;, fu} is lower than at the mid-depth or bottom
points at Carnation or Edelweiss. Again, additional
effects, perhaps frictional, may be operative in the
shallow water at Aster. .

Since the fluctuating v components of velocity are
approximately depth-independent and are highly
correlated, both in depth and onshore-offshore
(Kundu and Allen, 1976), the time variation of v
should be similar to that of (v),. It seems, there-
fore, that the relatively high correlation of v, and
Sfu at the points near the bottom perhaps indicates
the presence of a vorticity balance like (3.14), where
a correlation between (v),, and up would be ex-
pected. The vorticity balance is investigated in
Section 5.

The results in Table 2 for the SD’s of v, and fu
strongly support the inclusion of the ageostrophic
term v, in the y momentum balance equation
(3.5a). On the other hand, the magnitudes of the
SD’s of u, in Table 3 are generally much smaller
than those of fv which justifies the neglect of the
ageostrophic term u, in (3.4a). This result, together
with the previously found high correlation of v and
coastal sea level (Smith, 1974; Kundu et al., 1975)
supports the assumption of geostrophic balance for

fv. Tt should be noted that the assumptions of
geostrophic balance in (3.4a) and ageostrophic
balance in (3.5a) lead to the long-wave (nondis-
persive) approximation for continental shelf waves
(Gill and Schumann, 1974). The above results,
consequently, tend to support the long-wave
approximation.

By comparing in Fig. 2 the variation of the
wind stress 7 with that of v, and fu at Car 80 we
may make some additional comments. If a linear,
two-dimensional balance is present in (3.5a), v,
and fu will balance exactly, with p, = 0. The
occurrence of the type of balance during some
time periods would be indicated by relatively
small values of Y;. It may be seen from Fig. 2
that there is no obvious relation between the
variation of 7 and of Y,. Halpern (1976) has
speculated that there may be an increased tend-
ency toward a two-dimensional mass balance dur-
ing strong wind events. In contrast, it appears
from Fig. 2 that there is no evidence for a
tendency toward a two-dimensional dynamic bal-
ance during periods when the wind stress is of
large magnitude.

We next attempt to estimate the size of the
nonlinear terms in the depth-integrated momentum
equations (3.6b) and (3.6¢c). It is convenient to

TaBLE 3. Standard deviations (10~* cm s~2) and cross-correlation coefficients from (4.6a) and (4.6b) at points EC and CA.

(u)y vy X, NLZ X,
EC 0.25 6.61 6.48 0.05 6.49
CA 0.24 9.93 9.86 0.18 9.84

vy, fuy’ ¥, NLY NLY NLY v
EC 0.73 1.65 1.30 0.12 0.07 0.14 1.30
CA 0.87 1.67 1.45 0.38 0.37 0.67 1.49

{()ofu)} (¥, NLy} (¥, NLY} {¥,,NL%} {NLY,NL#} {(u)e f(v)} {f(v), NL%}

EC —0.66 -0.01 -0.18 0.08 —-0.54 0.53 -0.10
CA —-0.50 -0.04 0.39 -0.24 —-0.89 0.31 0.10
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work with the velocities in the linear terms ex-
pressed as depth averages (3.8). In terms of these,
the left hand sides of (3.6b) and (3.6¢c) may be
written

(uy, + Hg™ {( Ju2dz)w

+ (fuvdz )J - f(v) = Xr, (4.32)

(0 + 5| [uva )

- 2<u>(fudz) } +fu) = Vi (4.3b)

where NLY (3.11) has been used in place of NLY.
For the calculation of the depth averages in
(4.3) it is necessary to estimate the depth Hy of
the surface frictional layer. The measurements of
the u velocities at Carnation (Fig. S of Kundu et al.,
1975; Fig. 6 of Huyer, 1976) indicate that the
onshore-offshore currents at 20 m sometimes flow,
as do the near-surface currents, in a direction
opposite to the motion at the deeper current
meters. At other times, the 20 m and the deeper
u velocities have the same sign and similar time

