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On the monoid of partial isometries of a finite star graph
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Abstract

In this paper we consider the monoid DPSn of all partial isometries of a star graph Sn with n vertices.
Our main objectives are to determine the rank and to exhibit a presentation of DPSn. We also describe
Green’s relations of DPSn and calculate its cardinal.
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1 Introduction and Preliminaries

Let Ω be a finite set. We denote by PT (Ω) the monoid (under composition) of all partial transformations on
Ω, by T (Ω) the submonoid of PT (Ω) of all full transformations on Ω, by I(Ω) the symmetric inverse monoid
on Ω, i.e. the inverse submonoid of PT (Ω) of all partial permutations on Ω, and by S(Ω) the symmetric group
on Ω, i.e. the subgroup of PT (Ω) of all permutations on Ω.

Recall that the rank of a (finite) monoid M is the minimum size of a generating set of M , i.e. the minimum
of the set {|X| | X ⊆M and X generates M}.

Let Ω be a finite set with at least 3 elements. It is well-known that S(Ω) has rank 2 (as a semigroup, a
monoid or a group) and T (Ω), I(Ω) and PT (Ω) have ranks 3, 3 and 4, respectively. The survey [10] presents
these results and similar ones for other classes of transformation monoids, in particular, for monoids of order-
preserving transformations and for some of their extensions. For example, the rank of the extensively studied
monoid of all order-preserving transformations of a n-chain is n, which was proved by Gomes and Howie [18] in
1992. More recently, for instance, the papers [5, 12, 13, 14, 16] are dedicated to the computation of the ranks
of certain classes of transformation semigroups or monoids.

A monoid presentation is an ordered pair 〈A | R〉, where A is a set, often called an alphabet, and R ⊆ A∗×A∗

is a set of relations of the free monoid A∗ generated by A. A monoid M is said to be defined by a presentation
〈A | R〉 if M is isomorphic to A∗/ρR, where ρR denotes the smallest congruence on A∗ containing R.

Given a finite monoid, it is clear that we can always exhibit a presentation for it, at worst by enumerating
all elements from its multiplication table, but clearly this is of no interest, in general. So, by determining a
presentation for a finite monoid, we mean to find in some sense a nice presentation (e.g. with a small number
of generators and relations).

A presentation for the symmetric group S(Ω) was determined by Moore [22] over a century ago (1897). For
the full transformation monoid T (Ω), a presentation was given in 1958 by Aı̆zenštat [1] in terms of a certain
type of two generator presentation for the symmetric group S(Ω), plus an extra generator and seven more
relations. Presentations for the partial transformation monoid PT (Ω) and for the symmetric inverse monoid
I(Ω) were found by Popova [23] in 1961. In 1962, Aı̆zenštat [2] and Popova [24] exhibited presentations for the
monoids of all order-preserving transformations and of all order-preserving partial transformations of a finite

∗This work is funded by national funds through the FCT - Fundação para a Ciência e a Tecnologia, I.P., under the scope of the
projects UIDB/00297/2020 and UIDP/00297/2020 (Center for Mathematics and Applications).
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chain, respectively, and from the sixties until our days several authors obtained presentations for many classes
of monoids. See also [25], the survey [10] and, for example, [6, 7, 8, 9, 11, 15, 20].

Now, let G = (V,E) be a finite simple connected graph.
The (geodesic) distance between two vertices x and y of G, denoted by dG(x, y), is the length of a shortest

path between x and y, i.e. the number of edges in a shortest path between x and y.
Let α ∈ PT (V ). We say that α is a partial isometry or distance preserving partial transformation of G if

dG(xα, yα) = dG(x, y),

for all x, y ∈ Dom(α). Denote by DP(G) the subset of PT (V ) of all partial isometries of G. Clearly, DP(G) is
a submonoid of PT (V ). Moreover, as a consequence of the property

dG(x, y) = 0 if and only if x = y,

for all x, y ∈ V , it immediately follows that DP(G) ⊆ I(V ). In fact, furthermore, we have:

Proposition 1.1 Let G = (V,E) be a finite simple connected graph. Then DP(G) is an inverse submonoid of
I(V ).

