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On The Monitoring of Linear Profiles 
 

Keunpyo Kim, Mahmoud A. Mahmoud, and William H. Woodall1 

Virginia Tech, Blacksburg, VA 24061-0439 

 

     We propose control chart methods for process monitoring when the quality of a process or 

product is characterized by a linear function.  In the historical analysis of Phase I data, we 

recommend methods including the use of a bivariate T2 chart to check for stability of the 

regression coefficients in conjunction with a univariate Shewhart chart to check for stability of 

the variation about the regression line.  We recommend the use of three univariate control charts 

in Phase II.  These three charts are used to monitor the Y-intercept, the slope, and the variance of 

the deviations about the regression line, respectively.  A simulation study shows that this type of 

Phase II method can detect sustained shifts in the parameters better than competing methods in 

terms of average run length performance.   We also relate the monitoring of linear profiles to the 

control charting of regression-adjusted variables and other methods.   

 

Introduction 

 

     In many practical situations, the quality of a process or product is characterized by a 

relationship (or profile) between two or more variables instead of by the distribution of a 

single quality characteristic.  Lawless et al. (1999) gave examples in automotive 

engineering.  Kang and Albin (2000) presented two examples of situations for which 

product profiles are of interest.  The first example involved aspartame (an artificial 

sweetener), which is characterized by the amount of dissolved aspartame per liter of 

water at different levels of temperature.  In this case, there is a desired functional 

relationship between the amount of dissolved aspartame and the temperature.  The other 

example is a semiconductor manufacturing application involving calibration of a mass 
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flow controller in which the performance of the process is characterized by a linear 

function.  Mestek et al. (1994) and Stover and Brill (1998) gave similar calibration 

applications.  

 

     Kang and Albin (2000) proposed Phase I and Phase II control chart methods for 

monitoring a process for which the quality of a product is characterized by a linear 

relationship.  Stover and Brill (1998) also considered the Phase I problem, while Brill 

(2001) considered possible extensions to more general relationships than a linear one.   

 

     In this paper we propose statistical process control charts for monitoring in Phase II a 

process or product that is characterized by a linear profile.  Kang and Albin (2000) 

proposed two control chart strategies to monitor such a process. One approach involves a 

multivariate T2 chart. The other uses statistics based on the successive samples of 

deviations from the in-control line in a combination of an exponentially weighted moving 

average (EWMA) chart to monitor the average deviation and a range (R-) chart to 

monitor the variation of the deviations.  Both approaches are described in the next section.  

Our method is more similar to the ir second approach.  Instead of using the deviations 

from the in-control line, however, we code the independent variable so that the average 

value is zero and use the estimated regression coefficients from each sample, i.e., the 

estimates of the Y-intercept and slope, to construct two univariate EWMA charts.  Also, 

we study two different one-sided EWMA charts for monitoring a process standard 

deviation as replacements for their R-chart.  One of these charts was developed by 

Crowder and Hamilton (1992).  In practice a two-sided chart might be more appropriate 

in many applications to detect decreases in variability about the regression line as well as 

increases. 

 

     The statistical performance of the combined use of the three EWMA charts is 

compared to that of the methods of Kang and Albin (2000) later in our paper.  We used 

simulation to show that our proposed method has better overall performance than the 

competing methods.  Later in the paper we make recommendations for the Phase I 

analysis.    
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    The monitoring of linear profiles is very closely related to the control charting of 

regression-adjusted variables as proposed by Mandel (1969), Zhang (1992), Hawkins 

(1991, 1993), Wade and Woodall (1993), and Hauck et al. (1999).  In these approaches   

a regression model is often used to account for the effect of an input quality variable X on 

the output quality variable Y when monitoring a particular stage of a manufacturing 

process.  One can adjust the output variable, however, based on any number of upstream 

process or quality variables in what Hawkins (1993) referred to as a “cascade process.” In 

a cascade process, variables have a natural ordering and if any variable undergoes a 

parameter shift, it may affect some or all of the variables following it but none preceding 

it.  The use of regression adjustment of a single quality variable based on a simple linear 

regression model is very similar to the linear profile situation except that the Phase I data 

usually consist of a single set of bivariate data points.  In Phase II, one observes a 

sequence of deviations from the predicted values of Y based on the fitted Phase I 

regression model.  In the regression-adjusted applications, however, the X -variable is 

usually considered to be a random variable, not taking fixed values as typically assumed 

in the linear profile monitoring application.   