POINT E-C

-2

-4
10 "cm sec

300 5 © 15 20 25
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F1G. 3. Time series of (v),, f(u) and NLY in Eq. (4.6b)
at points EC and CA.
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variability. It appears that the effects from the
surface frictional layer occasionally influence the
currents at 20 m. This feature is also indicated .
by the variation of the cross-correlation coefficients
of u at Carnation as a function of vertical
separation. The cross-correlation coefficients be-
tween uy (u at 40 m) and wugy, ugy, uys are higher
(~0.65) than that between u,, and u,, (~0.5). Addi-
tional indications of surface layer effects on the 20
m currents were just mentioned in connection with
the results in Table 2 and more will be dis-
cussed in Section 6. As for the extent of pene-
tration of frictional effects, a rough estimate,
sufficient for our purposes, of 20 m for the mean
depth of the surface layer at Carnation may be
obtained from the plot of u velocities in Fig. 6 of
Huyer (1976) or from the hodograph of current
vectors in Kundu (1977). Based on the above
considerations, we assume that Hg' = 20 m and we
omit the 20 m current meter records in forming
the depth integrals.

A simple trapezoidal approximation is used for
calculating the depth averages. The resulting
formulas, e.g., for u, are

Aster: (u) = uy

Carnation: (u) = (30uy,
+ 20”60 + 17.5”80
+ 12.5u,;)/80

4.4
Edelweiss: (u) = (80ug,
+ SO0uy50 + 37.5 Uy
+ 12.5u,45)/180

The depth integrals needed in the nonlinear terms,
such as U = Hg(u), are calculated from (4.4) by
multiplying by the appropriate H.

It is not possible to evaluate directly the y deriva-
tive term in NL* in (4.3a). Based on the results
in Table 2 and on the scaling arguments that led to
(3.4a), however, it might be anticipated that the
term NLZ® will be small relative to fV. We will,
therefore, be satisfied in the evaluation of terms in
(4.3a) to calculate only that part of the nonlinear
term which involves the x derivative and which may
be readily approximated.

The terms in (4.3a) and (4.3b) are calculated
from difference approximations centered at a point
x, half way between two stations which are
separated by a distance 2Ax. With the notation

% = V[ P(xo + Ax) + d(x, — Ax)],
Ay = [d(xo + Ax) — P(x, — Ax))2Ax,

the difference approximations for (4.3a) and (4.3b)
at the point x, are

(4.5a)
(4.5b)
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(a)# + NL§ — f(0)* = Xp, (4.62)
(D)F + NLY + f{a)y* = ¥y, (4.6b)
where
NLg = [Ax( Juzdz)]/lzlf, (4.72)
NLY = NL¥ + NL3, (4.7b)
NLY = {AI( Juvdz )]/Hg,
4.7c,d)
NLY = —2<a)w[Aw( Judz)]/iig,

and where the .y derivative term in NL* has been
omitted. The time derivatives are calculated as
before by (4.1). The notation

X, = ()% - f(D)7,

Vo= (8)% + A7),
is used for the linear terms in (4.6a,b).

The results from the point x, between Edelweiss
and Carnation are denoted by EC and those for the
point between Carnation and Aster by CA. For EC,
2Ax = 15.5 km and for CA, 2Ax = 7.1 km. The
time period covered in the calculations.at EC is 27
July-25 August (30 days) and the period at
CA is 3 July-23 August (51 days).

The standard deviations and the cross correla-
tion coefficients for the various terms are given in
Table 3. In the x momentum equation (4.6a),
similar to the previous results for «, and fv, we find
that (u)} is small compared with f(v)’. These
results further support the approximation of
geostrophic balance for v in (3.4a).

For the y momentum equation (4.6b), the results
for (v); and f(u) are also similar to those ob-
tained before for v, and fu. Plots of the terms in
(4.6b) at EC and at CA are given in Fig. 3. As for
the nonlinear terms in (4.6b), at both points EC and
CA the SD’s of NLY and NLY are similar in
magnitude and these two terms are fairly well
negatively correlated. This similarity in behavior of
NLY and NL{ appears to indicate that the approxi-
mation used in the calculation of NLY may be reason-
able. We do find, however, that NL¥' is about
twice as large as NLY' and that NLY is better cor-
related with Y, than is NL¥. In addition, the cor-
relation of the total nonlinear term NLY% with
Y, is near zero and the SD of Y, is larger than that
of Y,. As a result, the accuracy of the estimate of
the nonlinear terms is not certain and the amount of
balance in Y, with NLY included is a little ques-
tionable. Nevertheless, the calculations should give

some indication of the relative magnitude of the
nonlinear and the linear terms.