Proof. It suffices to show that, for α ∈ DP(G), the inverse transformation α−1 (i.e. the inverse of the element
α in I(V )) is also a partial isometry of G.

Let α ∈ DP(G) and take x, y ∈ Dom(α−1). Then xα−1, yα−1 ∈ Dom(α) and so

dG(xα
−1, yα−1) = dG((xα

−1)α, (yα−1)α) = dG(x, y),

as required.

Observe that, if G = (V,E) is a complete graph, i.e. E = {{x, y} | x, y ∈ V, x 6= y}, then DP(G) = I(V ).
On the other hand, for n ∈ N, consider the undirected path Pn with n vertices, i.e.

Pn = ({1, . . . , n}, {{i, i + 1} | i = 1, . . . , n− 1}) .

Then, obviously, DP(Pn) coincides with the monoid

DPn = {α ∈ I({1, 2, . . . , n} | |iα − jα| = |i− j|, for all i, j ∈ Dom(α)}

of all partial isometries on {1, 2, . . . , n}.
The study of partial isometries on {1, 2, . . . , n} was initiated by Al-Kharousi et al. [3, 4]. The first of

these two papers is dedicated to investigating some combinatorial properties of the monoid DPn and of its
submonoid ODPn of all order-preserving (considering the usual order of N) partial isometries, in particular,
their cardinalities. The second paper presents the study of some of their algebraic properties, namely Green’s
structure and ranks. Presentations for both the monoids DPn and ODPn were given by the first author and
Quinteiro in [15].

Now, for n ∈ N, consider the star graph

Sn = ({0, 1, . . . , n− 1}, {{0, i} | i = 1, . . . , n− 1})

with n vertices. These very elementary graphs, which are a particular kind of trees and also of complete bipartite
graphs, play a significant role in Graph Theory. For example, through the notions of star chromatic number or
star arboricity. We may also find important applications of star graphs in Computer Science, in particular, in
Distributed Computing the star network is one of the most common computer network topologies.
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This paper is devoted to studying the monoid DP(Sn) of all partial isometries of Sn, which from now on
we denote simply by DPSn. Since we are considering {0, 1, . . . , n− 1} as the set of vertices of the star Sn, then
DPSn is an inverse submonoid of the symmetric inverse monoid I({0, 1, . . . , n− 1}).

In Section 2, we present some basic properties of DPSn; in particular, we calculate de cardinal of DPSn and
describe its Green’s relations. Section 3 presents a generating set of DPSn of a minimum size, which provides
the rank of DPSn. Finally, in Section 4 we determine a presentation for the monoid DPSn.

Throughout this paper we will consider PT (Y ) ⊆ PT (X), whenever X and Y are sets such that Y ⊆ X.

For general background on Semigroup Theory and standard notations, we refer the reader to Howie’s book
[19].

We would like to point out that we made considerable use of computational tools, namely GAP [17].

2 Basic Properties of DPSn

Let n ∈ N.
We start this section by observing that, clearly,

dSn
(x, y) =







0 if x = y
1 if x 6= y and either x = 0 or y = 0
2 if x 6= y and x 6= 0 and y 6= 0

for all x, y ∈ {0, 1, . . . , n − 1}.

Observe that

DPS1 =

{

∅,

(

0
0

)}

= I({0})

and

DPS2 =

{

∅,

(

0
0

)

,

(

0
1

)

,

(

1
0

)

,

(

1
1

)

,

(

0 1
0 1

)

,

(

0 1
1 0

)}

= I({0, 1}).

On the other hand, for n > 3, for example

(

0 1 2
1 0 2

)

6∈ DPSn and so DPSn is a proper inverse submonoid of

the symmetric inverse monoid I({0, 1, . . . , n− 1}). Moreover, we have the following description of the elements
of DPSn, which is a routine matter to prove.