 

     The problem of modeling and monitoring process or product quality using a function 

has been approached with other methods.  Walker and Wright (2002) used additive 

models to represent the curves of interest in the monitoring of density profiles of 

particleboard.  Jin and Shi (2001) used wavelets to monitor “waveform signals” for 

diagnosis of process faults.  The use of linear functions as responses in designed 

experiments has also been studied recently.  See, for example, Miller (2002) and Nair et 

al. (2002).   

 

Phase II Methods 

 

     We assume that for the jth random sample collected over time we have the 

observations (xi, yij), i = 1, 2, …, n.  It is assumed that when the process is in statistical 

control, the underlying model is   
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                                            ijiij XAAY ε++= 10  , i = 1, 2, …, n,                                      (1) 

 

where the ijε ’s are independent, identically distributed (i.i.d.) normal random variables 

with mean zero and variance 2σ .  For simplicity, we first consider the case for which the 

X -values are fixed and take the same set of values for each sample.  In this section we 

consider the Phase II case in which the in-control values of the parameters 0A , 1A , and 

2σ  in Equation (1) are assumed to be known.   

 

     Kang and Albin (2000) proposed two strategies to monitor a process when the 

regression parameters are all known.  The ir first strategy is to use a bivariate T2 chart to 

monitor the regression coefficients.  This chart is based on the fact that the least squares 

estimators of 0A  and 1A  have a bivariate normal distribution.  The least squares 

estimators of 0A  and 1A  for sample j are given by the following formulas:   
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The least squares estimators ja0  and ja1  have a bivariate normal distribution with the 
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variance of ja1  and the covariance between ja0  and ja1 , respectively.   

 

     In their first monitoring strategy one computes the vector of sample estimators 
T

jjj aa ),( 10=Z for sample j, where ja0  and ja1  are the sample intercept and the sample 

slope as defined in Equation (2).  Then one calculates the T2 statistic given by   

 

                                              )()( 12 µZSµZ −−= −
j

T
jjT ,                                                 (5) 

 

where µ and S  are defined as in Equations (3) and (4), respectively.  When the process is 

in-control, 2
jT  follows a central chi-square distribution with 2 degrees of freedom.  

Therefore, the recommended upper control limit for the chart is UCL= 2
,2 αχ , where 2

,2 αχ  

is the )1(100 α−  percentile of the chi-square distribution with 2 degrees of freedom.  

When there are shifts from the in-control parameter values, Kang and Albin (2000) 

pointed out that 2
jT  in Equation (5) follows a non-central chi-square distribution with a 

non-centrality parameter   

 

                                               xxSxn 22)( ββλτ ++= ,                                                           

 

where λ  is the shift in the intercept 0A  and β  is the shift in the slope 1A .  Both λ  and 

β  are measured in units of σ  by Kang and Albin (2000), so the actual shifts in this case 

are λσ  and βσ  from 0A  and 1A , respectively.   

 

           Kang and Albin (2000) studied the  average run length (ARL) performance of their 

T2 control chart using a simulation study.  However, since 2
jT  has a non-central chi-

square distribution, one can evaluate the exact ARL of the T2 chart using the following 

formula:   
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     Their second strategy is to apply some standard control chart schemes to the 

regression “residuals” obtained at sample j using   

 

                                         iijij xAAye 10 −−=  , i = 1, 2, …, n.                                       (6) 

 

They applied an EWMA chart to monitor the average value of these deviations.  They 

suggested an R-chart be used in combination with the EWMA chart.    

 

           The average of the residuals for the jth sample is denoted by je , calculated using   
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The EWMA control chart statistics, denoted by jz , j = 1, 2, …, are given by   

 

                                                  1)1( −−+= jjj zez θθ ,                                                     (7) 

 

with θ  ( 10 ≤< θ ) a smoothing constant and 00 =z .  An out-of-control signal is given as 

soon as jz  is less than the lower control limit (LCL) or jz  is greater than the upper 

control limit (UCL), where   
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and )0(>L  is a constant selected to give a specified in-control ARL.  Kang and Albin 

(2000) proposed an R-chart to be used in conjunction with this EWMA chart for two 
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reasons.  The first reason is to detect shifts in the process variance 2σ  since the EWMA 

chart is not sensitive to shifts in the process variation.  The other reason is that the 

EWMA chart based on the average residual is not sensitive to some shifts in 0A  and 1A  

for which the magnitudes of the residuals tend to be large, but the average residual tends 

to be very small.  This can occur, for example, when the slope of the line changes, but the 

average value of Y  does not.   