(4.8a,b)
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At EC the magnitude of the SD of NLY is sub-
stantially less than that of either of the linear terms
f{u) or {v),. This difference in magnitude is clearly
seen in Fig. 3 and should be indicative of the
relative importance of these terms at EC. At CA,
the relative magnitude of the nonlinear term is some-
what greater, but NL}' is still smaller than f{u)’
or {(v);. In general, f(u) and (v), are larger in
absolute value than NLY%, but during occasional
time periods NLY% is comparable in magnitude
to (v),.

We conclude that the nonlinear terms in (4.6b)
are generally smaller than the linear terms f{u)
and (v),. This appears to hold to a greater extent
at the deeper point EC, where the nonlinear terms
appear to be small enough to be negligible,
than it does at the shallower point CA, where there
is an indication that nonlinear effects may not be
negligible.

5. Vorticity balance

The extent to which there is a balance of terms
in the linear depth-integrated vorticity equation
(3.14) is investigated next. The difference approxi-
mation to (3.14) is

A (v), = (H,/Hy)R,(H,/Hg)R,, (5.1a)

where
R, = fu% + 0%, — (D), (5.1b)
R, = fv%. (5.1¢)

The effective values of (H,/Hy) and (H,/Hg)
in (5.1) are not known exactly. To assess the bal-
ance, therefore, we calculate the cross correlation
coefficients between the three terms ( v),, = A (v),,
R, and R,, and we estimate the magnitude of the
coefficients (H,/Hz) and (H,/Hgz) by a linear
regression analysis. The values determined from the
linear regression are then compared with estimates
from the bathymetry to see if the magnitudes are
reasonable. Errors from the spatial difference
approximations in (5.1) are discussed in Appendix B.

The terms in (5.1) are calculated at the points
EC and CA for the same time periods as in Section
4. Measurements at the bottom current meters at
each station are used to form &% and ©%. The cross
correlation coefficients and the standard deviations
of the terms (v),, R, and R, are given in Table 4.

At the point EC, the value of the cross correla-
tion coefficient {(v),, R} = —0.51 which is rea-
sonably high. The linear regression of (v),, on
R, at EC gives (H,/Hg) = —1.3 x 107" cm™!. The
standard error of this coefficient (see Appendix A)
is estimated to be 0.6 X 10~7 cm™!. This value for
(H,/Hg) has the proper order of magnitude and
compares fairly well with an estimate from the
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TABLE 4. Cross-correlation coefficients and standard deviations

from (5.1) at points EC and CA

v EC CA
{(V)en Ri} -0.51 -0.03
{(v) Ro} 0.22 -0.20
{Ry, Ry} —0.56 —0.48
(V) (10711 572) 4.13 6.12
R;(10~* cm s7%) 1.61 1.48
R;(10~* cm s72) 5.73 9.14

bathymetry of (AH/AxHg) = —[100 m/(130 m
X 15.5 km)] = =5 X 1077 cm~'. A plot of (v},
and (H,/Hg)R,, with (H,/Hg) = —1.3 x 107
cm™, is shown in Fig. 4, where the amount of cor-
relation between these two terms may be seen.

At EC, the magnitude of the correlation co-
efficient {(v),;,R,} is substantially smaller than
{(v)z, R;}. This indicates that the primary driving
term on the right-hand side of (5.1) is (H,/Hg)R;.
Since R; > R} mainly because vy > ug, we would
expect that if y variations in topography were
important in (5.1) a reasonably high correlation of
R, with (v),, would be obtained. That, however, is
not the case. Because of the low value of {{ v) ;;,R.}?,
the regression coefficient for (H,/Hg), which is
small in magnitude relative to (H,/Hg) anyway,
is not particularly meaningful and is omitted.