Proposition 2.1 Let α ∈ PT ({0, 1, . . . , n− 1}).

1. If |Dom(α)| 6 1 then α ∈ DPSn.

2. If |Dom(α)| > 2 and 0 /∈ Dom(α) then the following statements are equivalent:

(a) α ∈ DPSn;

(b) α is injective and 0 /∈ Im(α);

(c) α ∈ I({1, 2, . . . , n− 1}).

3. If |Dom(α)| = 2 and 0 ∈ Dom(α) then the following statements are equivalent:

(a) α ∈ DPSn;

(b) α is injective and 0 ∈ Im(α).

4. If |Dom(α)| > 3 and 0 ∈ Dom(α) then the following statements are equivalent:

(a) α ∈ DPSn;
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(b) α is injective and 0α = 0;

(c) α|Dom(α)\{0} ∈ I({1, 2, . . . , n− 1}) and 0α = 0.

Let n > 2. For each ξ ∈ I({1, 2, . . . , n − 1}), define ξ̄ ∈ I({0, 1, 2, . . . , n − 1}) by 0ξ̄ = 0 and ξ̄|Dom(ξ) = ξ.
Taking into account the previous proposition, it is easy to conclude that

DPSn = {ξ̄ ∈ I({0, 1, 2, . . . , n− 1}) | ξ ∈ I({1, 2, . . . , n− 1})} ∪ I({1, 2, . . . , n − 1})

∪

{(

0 i
j 0

)

| 1 6 i, j 6 n− 1

}

∪

{(

0
i

)

,

(

i
0

)

| 1 6 i 6 n− 1

}

.
(1)

Notice that, all these four subsets of DPSn are pairwise disjoint.
Clearly,

{α ∈ DPSn | |Dom(α)| = n}

is the group of units of DPSn and

{α ∈ DPSn | 0 ∈ Dom(α) and 0α = 0} = {ξ̄ ∈ I({0, 1, 2, . . . , n− 1}) | ξ ∈ I({1, 2, . . . , n− 1})}

is a submonoid of DPSn. Moreover, for n > 3, this last submonoid of DPSn has the same group of units as
DPSn and we have the following relations with the symmetric group S({1, 2, . . . , n − 1}) of degree n − 1 and
the symmetric inverse monoid I({1, 2, . . . , n− 1}).

Proposition 2.2 For n > 3, the group of units {α ∈ DPSn | |Dom(α)| = n} of DPSn is isomorphic to the
symmetric group S({1, 2, . . . , n − 1}) of order n − 1. Moreover, {α ∈ DPSn | 0 ∈ Dom(α) and 0α = 0} is a
submonoid of DPSn isomorphic to the symmetric inverse monoid I({1, 2, . . . , n− 1}).

Proof. Consider the mapping ψ : I({1, 2, . . . , n − 1}) −→ I({0, 1, 2, . . . , n − 1}) defined by ξψ = ξ̄, for all
ξ ∈ I({1, 2, . . . , n − 1}). It is easy to check that ψ is an injective homomorphism of monoids and, clearly, we
have

I({1, 2, . . . , n− 1})ψ = {α ∈ DPSn | 0 ∈ Dom(α) and 0α = 0}

and
S({1, 2, . . . , n− 1})ψ = {α ∈ DPSn | |Dom(α)| = n},

which proves the result.

Next, recall that, for a finite set Ω with n ∈ N elements, it is well known that the size of the symmetric
inverse monoid I(Ω) is

|I(Ω)| =
n
∑

k=0

(

n

k

)2

k!