 

     For the R-chart, Kang and Albin (2000) recommended that one calculate and plot the 

sample ranges )(min)(max ijiijij eeR −= , j = 1, 2, ….  The lower and upper control 

limits for the R-chart are   

 

                                    )( 32 LddLCL −= σ  and  )( 32 LddUCL += σ ,                            (9) 

 

respectively, where )0(>L  is a constant chosen to give a specified in-control ARL.  The 

values of 2d  and 3d  are commonly-used constants that depend on the sample size n .  

These values can be found, for example, in tables in Montgomery (2001) or Ryan (2000). 

One disadvantage of this approach, however, is that if n < 7 there is no lower control 

limit and one cannot detect decreases in variation about the regression line.     

 

     In our proposed alternative approach, we first code the X -values so that the average 

coded value is zero.  This simplifies the resulting ana lysis and removes much of the need 

for a T2 approach since, in this situation, the least squares estimators of the Y- intercept 

and slope for each sample are independent random variables.  See, for example, Myers 

(1990, pp. 11-15) and Ryan (1997, pp. 38-39).   

 

     After transforming the X -values, we obtain an alternative form of the underlying 

model in Equation (1) as   

 

                                           ijiij XBBY ε+′+= 10 , i = 1, 2, …, n,                                      (10) 
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where XAAB 100 += , 11 AB = , and )( XXX ii −=′ .   

 

     For the jth sample, the least squares estimator of 0B  is jj yb =0  while the least squares 

estimator of 1B  is the same as that for 1A  in Equation (2).  Both jb0  and jb1  are normally 

distributed with means 0B  and 1B  and variances 
n

2σ
 and 

xxS

2σ
, respectively.  Also the 

covariance between jb0  and jb1  is zero in Equation (4).  Thus, we can apply a separate 

control chart for each sequence of random variables without the problems that would 

result if the estimators were highly correlated.   

 

           Our proposed method in Phase II to detect sustained shifts in the underlying 

parameters is to use three separate univariate control charts.  We use EWMA charts to 

monitor the Y-intercept, the slope and the error variance, respectively, although one could 

use other types of charts, such as the cumulative sum and Shewhart charts, if desired.  

The three EWMA charts are used jointly, with the combination of charts signaling with 

the first chart to signal.  The basic motivation for our proposed method comes from the 

fact that when assignable causes are present in a process for which the output of a product 

is characterized by a linear profile, it seems reasonable that at least one of three 

parameters, the Y- intercept, the slope and the error variance, would be directly affected.  

Thus, use of the three EWMA charts should result in at least one signal when there has 

been a sustained change in the process.  Also, having a control chart corresponding to 

each parameter leads to an easier diagnosis of any process change than the omnibus 

methods of Kang and Albin (2000).   

 

               As an example, once the parameters are established in a baseline calibration 

study, one would want to detect any change in the Y- intercept or slope and any increase 

in the variation about the regression line since such shifts correspond to greater 

inaccuracies in the measurement process.  A change in the Y- intercept corresponds to the 

introduction of bias and a change in the slope could lead to a dilation or contraction of the 

measurement scale.   A decrease in the variation about the line would correspond to an 



 9

improvement in the measurement process, as long as the other parameters do not change. 

The effect of assignable causes, however, will vary from application to application.  

Sometimes, for example, one may wish to detect isolated outliers.   

 

         In our proposed method, we first incorporate the technique proposed by Crowder 

and Hamilton (1992), where an EWMA chart based on the logarithmic transformation of 

the sample variances was used to monitor for increases in process variability.  Crowder 

and Hamilton (1992) showed, as expected, that their EWMA chart is superior to the usual 

R-chart in detecting small and moderate-sized increases in a process variance.  If one 

wishes to detect decreases in variation, as will frequently be the case, then appropriate 

methods are discussed by Acosta-Mejia et al. (1999) and Lowry et al. (1995).  

 

     For the EWMA chart for monitoring the Y-intercept ( 0B ), we use the estimates of the 

Y-intercept, jb0 , to compute the EWMA statistics   

 

                               EWMAI (j)= ? jb0  + (1 – ?) EWMAI (j – 1),                                    (11) 

 

j = 1, 2, …, with θ  ( 10 ≤< θ ) a smoothing constant and EWMAI(0)= 0B .  An out-of-

control signal is given as soon as EWMAI (j) < LCL or EWMAI (j) > UCL, where   

 

                        LCL = 
n

LB I )2(0 θ
θ

σ
−

−  and  UCL = 
n

LB I )2(0 θ
θ

σ
−

+ .               (12) 

 

In Equation (12), )0(>IL  is chosen to give a specified in-control ARL.   