We conclude that the fairly high correlation
between (v),, and R, and the proper order-of-
magnitude estimate of (H,/Hj) from the regression
analysis provide a reasonable amount of evidence
to support the existence, in the region between
Edelweiss and Carnation, of the linear vorticity
balance

(V) ge = (Hy/Hg)(fug + vg, — (0))). (5.2)

On the other hand, at CA the values of the
correlation coefficients {(v),,R,} and {{v).,R5}
are both small. Evidently, as noted previously
in Section 4, there are additional effects, probably
frictional, which are operative in the region be-
tween Carnation and Aster. These effects are indi-
cated by a general decrease in magnitude of (v)
at the onshore station Aster, relative to Carnation,
as compared with an increase in (v) at Carna-
tion, relative to Edelweiss. This variation may be
seen from the values of v’ at the different stations
(Table 1). A comparison of A,(v), at EC and CA
shows that much of the time this term is of opposite
sign at these two points, while R, and R, generally
have the same sign, €.g., {{ v) zrc,{ V) zrca} = —0.41,
{Rigc,Rical = 0.62. Since the measurements at
Aster 44 are only 10 m above the bottom, the de-
crease in magnitude of (v) at Aster may reflect
effects from the bottom boundary layer there
(Kundu, 1977). Otherwise, frictional effects due to
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the decrease in depth or to the decrease in hori-
zontal distance from the coastal boundary may act
throughout the water column and lower the magni-
tude of (v). In any case, the inviscid vorticity
balance (5.1), as approximated here, does not hold
at CA.

6. Mass balance

In this section, we investigate to what extent
the mass balance constraint (1.6), based on the
assumption of two-dimensional motion, holds for the
interior flow. Because of the longer time series of
measurements at Carnation and Aster, we restrict
our attention here to those two stations.

The cross-correlation coefficients between u, at
Carnation and Aster, and the wind stress 7 are
given in Table 5. The maximum value generally
occurs within 12 h of zero lag, and the value re-
corded in Table 5 is the maximum absolute value
within the lag time of *12 h. The time period is
the same as in Section 4 for the point AC.

Below 20 m {u,7} is negative, i.e., a wind stress
fluctuation toward the south is generally accom-
panied by onshore flow, as expected from (1.6). At
Carnation, the absolute value of {#,7} increases with
depth and attains its maximum value at the bottom
measurement point at 95 m. The values of {u,7} at
20 m are anomalous, being small and negative at
Aster 20 and small and positive at Car 20. This
result is an additional indication of surface layer
effects at 20 m.

In Kundu and Allen (1976), the « and v velocities
from CUE-2 were decomposed, at the individual
stations, into vertical empirical orthogonal func-
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Fic. 4. Time series of (v),[= A {(v),] and —(H./H)R,
(= —(H,/Hg)R,] in Eq. (5.1) at point EC, where (H./Hg)
=-13x1077cm™.
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TABLE 5. Cross-correlation coefficient between « and the wind
stress 7 (maximum absolute value within lag of + 12 h).
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TABLE 6. Cross-correlation coefficients (maximum absolute value
with lag + 12 h) and standard deviations (10* cm? s7).

Aster Carnation
24 44 20 40 60 80 95
{u,7} —-0.12 —0.38 +0.17 -0.34 —0.34 —0.41 —0.52

tions. It was found that the amplitudes of the first
empirical modes for u at Carnation and Aster were
very poorly correlated with the wind stress 7.
Presumably, this is because the 20 m currents, which
also have the largest magnitudes of «’ at these
stations, were included in the calculation of the
empirical modes.

Because of surface layer effects, the depth
integral of the interior inviscid onshore velocity
is calculated, as before, by integrating over
—H =< z < —Hg. As aresult, Eq. (1.6) becomes

U= I udz = —7/fpy,

-H

6.1)

where Eq. (4.4) is used to calculate U = Hz{u).
Subscripts C and A will be used to denote the value
of U calculated at Carnation and at Aster, re-
spectively.