(see [10, 19]). Therefore, from (1) and Proposition 2.2, we have

|DPSn| = |{ξ̄ ∈ I({0, 1, 2, . . . , n − 1}) | ξ ∈ I({1, 2, . . . , n− 1})}| + |I({1, 2, . . . , n− 1})|

+

∣

∣

∣

∣

{(

0 i
j 0

)

| 1 6 i, j 6 n− 1

}
∣

∣

∣

∣

+

∣

∣

∣

∣

{(

0
i

)

,

(

i
0

)

| 1 6 i 6 n− 1

}
∣

∣

∣

∣

=

n−1
∑

k=0

(

n− 1

k

)2

k! +

n−1
∑

k=0

(

n− 1

k

)2

k! + (n− 1)2 + 2(n − 1)

= 1 + n2 + 2
n−1
∑

k=1

(

n− 1

k

)2

k!

and so we have proved:
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Theorem 2.3 For all n ∈ N,

|DPSn| = 1 + n2 + 2
n−1
∑

k=1

(

n− 1

k

)2

k!.

The table below gives us an idea of the size of DPSn.

n |DPSn|
1 2
2 7
3 22
4 83
5 442
6 3127
7 26702
8 261907
9 2883538
10 35144327

n |DPSn|
11 469324582
12 6810715507
13 106668909002
14 1792648617463
15 32167115690782
16 613654341732467
17 12399337905055522
18 264481977288432007
19 5937942527822578358
20 139949655415806098707

In the rest of this section we will describe Green’s relations of DPSn. Remember that, given a set Ω and an
inverse submonoid M of I(Ω), it is well known that the Green’s relations L, R and H of M can be described
as following: for α, β ∈M ,

• αLβ if and only if Im(α) = Im(β);

• αRβ if and only if Dom(α) = Dom(β);

• αHβ if and only if Im(α) = Im(β) and Dom(α) = Dom(β).

In I(Ω) we also have

• αJβ if and only if |Dom(α)| = |Dom(β)| (if and only if | Im(α)| = | Im(β)|).

Since DPSn is an inverse submonoid of I({0, 1, 2, . . . , n− 1}), it remains to find a description of its Green’s
relation J. Recall that, for a finite monoid, we have J = D (= L ◦ R = R ◦ L).

Theorem 2.4 Let α, β ∈ DPSn. Then αJβ if and only if one of the following properties is satisfied:

1. |Dom(α)| = |Dom(β)| = 1;

2. |Dom(α)| = |Dom(β)| and 0 /∈ Dom(α) ∪Dom(β);

3. |Dom(α)| = |Dom(β)| and 0 ∈ Dom(α) ∩ Im(β).

Proof. We begin by supposing that αJβ. Then, as remembered above, we have |Dom(α)| = |Dom(β)| =
| Im(α)| = | Im(β)|. On the other hand, since J = D = R ◦ L, then there exists ζ ∈ DPSn such that αRζ and
ζLβ. Consequently, we have Dom(α) = Dom(ζ) and Im(ζ) = Im(β).

If |Dom(α)| = |Dom(β)| = 0 then α = β = ∅ and so 0 6∈ Dom(α) ∪Dom(β). Hence, Property 2 is satisfied.
If |Dom(α)| = |Dom(β)| = 1 then it is immediate that Property 1 is satisfied.
Next, suppose that |Dom(α)| = |Dom(β)| > 2 and 0 /∈ Dom(α). Then 0 6∈ Dom(ζ) and so, by Proposition

2.1, 0 /∈ Im(ζ) = Im(β), whence 0 /∈ Dom(β), again by Proposition 2.1. Hence, Property 2 is satisfied.
Now, suppose that |Dom(α)| = |Dom(β)| = 2 and 0 ∈ Dom(α). Then 0 ∈ Dom(ζ), which implies, by

Proposition 2.1, that 0 ∈ Im(ζ) = Im(β) and so, again by Proposition 2.1, we have 0 ∈ Dom(β). Hence,
Property 3 holds.
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Finally, suppose that |Dom(α)| = |Dom(β)| > 3 and 0 ∈ Dom(α) = Dom(ζ). Then, by Proposition 2.1,
we conclude that 0ζ = 0, whence 0 ∈ Im(ζ) = Im(β). Then, once again by Proposition 2.1, we deduce that
0 ∈ Dom(β). Hence, Property 3 holds.