 

     The estimates of the slope 1B , jb1 , are used in the EWMA chart for monitoring the 

slope.  The EWMA statistics are given by   

 

                                    EWMAS (j)= ? jb1  + (1 – ?)  EWMAS (j-1),                                (13) 
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j = 1, 2, …, with θ   ( 10 ≤< θ ) a smoothing constant and EWMAS(0) = 1B .  The lower 

and upper control limits for the chart are given by   

 

                        LCL = 
xx

S S
LB

)2(1 θ
θ

σ
−

−  and  UCL = 
xx

S S
LB

)2(1 θ
θ

σ
−

+ ,          (14) 

 

respectively, where )0(>SL  is chosen to give a specified in-control ARL.   

 

         Finally, we consider the EWMA chart for monitoring the error variance ( 2σ ) based 

on the approach of Crowder and Hamilton (1992).  In this proposed method, we apply the 

values of jMSE , i.e., the usual estimator of 2σ based on the residuals corresponding to 

the fitted line at sample j, to obtain the EWMA statistics instead of their use of sample 

variances.  In contrast to the two EWMA charts described above, this chart is a one-sided 

EWMA scheme to detect only increases in process variability.  We have the EWMA 

statistics   

 

              EWMAE(j) = max{θ  )MSEln( j  + )( θ−1  EWMAE(j-1), )ln( 2
0σ }              (15) 

 

for j = 1, 2, …, with θ  ( 10 ≤< θ ) again a smoothing constant and EWMAE(0) = )ln( 2
0σ .  

In our proposed method, the assumption that 2
0σ , the in-control value of 2σ , is 1 is made 

without loss of generality,  so we have EWMAE(0) = 0.  Lawless (1980, pp 21-23) 

provided an exact expression for Var[ )MSEln( j ]using the log-gamma distribution, but 

for convenience we use the following approximation that is very similar to a result 

derived by Crowder and Hamilton (1992):   

 

Var[ )MSEln( j ] ˜  
532 )2(15
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The procedure signals when EWMAE (j) is greater than an upper control limit given by   

 

                                         UCL = ])ln(Var[
)2( jE MSEL

θ
θ
−

                                   (16) 

 

and the multiplier )0(>EL  is again chosen to give a specified in-control ARL.  One 

could, of course, use a two-sided procedure if detecting decreases in the error variance 

was also considered to be important, as will frequently be the case in applications.   

 

 

ARL Comparisons 

 

     In this section we compare the ARL performance of our EWMA-based method in 

Phase II to the performance of the methods proposed by Kang and Albin (2000).  We 

consider the same example used in their simulation study.  All chart combinations studied 

are designed to have the same overall in-control ARL of 200.  The smoothing constants 

θ  in Equations (11), (13), and (15) are set equal to 0.2 as in the EWMA chart used by 

Kang and Albin (2000).  One could, of course, use different smoothing constants for each 

chart.  In general, smaller smoothing constants lead to quicker detection of smaller shifts, 

as shown by Lucas and Saccucci (1990).  A total of 10,000 replications were used in our 

simulation study to estimate each ARL value.  Exact ARL values, however, are given for 

the T2 chart method.   

 

     The underlying in-control linear profile model used by Kang and Albin (2000) is 

ijiij XY ε++= 23 , where the ijε ’s are i.i.d. normal random variables with mean zero and 

variance one.   The fixed iX -values of 2, 4, 6, and 8 (with 5=x ) were used in their 

simulation study (Albin (2002)).  In our proposed method, we transform these iX -values 

using the alternate form of the model in Equation (10) and obtain the new linear function 

ijiij XY ε+′+= 213 , where the ijε ’s are i.i.d. N(0,1) random variables.  The iX ′ -values are 

-3, -1, 1, and 3 with 0=′x .   
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     We denote our combination of the three EWMA charts by EWMA_3.  In EWMA_3, 

we design each of the three EWMA charts to have the same in-control ARL when 

considered individually.  For the EWMA chart for monitoring the Y-intercept, IL  in 

Equation (12) is chosen as 3.0156 to give the in-control ARL of 584.7.  For the EWMA 

chart for monitoring the slope, SL  in Equation (14) is set equal to 3.0109 to have an in-

control ARL of 584.6.  Finally, EL  in Equation (16) is chosen as 1.3723 to achieve the 

in-control ARL of 584.4 for the EWMA chart for monitoring the error variance.  The 

combination of all three EWMA charts has an overall in-control ARL of roughly 200.   

 

     The EWMA and R charts used by Kang and Albin (2000) in their simulation study 

have the same multiplier L  in Equations (8) and (9).  We found that the value L =3.1151 

yields an in-control ARL of approximately 802 for the EWMA chart for monitoring the 

average deviation and an in-control ARL of approximately 261 for the R-chart, which has 

no lower control limit with 4=n .  These ARL estimates were each obtained using 

10,000 simulations.  The in-control ARL of their combined procedure is close to 200, as 

they claim.   