The cross correlation coefficients {Ug,7} and
{U,4,7} are given in Table 6 along with the values
of {(Uc — U,),7}, {U;,U,} and the standard devia-
tions. If the flow were two-dimensional, (U, — U,)
would represent the volume flux into the surface
layer between Carnation and Aster. The negative
values of {U,,7} and {U,,7} are in agreement with
(6.1). The value of {U, — U,,7} is also negative,

{Ue¢,7} = —0.41 UL =179
{U4,7} = —0.38 U, = 0.48
{Ue— Uyt = —0.34 (Us - Uy = 1.66
{(Un Uy = 0.41 (tlpof) = 0.49

which indicates that the x gradient of fluctuating
onshore-offshore volume flux between Carnation
and Aster is consistent with an upwelling motion
from the interior into the surface layer when the
wind stress has a negative, upwelling-favorable
fluctuation.

The correlations between the various U’s and 7
in Table 6 have the sign expected from (6.1), but
their values are not very high. A plot of Ug, Uy,
and 7/ fp, versus time is shown in Fig. 5. Since
U, is generally smaller than Uy, the plotof U, — U,
looks a good deal like that of U, and is not shown.
It is clear from Fig. S that the fluctuating values of
U, and 7/p, f are similar in magnitude, while the fluc-
tuations of U, are larger, as indicated by the values
of the SD’s in Table 6. There are some time
periods when the variation of U, and of U, appear
to be related to that of 7/p, fin qualitative agreement
with (6.1). For example, this is the case during
11-14 July. Although the magnitudes of U, and
7/pof do not balance, this supports Halpern’s
(1976) conclusion about a tendency toward a two-
dimensional behavior in the mass balance during that

"particular time period. At other times, there are

time-dependent motions of U, and U, which are
clearly not correlated with 7/p, f, e.g., during 19-22
July. These motions are probably associated with
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F1G. 5. Time series of U;, U, and 7/p, f.
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alongshore gradients in the velocity field, i.e., with
three-dimenstonal effects, inshore of Carnation.

The mean values during this time period are
Tlpe f = —0.36 x 10* cm?® s~!, Uy = 2.10 x 10* cm?®
s, U, = 0.17 x 10* cm? s~*. The fact that U, is
much larger than —7/p,f indicates that three-dimen-
sional effects are possibly also important for the
mean flow.

Even though the fluctuations U, and U, clearly
vary in response to processes other than the two-
dimensional mass balance in (1.6), it is reasonable
to ask what the average, or most likely, values of
U, U, and (U, — U,) are, over this time period,
for different values of 7/p,f. The answer to that
question is best provided by a linear regression of
Ue, Uy and (Uy — Uy) on 7/pyf. The regression
coefficients and the estimated standard errors of
these coefficients (see Appendix A) are given in
Table 7. The values of the coefficients are all
close to —1. This result lends support to the
general concept of the mass balance (6.1), since it
indicates that the part of the U, which is cor-
related with 7 tends to have a magnitude close
to 7/fp,. The relative size of the regression
coefficients is also consistent with a vertical flux of
mass into the surface layer between Carnation
and Aster.

We conclude that there is some evidence that
the physics in the two-dimensional mass balance
(6.1) is operative, but that there appear to be sub-
stantial three-dimensional effects in the u velocity
field inshore of Carnation and, possibly, upwelling
into the surface layer between Carnation and Aster.

7. Summary

Velocity measurements from the Coastal Upwell-
ing Experiment CUE-2 on the continental shelf off
Oregon in the summer of 1973 have been analyzed
to investigate whether time-dependent momentum
and vorticity balances commonly utilized in theoreti-
cal models, and a two-dimensional mass balance,
commonly utilized in conceptual models of coastal
upwelling, are valid for low-frequency current fluc-
tuations. Measurements from three stations in water
of depth 54, 100 and 200 m were utilized.

By a comparison of the magnitude of terms
involving horizontal velocities in the linear momen-

TaBLE 7. Coefficients from the linear regression of dependent
variables U, U, and U, — Uy on 1/fp,.