We now prove the converse implication.

First, suppose that Property 1 is verified, i.e. |Dom(α)| = |Dom(β)| = 1. Let i, j ∈ {0, 1, . . . , n − 1} be
such that Dom(α) = {i} and Dom(β) = {j}. Then

ζ1 =

(

i
j

)

, ζ2 =

(

jβ
iα

)

, ζ3 =

(

j
i

)

and ζ4 =

(

iα
jβ

)

are isometries of Sn and, clearly, α = ζ1βζ2 and β = ζ3αζ4, whence αJβ.

Next, we suppose that Property 2 holds, i.e. |Dom(α)| = |Dom(β)| and 0 /∈ Dom(α) ∪Dom(β).
If |Dom(α)| = |Dom(β)| = 0 then α = β = ∅, whence αJβ.
If |Dom(α)| = |Dom(β)| = 1 then Property 1 is also verified and, as proved above, we have αJβ.
Now, assume that |Dom(α)| = |Dom(β)| > 2. Then, by Proposition 2.1, we get α, β ∈ I({1, 2, . . . , n− 1}).

Hence, from |Dom(α)| = |Dom(β)|, we obtain αJβ in I({1, 2, . . . , n− 1}) and thus we also have αJβ in DPSn.

Finally, suppose Property 3 is verified, i.e. |Dom(α)| = |Dom(β)| and 0 ∈ Dom(α) ∩Dom(β).
If |Dom(α)| = |Dom(β)| = 1 then Property 1 is also verified and, again as proved above, we have αJβ.
Next, assume that |Dom(α)| = |Dom(β)| = 2. Then, by Proposition 2.1, we also have 0 ∈ Im(α) ∩ Im(β).
Let i, j ∈ {1, . . . , n − 1} be such that Dom(α) = {0, i} and Dom(β) = {0, j}.
Define ζ1, ζ2 ∈ PT n by

Dom(ζ1) = Dom(α), 0ζ1 = 0 and iζ1 = j

and
Dom(ζ2) = Im(β), (0β)ζ2 = 0α and (jβ)ζ2 = iα.

It is easy to conclude that ζ1, ζ2 ∈ DPSn, α = ζ1βζ2 and β = ζ−1
1 αζ−1

2 , whence αJβ.
Finally, consider that |Dom(α)| = |Dom(β)| > 3. Then, by Proposition 2.1, we have

α|Dom(α)\{0}, β|Dom(β)\{0} ∈ I({1, 2, . . . , n − 1})

and 0α = 0β = 0. As |Dom(α|Dom(α)\{0})| = |Dom(β|Dom(β)\{0})|, we get α|Dom(α)\{0} Jβ|Dom(β)\{0} in
I({1, 2, . . . , n− 1}) and so, in view of the proof of Proposition 2.2, we conclude that

α = (α|Dom(α)\{0})ψ J (β|Dom(β)\{0})ψ = β

in DPSn, as required.

3 Generators and Rank of DPSn

Let Ω be a finite set with n ∈ N elements. It is well known that the symmetric inverse monoid I(Ω) is generated
by its group of units, i.e. the symmetric group S(Ω) of degree n, and any one transformation of rank n− 1 (see
[10, 19]). For instance, for n > 2, the symmetric inverse monoid I({1, 2, . . . , n}) is generated by the following
transformations

(

1 2 · · · n− 1 n
2 3 · · · n 1

)

,

(

1 2 3 · · · n
2 1 3 · · · n

)

and

(

1 2 · · · n− 1
1 2 · · · n− 1

)

.

Notice that, in particular for n = 2, the first two previous transformations coincide and so we simply obtain

I({1, 2}) =

〈(

1 2
2 1

)

,

(

1
1

)〉

.
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In this section we will show that DPSn has rank 3, for n = 3, and rank 5, for n > 4, by exhibiting a set
of generators with a minimum number of elements. Recall that, we already observed that DPS1 = I({0}) and
DPS2 = I({0, 1}), which are monoids with ranks 1 and 2, respectively.