 

         Four different types of shifts are considered in our simulation study.  These are 

intercept shifts and slope shifts under the model in Equation (1), error variance increases, 

and slope shifts under the model in Equation (10) for which the average value of the 

independent variable is coded to be zero.  The plots in each of our figures are based on 

ARL values for 200 equally spaced shifts within each range of shifts considered.   

 

     Table 1 and Figure 1 give the ARL values for shifts in 0A  (or equivalently in 0B ) in 

units of σ .  (Kang and Albin (2000) measured the sizes of the shifts in these units, 

although use of units of σ /n1/2 would lead to greater generality.) Our proposed method, 

EWMA_3, performs a little better than the EWMA/R chart and much better than the T2 

chart in detecting small- to-moderate shifts in the intercept.  The T2 chart works better 

than our proposed method for large shifts.  For improved performance for the EWMA_3 

method in detecting large shifts, one could incorporate Shewhart limits into each of the 
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Figure 1. ARL Comparisons Under Intercept Shifts λ

three EWMA charts in a manner discussed by Lucas and Saccucci (1990).   Our use of 

the constant asymptotic control limits instead of the “exact” limits discussed by Steiner 

(1999) also results in a slight delay in detecting shifts occurring with the first sample as is 

assumed in our simulations. 

 

Table 1. ARL Comparisons Under Intercept Shifts From 0A  To λσ+0A  

(In-control ARL = 200) 

 λ  

Chart 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

EWMA/R 66.5 17.7 8.4 5.4 3.9 3.2 2.7 2.3 2.1 1.9 

T2 137.7 63.5 28.0 13.2 6.9 4.0 2.6 1.8 1.5 1.2 

EWMA_3 59.1 16.2 7.9 5.1 3.8 3.1 2.6 2.3 2.1 1.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     In Table 2 and Figure 2, we consider the case when there are shifts in the slope 

parameter 1A  in model (1) in units of σ .  Our proposed method performs uniformly 

slightly better than the EWMA/R chart over the entire range of shifts considered.  It has 
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much better performance than the T2 chart except for the largest shift considered.  The 

difference here, however, is relatively small.  The use of a multivariate EWMA control 

chart, as proposed by Lowry et al. (1992), would result in better statistical performance 

than that of the T2 chart, but the interpretation of an out-of-control signal would still not 

be straightforward. 

 

Table 2. ARL Comparisons Under Slope Shifts in Model (1) From 1A  To βσ+1A  

(In-control ARL = 200) 

 β  

Chart 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 

EWMA/R 119.0 43.9 19.8 11.3 7.7 5.8 4.7 3.9 3.4 3.0 

T2 166.0 105.6 60.7 34.5 20.1 12.2 7.8 5.2 3.7 2.7 

EWMA_3 101.6 36.5 17.0 10.3 7.2 5.5 4.5 3.8 3.3 2.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Table 3 and Figure 3 show that the ARL performance of our proposed method is 

comparable to that of the T2 chart for detecting increases in σ .  Our method does not 
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Figure 2. ARL Comparisons Under Slope Shifts β
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Figure 3. ARL Comparisons Under Standard Deviation Shifts γ

work quite as well as the EWMA/R method because the standard deviation shifts are 

mainly detected by the R-chart.  The in-control ARL value of 261 for the R-chart is much 

lower than the in-control ARL value of 584.4 for our EWMA chart designed to detect 

shifts in the standard deviation.  It was surprising to us that the T2 chart worked so well 

given that no information is accumulated over time as with the EWMA charts.   Since an 

increase in the standard deviation increases the variance of the estimators of the Y-

intercept and slope, smoothing these estimators over time with EWMAs does not appear 

to be helpful. 

 

Table 3. ARL Comparisons Under Standard Deviation Shifts From σ  To γσ  

(In-control ARL = 200) 

 γ  

Chart 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

EWMA/R 34.3 12.0 6.1 3.9 2.9 2.3 1.9 1.7 1.5 1.4 

T2 39.6 14.9 7.9 5.1 3.8 3.0 2.5 2.2 2.0 1.8 

EWMA_3 33.5 12.7 7.2 5.1 3.9 3.2 2.8 2.5 2.3 2.1 
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      One of the reviewers of our manuscript stated that an EWMA chart based on the 

natural units, instead of the logarithmic scale, would provide improved performance in 

detecting increases in the variation about the line.  To investigate this issue, we compared 

the ARL performance of EWMA_3 with the EWMA chart of Crowder and Hamilton 

(1992) replaced by an EWMA chart with EWMA statistics  

 

EWMAN(j) = max{θ  )1( −jMSE  + )( θ−1  EWMAN(j-1), 0} 

 

for j = 1, 2, …, with θ  ( 10 ≤< θ ) a smoothing constant and EWMAN(0) = 0.  The 

procedure signals when EWMAN (j) is greater than an upper control limit given by   

 

UCL = ]Var[
)2( jN MSEL

θ
θ
−

. 