Dependent Regression Standard
variable coefficient error
U¢ —1.36 0.70
U, -0.37 0.19
Ucs—-Uy, —-0.99 0.66
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tum and nonlinear depth-integrated momentum
equations, support is found, in the flow beneath
20 m, for the linear geostrophic balance of the
alongshore velocity in the onshore-offshore momen-
tum equation (3.4a) and for a linear ageostrophic
balance in the alongshore momentum equation
(3.5a). The linear ageostrophic balance (3.5a)
appears to hold best in the deeper water of
depth 100-200 m. In the shallower water of
depth 54-100 m, there is an indication that non-
linear effects’ may not be negligibly small. There
is also some evidence of additional physical proc-
esses, probably frictional, entering the momentum
balance at the shallowest station at 54 m depth.

Evidence is found to support the validity of the
linear, depth-integrated vorticity balance (5.2) be-
tween the 100 and 200 m stations. This balance does
not appear to hold between 54 and 100 m, pre-
sumably due to frictional effects. .

The fluctuations in the interior, depth-integrated
onshore velocities at 100 and 54 m, U, and U,
and their difference (U, — U,) are shown, from
cross-correlation coefficients with the wind stress
7, to have the proper sign to be in accord with
the two-dimensional mass balance relation (1.6).
The correlation is not particularly high, however,
probably due to three-dimensional effects inshore
of 100 m.
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APPENDIX A
Statistical Significance of Correlation Coefficients

-In the main body of the paper we have listed the
values obtained for various cross-correlation coef-
ficients regardless of the magnitude or of the statis-
tical significance from standard tests. Here, for
comparative purposes, we give the values of the
correlation coefficients at the 10% level of sig-
nificance for the different length time series in-
volved at the three stations and at the points
EC and CA.

An estimate of an integral time scale 9, which
determines the time period to gain an ‘‘independent’’
measurement and which is appropriate for the cal-
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culation of correlation coefficients, is obtained from
the equation used by Davis (1976) [see also Eq.
(6.71) in Bendat and Piersol (1971)]:

n=+no
T= 3

n=-ng

r{nAt)ry(nAt)At, (A1)

where r,(1r) and r,(¢) are the lagged autocorrela-
tion coefficients for variables 1 and 2, respec-
tively, and At is the time interval (here 6 h) between
data points. The integer n, is taken to be large
enough that a convergent limit for 9 may be esti-
mated. From the appropriate combinations of the
autocorrelation coefficients of u, v, 7, and of the
other variables used in the calculations, we obtain
a general, conservative estimate of J = 2 days.
The number of independent measurements N, in a
series with N data points is then

N; = NAt/T. (A2)

With 7 = 2 days, the number of independent
measurements N, for the calculations involving the
velocities at Edelweiss and at EC is N; = 14.5
and for the calculations involving the velocities at
Aster, Carnation, and CA is N; = 26. The cor-
responding magnitudes of the correlation coef-
ficients, at the 10% level of significance are then
0.45 and 0.33, respectively (Pearson and Hartley,
1970). Many of the larger correlation coefficients
referred to in Sections 4-6, especially those at
point EC, have magnitudes which are slightly greater
than but rather close to these values.

The estimate for N; is also used in the calcula-
tion of the standard error of linear regression
coefficients. For example, with N data points
for two variables x and y, where x is considered
to be the independent variable and where x = 0,
¥ = 0, the coefficient » in the regression equa-
tion § = bx is given by

N N
b=73 xylY x2, (A3)

and the standard error s, of b is obtained from

W= S (- IN - S 2. (Ad)

APPENDIX B

Errors

Errors involved in the approximation of terms in
the equations of motion, with velocity measure-
ments and other observations, have been dis-
cussed for particular cases by McWilliams (1976a,b),
Bryden (1976) and Bryden and Fofonoff (1977). An
attempt is made here to estimate the errors in-
volved in the time difference approximation (4.1)
and in the spatial difference and averaging ap-
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proximation in the linear depth integrated vorticity
equation (5.1).