Let n > 3 and consider the following partial isometries of Sn:

α1 =

(

0 1 2 · · · n− 2 n− 1
0 2 3 · · · n− 1 1

)

, α2 =

(

0 1 2 3 · · · n− 1
0 2 1 3 · · · n− 1

)

, β1 =

(

0 1 · · · n− 2
0 1 · · · n− 2

)

,

β2 =

(

1 2 · · · n− 1
1 2 · · · n− 1

)

and γ =

(

0 1
1 0

)

.

Next, we show that these transformations generate DPSn.

Proposition 3.1 Let n > 3. Then DPSn = 〈α1, α2, β1, β2, γ〉. Moreover, in particular, DPS3 = 〈α1, β2, γ〉.

Proof. First of all, notice that α1, α2, β1 ∈ {α ∈ DPSn | 0 ∈ Dom(α) and 0α = 0} = I({1, 2, . . . , n − 1})ψ,
where ψ is the injective homomorphism of monoids defined in the proof of Proposition 2.2,

α1β2 =

(

1 2 · · · n− 2 n− 1
2 3 · · · n− 1 1

)

, α2β2 =

(

1 2 3 · · · n− 1
2 1 3 · · · n− 1

)

, β1β2 =

(

1 · · · n− 2
1 · · · n− 2

)

,

(α1β2)ψ = α1, (α2β2)ψ = α2 and (β1β2)ψ = β1, whence 〈α1β2, α2β2, β1β2〉 = I({1, 2, . . . , n − 1}) and
〈α1, α2, β1〉 = {α ∈ DPSn | 0 ∈ Dom(α) and 0α = 0}. Therefore

{α ∈ DPSn | 0 ∈ Dom(α) and 0α = 0} ∪ I({1, 2, . . . , n− 1}) ⊆ 〈α1, α2, β1, β2〉 (2)

(since this union is clearly a submonoid of DPSn, which admits I({1, 2, . . . , n − 1}) as an ideal, in fact the
previous inclusion is an equality).

Now, let i, j ∈ {1, . . . , n− 1}. Then
(

0 i
j 0

)

=

(

0 i
0 1

)(

0 1
1 0

)(

0 1
0 j

)

,

(

0
j

)

=

(

0
0

)(

0 1
1 0

)(

1
j

)

and

(

i
0

)

=

(

i
1

)(

0 1
1 0

)(

0
0

)

and so, also in view of (2), we have

(

0 i
j 0

)

,

(

0
j

)

,

(

i
0

)

∈ 〈α1, α2, β1, β2, γ〉 and thus we may conclude that

DPSn = 〈α1, α2, β1, β2, γ〉, as required.

Finally, regarding the case n = 3, it suffices to notice that α1 = α2 and β1 = γ2.

Let n > 3 and take a set of generators X of DPSn. Recall that, by Proposition 2.2, the submonoid
M = {α ∈ DPSn | 0 ∈ Dom(α) and 0α = 0} of DPSn is isomorphic to I({1, 2, . . . , n − 1}).

For n = 3, it is clear that α1 =

(

0 1 2
0 2 1

)

∈ X, since it is the only element of the group of units of DPS3

distinct from the identity.
On the other hand, for n > 4, it is easy to check that an element of M with rank greater than or equal to

three can only be a product of elements belonging to M . Hence, in this case, X must contain at least three
elements of M (at least two of them with rank n and one of them with rank n− 1).

Next, observe that, for instance, γ can only be obtained from X if at least one element of the form

(

0 i
j 0

)

belongs to X, for some i, j ∈ {1, . . . , n− 1}.
Finally, since all elements of M fix 0, without at least one element of I({1, 2, . . . , n − 1}) with rank n − 1

in X, we cannot get, for instance, β2 as a product of elements of X.
Thus, we have proved the following result with which we end this section.