 

The multiplier )0(>NL  is again chosen to give a specified in-control ARL.  We used 

NL = 4.0734 to achieve the in-control ARL of 589.3 for this chart.  The combination of 

all three EWMA charts has an overall in-control ARL of roughly 200.  The ARL 

comparisons in Table 4 show, indeed, that use of the natural units does result in slightly 

better performance.  The substitution of this EWMA chart in place of that of Crowder and 

Hamilton (1992) did not affect any of the other reported ARL values of our proposed 

method for shifts in any of the other parameters. 

 

Table 4. ARL Comparisons Between the Natural-scale and Log-scale EWMA_3 

Under Standard Deviation Shifts (In-control ARL = 200)  

 γ  

Chart 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

Log-Scale 33.5 12.7 7.2 5.1 3.9 3.2 2.8 2.5 2.3 2.1 

Natural-Scale 31.6 11.7 6.5 4.5 3.4 2.7 2.3 2.1 1.8 1.7 
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           Kang and Albin (2000) considered the case for which the relationship between the 

intercept shift, λ  (in units of σ ) and the slope shift, β  (in units of σ ) is given as 

0=+ xβλ  with 5=x .  However, after transforming the iX -values (2, 4, 6, and 8) into 

iX ′ -values (-3, -1, 1, and 3), this case corresponds to simply a change in slope for the 

model in Equation (10).  In Table 5 and Figure 4, we denote by δ  the shift in the slope 

(in units of σ ) in Equation (10).  (Note that use of units of σ /(Sxx)1/2 would lead to some 

greater generality.)  Since it can be shown that the ARL values for shifts δ  are 

symmetric around 0=δ , we use positive shifts in Figure 4.  When the slope 1B  in 

Equation (10) shifts a small-to-moderate amount, one can observe that our EWMA_3 

method has much better ARL performance.  As the shift sizes increase, we see slightly 

higher out-of-control ARL values compared with the T2 chart, again a situation that could 

be remedied to some extent by the use of Shewhart limits with the EWMA charts or 

control limits based on the exact variances of the EWMA statistics.   

 

 

 

Table 5. ARL Comparisons Under Slope Shifts in Model (10) From 1B  To δσ+1B  

(In-control ARL = 200) 

 δ  

Chart -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 

EWMA/R 76.7 33.7 15.3 7.5 4.2 2.6 1.8 1.4 1.2 

T2 52.2 21.2 9.6 4.9 2.9 1.9 1.5 1.2 1.1 

EWMA_3 13.1 6.6 4.4 3.3 2.7 2.3 2.1 1.9 1.7 
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Figure 4. ARL Comparisons Under Slope Shifts δ

 

 

 

 

 

 

 

 

      

 

 

 

 

       Table 6 gives the ARL values when simultaneous intercept shifts and slope shifts 

under the model in Equation (10) are considered.  Our proposed method performs 

uniformly better than the EWMA/R chart combination.   

 

Table 6. ARL Comparisons of EWMA/R Charts and EWMA_3 

Under Combinations of Intercept and Slope Shifts in Model (10)  

(In-control ARL = 200) 

δ  EWMA/R ARL 
EWMA_3 ARL 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225 0.250 