The magnitude of the errors incurred by the use of
the time difference approximation (4.1) may be esti-
mated by considering the effect of (4.1) on a sinu-
soidal signal of frequency w, e.g., v = v, exp(iowt).
In that case the square of the ratio of the differ-
ence approximation to the true value of the
derivative is

A, = [Aw/uF = [sin(An)/wAF,  (B1)

where A; < 1 and A; = 1 for wAr < 1. A measure
of the relative magnitude of the error variance
from the use of (4.1) may be expressed as A = 1
— A,. A calculation of A for some of the higher
frequencies present in the low-pass filtered data
utilized here gives A = 0.07, 0.12, 0.19, 0.26 for
f=(o2m) = 0.3, 0.4, 0.5, 0.6 cpd, respectively.
Since A is small over the frequency range of
interest and is very small for frequencies f< 0.3
cpd, where the signals are more energetic, the
difference approximation A,v should provide a rea-
sonably accurate representation of v;.

We next attempt to estimate the effect of errors
in the spatial difference approximation (5.1) to the
linear depth-integrated vorticity equation (3.14). The
approximation (5.1) contains both the difference
and the averaging operators, A, and ( )*.

Let us assume that we have time series meas-
urements of some quantity ¢(x,f) at two points
x; and x, (x; > x;), separated by a distance 2Ax
= x, — x; and with the center point x, = Y4(x,
+ x;). Subscripts are used to denote values at
measturement points, e.g., ¢, = d(x,).

The true values of interest of ¢(x,?) are assumed
to vary on spatial scales greater than the separa-
tion 2Ax between the points. Let the measured
values be denoted by a subscript m, so that
¢, = ¢ + €, where the error e represents the
difference between the measured and the true value
of ¢ and is assumed to be due primarily to proc-
esses on space scales shorter than 2Ax, but may
also be due to unbiased measurement errors. The
variables under consideration, therefore, are

b =+ €, i=1,2. (B2a,b)

It is assumed that all variables have the time mean
removed, i.e., ¢,, = ¢ = € = 0, and that the errors
are random, such that ¢ is uncorrelated with € and
that €, and ¢, are uncorrelated, i.e.,

{pie} =0, i,j=1,2; {e, &} =0. (B3
It follows from (B3) that
Gmibmz = Prcbe, (B4)
and that
b’ = B + €2, bu’ = ¢ + &. (BSa,b)
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Using the notation

Fm = {®mi,Ome}, ¥ = {d1, b2}, R = ry/r, (B6a,b,c)
we obtain

R = ¢2¢b:% b’ Pz’ (B7a)

= [(Dn® — €D Dns’ — €)Y Pmiibm®. (BTD)

The first objective is to obtain an estimate of €;

from the measurements. These values are then used

to estimate the errors involved in the difference

and averaging approximations (4.5) which, in terms
of ¢, are

bx(x0) = o = Ard)m = (e — (bml)/ZAx’ (B8a)
B(x)) = by = G = Yoy + bma)- (B8b)

__If an assumption is made which relates ¢ to
&, it is possible to solve (B7) for ¢, and €® as a
function of R. We assume that €* is a constant, i.e.,
that

0 (B9)
in which case we obtain
26” = (bn® + bnsd) — [(Ps® + )

= 4bn’bn(1 — RI]™  (B10)

Note that €2 — 0 if R— 1, i.e., if r, — r. For
R — 0, &’ — min ().

If it is assumed that ¢, and ¢, are perfectly
correlated, i.e., that r = 1, then R = r,, and €, may
be estimated from measured values by (B10). The
processes of interest, i.e., ¢(x,f), may not be per-
fectly correlated, however. This would be the case,
for example, if ¢ was the sum of two or more
processes which individually have 2 = 1, but which
are mutually uncorrelated. Since the actual values
of r are not known, we proceed and obtain
approximate values for €,* by assuming that r = 1.
Because |r| < 1, an overestimate of €2 is obtained.

A measure of the relative magnitude of the error
variance from the use of (B8a) and (B8b) may
be expressed, respectively, as

B =1 — [(A:0n)bu’], (B1la)
C =1 - (dn)lde. (B11b)
These may be rewritten in the form
B =1 - B,B,, (B12a)
C=1-C0GC,, (B12b)

where
B, = 8, 9%/d.", B, = B8, 97, (Bl3a,b)
Cy = (@ Vb,  Cy = (PP ), (Bl4a,b)

In (B12) the ratios B, and C, involve errors only
from the spatial differencing and averaging approx-
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imations of ¢ and depend on the spatial scale of
variation of ¢ and on Ax; as Ax — 0, B,,C, — 1.
On the other hand, the ratios B, and C, involve the
errors € in the measured values ¢,,. For € — 0,
B,,C, — 1.