Theorem 3.2 The rank of DPSn is 3, for n = 3, and 5, for n > 4.
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4 A Presentation for DPSn

We begin this section by recalling some notions related to the concept of a monoid presentation.

Let A be an alphabet and consider the free monoid A∗ generated by A. The elements of A and of A∗ are
called letters and words, respectively. The empty word is denoted by 1 and we write A+ to express A∗ \ {1}.
A pair (u, v) of A∗ × A∗ is called a relation of A∗ and it is usually represented by u = v. To avoid confusion,
given u, v ∈ A∗, we will write u ≡ v, instead of u = v, whenever we want to state precisely that u and v are
identical words of A∗. A relation u = v of A∗ is said to be a consequence of R if u ρR v. Let X be a generating
set of M and let f : A −→M be an injective mapping such that Af = X. Let ϕ : A∗ −→M be the (surjective)
homomorphism of monoids that extends f to A∗. We say that X satisfies (via ϕ) a relation u = v of A∗ if
uϕ = vϕ. For more details see [21] or [25]. A direct method to find a presentation for a monoid is described by
the following well-known result (e.g. see [25, Proposition 1.2.3]).

Proposition 4.1 Let M be a monoid generated by a set X, let A be an alphabet and let f : A −→ M be an
injective mapping such that Af = X. Let ϕ : A∗ −→ M be the (surjective) homomorphism that extends f to
A∗ and let R ⊆ A∗ × A∗. Then 〈A | R〉 is a presentation for M if and only if the following two conditions are
satisfied:

1. The generating set X of M satisfies (via ϕ) all the relations from R;

2. If u, v ∈ A∗ are any two words such that the generating set X of M satisfies (via ϕ) the relation u = v
then u = v is a consequence of R.

Given a presentation for a monoid, another method to find a new presentation consists in applying Tietze
transformations. For a monoid presentation 〈A | R〉, the four elementary Tietze transformations are:

(T1) Adding a new relation u = v to 〈A | R〉, provided that u = v is a consequence of R;

(T2) Deleting a relation u = v from 〈A | R〉, provided that u = v is a consequence of R\{u = v};

(T3) Adding a new generating symbol b and a new relation b = w, where w ∈ A∗;

(T4) If 〈A | R〉 possesses a relation of the form b = w, where b ∈ A, and w ∈ (A\{b})∗, then deleting b from
the list of generating symbols, deleting the relation b = w, and replacing all remaining appearances of b
by w.

The next result is well-known (e.g. see [25]):

Proposition 4.2 Two finite presentations define the same monoid if and only if one can be obtained from the
other by a finite number of elementary Tietze transformations (T1), (T2), (T3) and (T4).

In this section, we aim to determine a presentation for DPSn. In order to achieve this objective, we will
take into account known presentations of symmetric inverse monoids. So, we begin by recalling the following
well known presentation of the symmetric inverse monoid I({1, 2, . . . , n− 1}), for n > 4:

〈a1, a2, b | a
2
2 = an−1

1 = (a1a2)
n−2 = (a2a

n−2
1 a2a1)

3 = 1, (a2a
n−1−j
1 a2a

j
1)

2 = 1 (2 6 j 6 n− 3),

an−2
1 a2a1ba

n−2
1 a2a1 = a1a2ba2a

n−2
1 = b = b2, (ba2)

2 = ba2b = (a2b)
2〉. (3)

This presentation is associated to the set of generators

{

α′
1 =

(

1 2 · · · n− 2 n− 1
2 3 · · · n− 1 1

)

, α′
2 =

(

1 2 3 · · · n− 1
2 1 3 · · · n− 1

)

, β′ =

(

2 3 · · · n− 1
2 3 · · · n− 1

)}
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of I({1, 2, . . . , n − 1}) via the homomorphism of monoids {a1, a2, b}
∗ −→ I({1, 2, . . . , n − 1}) that extends the

mapping a1 7−→ α′
1, a2 7−→ α′

2 and b 7−→ β′ (see [10]).