0.05 179.1 
157.6 

169.9 
114.7 

156.6 
  74.8 

140.8 
  48.3 

123.2 
 32.2 

105.1 
  22.5 

88.8 
16.9 

73.4 
13.2 

60.2 
10.7 

49.6 
  8.9 

0.10 139.5 
122.1 

133.6 
94.6 

125.4 
 66.4 

115.5 
  44.9 

103.5 
  30.7 

90.4 
21.9 

78.3 
16.6 

65.7 
13.1 

55.6 
10.6 

46.3 
 8.9 

0.15 96.8 
84.6 

94.2 
70.8 

90.3 
54.5 

85.1 
39.6 

78.5 
28.5 

70.9 
20.9 

63.0 
16.1 

55.3 
12.8 

47.7 
10.4 

40.9 
8.8 

0.20 64.8 
57.1 

63.8 
51.1 

62.1 
42.4 

59.7 
33.3 

56.6 
25.4 

52.9 
19.5 

48.5 
15.4 

44.0 
12.4 

39.2 
10.2 

34.6 
  8.7 

0.25 44.3 
39.5 

43.8 
36.5 

42.9 
32.3 

41.8 
27.1 

40.3 
22.0 

38.4 
17.8 

36.1 
14.4 

33.6 
11.9 

30.8 
10.0 

28.1 
  8.5 

λ  

0.30 31.0 
28.2 

30.8 
26.9 

30.5 
24.7 

29.9 
22.0 

29.2 
18.8 

28.3 
15.7 

27.1 
13.2 

25.7 
11.2 

24.2 
  9.6 

22.5 
  8.3 
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0.35 22.9 
20.9 

22.8 
20.2 

22.6 
19.1 

22.2 
17.6 

21.9 
15.8 

21.4 
13.9 

20.7 
12.1 

19.9 
10.5 

19.1 
  9.1 

18.0 
  8.0 

0.40 17.4 
16.2 

17.3 
15.9 

17.2 
15.3 

17.1 
14.5 

16.8 
13.5 

16.6 
12.1  

16.2 
10.9 

15.8 
  9.7 

15.3 
  8.6 

14.7 
  7.6 

0.45 13.9 
13.1 

13.9 
12.9 

13.9 
12.6 

13.8 
12.1 

13.6 
11.4 

13.5 
10.6 

13.3 
  9.8 

13.0 
 8.9 

12.6 
 8.0 

12.2 
   7.3 

 

0.50 11.5 
10.8 

11.5 
10.8 

11.4 
10.6 

11.3 
10.3 

11.3 
  9.9 

11.1 
  9.3 

11.0 
  8.7 

10.8 
  8.1 

10.6 
 7.5 

10.3 
   6.9 

 

     In Table 7, the fixed iX -values of 1, 2, 3, and 4 are considered to study the ARL 

performance for a different value of xxS .  In this case, we have 5=xxS  instead of 

20=xxS  used in Tables 1-6.  We include only EWMA/R and EWMA_3 charts in our 

comparisons since the T2 chart did not demonstrate good overall ARL performance.  As 

the slope shifts δ  increase, one can observe that our EWMA_3 method has much better 

ARL performance than the EWMA/R charts.  We also observed that the ARL 

performance for the situations considered in Tables 1-3 and Table 5 has almost the same 

pattern as shown there.  The ARL performance for larger values of xxS  was also 

considered, but the overall conclusions are the same.   

 

Table 7. ARL Comparisons Under Slope Shifts in Model (10) From 1B  To δσ+1B  

(Xi -values are 1, 2, 3, and 4 and In-control ARL = 200)  

 δ  

Chart -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 -1.0 

EWMA/R 149.1 110.1 75.5 50.7 33.3 22.3 15.0 10.5 7.5 

EWMA_3  49.1 22.8 13.1   8.9  6.6   5.3   4.4   3.8 3.3 

 

     Kang and Albin (2000) considered shifts in the parameters in model (1) corresponding 

to shifts in 1B  in model (10) as “unusual”, although their view is unsupported.  In general, 

we find the model in Equation (10) to be more useful in some applications than the one in 

Equation (1) since it can be used to focus attention more clearly on changes in the 

regression line within presumably the most important region of values of the independent 



 20

variable.  The types of parameter shifts of interest, however, will depend on the particular 

application. 

 

Phase I Methods 

 

     In practical applications, the in-control values of parameters are not known and must 

be estimated using historical data collected from the process.  We assume here that k 

samples of simple linear regression data are available in a set of historical data.   

 

     Kang and Albin (2000) recommended substituting estimates of the parameters in their 

control charts in Phase I.  First, they estimated the regression parameters of the 

underlying model in Equation (1) based on the k samples available from historical data.  

They obtained the reference line, XaaY 10
ˆ += , and MSE=2σ̂ , where   

 

                        
k

a
a

k

j j∑ == 1 0

0  ,  
k

a
a

k

j j∑ == 1 1

1  , and  
k

MSE
MSE

k

j j∑ == 1 .                    (17) 

 

Here jMSE  is the usual unbiased estimator of 2σ  from sample j.   

 

     After determining the initial estimates of the regression parameters as given in 

Equation (17), they advised using these estimates to calculate control limits and then 

applying their control algorithms.  If any values fall outside the control limits for which 

assignable causes can be determined, then those samples are to be removed from the data 

and the control limits recalculated.  Again, one checks to see if the points are within the 

control limits and, if not, the process of deleting samples and recalculating limits is 

repeated.  The control limits used in Phase I for their multivariate approach and their 

residual approach are given below.   