It is convenient to write B, and C, as

B,=1+b,, C;=1+c¢c, (Bl5a,b) .
where .

by = €[(m—bm)® — €I,  (Bl6a)

¢ = &[(dmtdm) — &7, (BI6b)

€2 = €2 + €2 = 2¢,%. (B16c¢)

To calculate B, and C,, a representative spatial
scale for ¢ must be estimated. We do this in a rough
way by assuming that

¢ = ¢y exp(+kx). (B17)

An exponential rather than a sinusoidal function
seems reasonable here since no zero crossings are
found in r, in the onshore-offshore direction. It
follows from (B17), that

G2/dE = exp(+4kAx), (B18)
B, = (sinh kAx/kAx)* (B19a)
C, = (cosh kAx)?. (B19b)

With (BS5) and (B10), kAx may be found from (B18).
For (5.1), we are interested in estimating B and
C in (B12) with

¢ = (v),in (B12a), ¢ = R, in (B12b). (B20)

The relevant variances, cross-correlation coef-
ficients and calculated values of €2, kAx, B;, C,,
b, and ¢, for A (v), and R,, as appropriate, are
given in Table 8.

The estimates for B, and C, are close to 1 and
indicate that the errors from the finite-difference

TABLE 8. Variances, cross-correlation coefficients and calculated
values from Egs. (B10), (B16), (B18), and (B19). The subscripts E
and C denote measured values of Edelweiss and Carnation, re-
spectively, and replace the subscripts m1 and m2.

(V)i =393 x 107 cm* s~*
RZ; = 5.29 x 1078 cm? s~

{{V)Es(V)ic} =0.73

(v)ic =87.3x107%cm?s™*
Ri;=2.33x10"%cm? s~

{.Ru;, RIC} =0.39

For (v), For R,
€ = 14.3 X 10719 ¢m? s~ € =179 x 108 cm? s~
kAx = 0.27 kAx = 0.47
B, = 1.02 C, =124
by =2.27 ¢, = 0.52
B=-234 C = -088
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and averaging approximation alone are small, with
the larger error indicated for the averaged term R;.

The estimated value of b, is greater than 1, which
implies for A (v), that the error variance is larger
than the signal variance. As noted before, however,
the values of € obtained by assuming r = 1 are
likely overestimates which leads, of course, to an
overestimate for b,. Nevertheless, this result pro-
vides an indication of the possible extent of the er-
rors involved when straightforward difference ap-
proximations are utilized.

With estimates of B, and C, for (v), and R, it is
possible to proceed and to estimate the effect of the
errors in the calculation of A (v),, and R%, on
the correlation coefficient

P = {Az( v)tm,Rfm}- (B21)

Utilizing an analysis similar to that which led to
(B7), we obtain

Fm = F(ByCy)71%, (B22)

where 7 = {A,(v),,R¥} and where B,, C, are ob-
tained using (B20). If we assume perfect correla-
tion between the difference approximations to these
two terms, i.e., ¥ = 1, and use values of B, and
C, calculated with (B15) from Table 8, we find
|7m| = 0.45. This estimate is less than, but com-
parable to, the value |r,| = 0.51 found in Section
5. The fact that |7, | < |r,| is probably due to an
overestimate of the errors in b, and c,.

Since |7, > 0.45 if r* <1 for (v), or R,, but
|Fm| < 0.45 if 7 < 1, an estimate of a lower bound
for |7,,| has not been found. The analysis indicates,
however, that if the errors in A (v), and R, are

as large as the estimates there is still a possibility .

of finding a value of |7,| approximately as large as
0.45 if P =~ 1. If the errors are close to those ob-
tained from the estimates, it follows that {v),, and
R, must have a reasonably high correlation in order
for the measurements to give a value of |7,,| = 0.51.
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