 



 21

     In the multivariate approach, under the assumption that µ  and S  in Equations (3) and 

(4) are unknown, Kang and Albin (2000) evaluated the modified T2 chart statistic for the 

jth sample from Equation (5) as   

 

                                               )()(
1

12
0 ZZSZZ −−

−
= −

j
T

jj k
k

T ,                                   (18) 

 

where Taa ),( 10=Z  and S  are unbiased estimators of µ  and S , respectively.  They 

obtained the sample variance-covariance matrix S  by modifying the elements of 

Equation (4), with 2σ  estimated by MSE  from Equation (17); that is,   
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where 







+=

xxS
x

n
MSES

2

11
1

, 
xxS

MSES
1

22 =  and 
xxS
x

MSES −=12 .  Kang and Albin 

(2000) showed that the distribution of the modified T2 chart statistic, 2
0 jT , in Equation 

(18) is related to the F distribution with (2, (n – 2)k) degrees of freedom.  Thus, they 

recommend the upper control limit for the chart as UCL= α,)2(,22 knF − , where α,)2(,2 knF −  is 

the )1(100 α−  percentile of the F distribution with (2, (n – 2)k) degrees of freedom.   

 

     For the EWMA and R charts in Phase I, Kang and Albin (2000) modified the lower 

and upper control limits for the EWMA chart in Equation (8) and the R-chart in Equation 

(9) by replacing σ  by MSE ; that is, for the EWMA chart, we have   

 

                                 
n

MSELLCL
)2( θ

θ
−

−=  ,   
n

MSELUCL
)2( θ

θ
−

=  

 

and for the R-chart we have   
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                                    )( 32 LddMSELCL −=  ,   )( 32 LddMSEUCL += . 

 

One difficulty, however, in applying an EWMA chart in Phase I is that several samples 

could be contributing to any out-of-control signal.  Thus, the rule for deleting samples 

and recalculating limits is not clearly defined.   In general, use of an EWMA chart is not 

appropriate in Phase I.    

 

      Stover and Brill (1998) propose two methods in Phase I.  One is a Hotelling’s T2 

approach based on vectors containing estimates of the Y- intercept and slope.  This 

method is similar to the T2 method of Kang and Albin (2000), although the estimator of 

the variance-covariance matrix is different.  Neither pair of authors acknowledge, 

however, the fact that successive values of their Phase I T2 statistics are dependent.  Thus, 

the marginal distribution of the control chart statistic cannot be used to determine the 

overall probability of a Phase I signal.    

 

      The other Phase I method proposed by Stover and Brill (1998) is a univariate chart 

based on the first principal component corresponding to the vectors containing the Y-

intercept and slope estimators.  We support the use of the Shewhart-type T2 chart for the 

Y- intercept and slope, but also recommend a Shewhart chart to monitor the error 

variance.  If one codes the X -values, as we recommend, to yield Equation (10), then it 

also seems reasonable to use separate Shewhart-type charts for monitoring the Y- intercept 

and slope since the estimators of the Y- intercept and slope are independent for each 

sample.  We advise against using the principal component chart proposed by Stover and 

Brill (1998), however, since it will not be able to detect combinations of shifts in the Y-

intercept and the slope in the direction perpendicular to the major axis corresponding to 

the first principal component.   

 

     A principal component analysis as described by Jones and Rice (1992) can be very 

useful in summarizing and  interpreting Phase I profile data with equally spaced X-values.  

Change-point methods can be very useful in Phase I if one suspects that instability can be 
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modeled adequately by step shifts in the underlying parameter(s).  Andrews et al. (1996) 

discussed change-point methods for linear regression models.   

   

Conclusions 

 

     Our ARL comparisons show that our methods are generally more effective than the 

methods of Kang and Albin (2000) in Phase II for detecting sustained shifts in either the 

Y- intercept or slope or increases in the error variance.  The proposed methods are 

considerably more effective in detecting shifts in the slope of the line when the average 

Y-value does not change.  Our proposed methods also seem much more interpretable.   

 

     We also make recommendations for an effective Phase I analysis, although much 

more work is needed on this type of application.  In general, an overall strategy needs to 

be developed for monitoring process profiles.  Our methods need to be extended to more 

complicated relationships between the independent and dependent variables.  The simple 

linear regression model considered in our paper, for example, can be extended to 

polynomial and multiple regression models.   In our view the study of profile monitoring 

is a very rich and promising area of research. 
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