Next, by applying Tietze transformations, we deduce a presentation of I({1, 2, . . . , n− 1}) associated to the
following set of generators:

{

α′
1 =

(

1 2 · · · n− 2 n− 1
2 3 · · · n− 1 1

)

, α′
2 =

(

1 2 3 · · · n− 1
2 1 3 · · · n− 1

)

, β′1 =

(

1 2 · · · n− 2
1 2 · · · n− 2

)}

.

Notice that β′1 = α′
1β

′α′
1
n−2 and β′ = α′

1
n−2β′1α

′
1.

Proposition 4.3 For n > 4, the monoid I({1, 2, . . . , n− 1}) is defined by the presentation

〈a1, a2, b1 | a
2
2 = an−1

1 = (a1a2)
n−2 = (a2a

n−2
1 a2a1)

3 = 1, (a2a
n−1−j
1 a2a

j
1)

2 = 1 (2 6 j 6 n− 3),

a1a2a
n−2
1 b1a1a2a

n−2
1 = an−2

1 b1a1, (a
n−2
1 b1a1a2)

2 = an−2
1 b1a1a2a

n−2
1 b1a1 = (a2a

n−2
1 b1a1)

2,

b21 = b1, a2b1 = b1a2〉,

which is associated to its set of generators {α′
1, α

′
2, β

′
1} via the homomorphism of monoids {a1, a2, b1}

∗ −→
I({1, 2, . . . , n− 1}) that extends the mapping a1 7−→ α′

1, a2 7−→ α′
2 and b1 7−→ β′1.

Proof. We proceed by applying elementary Tietze transformations to the above presentation (3).

Step 1: We add a new symbol, b1, to the alphabet and add the new relation b1 = a1ba
n−2
1 . The resulting

presentation is

〈a1, a2, b, b1 | a22 = an−1
1 = (a1a2)

n−2 = (a2a
n−2
1 a2a1)

3 = 1, (a2a
n−1−j
1 a2a

j
1)

2 = 1 (2 6 j 6 n− 3),

an−2
1 a2a1ba

n−2
1 a2a1 = a1a2ba2a

n−2
1 = b = b2, (ba2)

2 = ba2b = (a2b)
2, b1 = a1ba

n−2
1 〉.

Step 2: We add a new relation b = an−2
1 b1a1. Observe that b = an−2

1 b1a1 is a consequence of the relations
an−1
1 = 1 and b1 = a1ba

n−2
1 :

b = 1b1 = an−2
1 a1ba

n−2
1 a1 = an−2

1 b1a1.

The resulting presentation is

〈a1, a2, b, b1 | a22 = an−1
1 = (a1a2)

n−2 = (a2a
n−2
1 a2a1)

3 = 1, (a2a
n−1−j
1 a2a

j
1)

2 = 1 (2 6 j 6 n− 3),

an−2
1 a2a1ba

n−2
1 a2a1 = a1a2ba2a

n−2
1 = b = b2, (ba2)

2 = ba2b = (a2b)
2, b1 = a1ba

n−2
1 , b = an−2

1 b1a1〉.

Step 3: We remove the symbol b, along with the relation b = an−2
1 b1a1, and replace all occurrences of b by

an−2
1 b1a1 in the remaining relations. The resulting presentation is

〈a1, a2, b1 | a
2
2 = an−1

1 = (a1a2)
n−2 = (a2a

n−2
1 a2a1)

3 = 1, (a2a
n−1−j
1 a2a

j
1)

2 = 1 (2 6 j 6 n− 3),

an−2
1 a2a

n−1
1 b1a

n−1
1 a2a1 = a1a2a

n−2
1 b1a1a2a

n−2
1 = an−2

1 b1a1 = (an−2
1 b1a1)

2,

(an−2
1 b1a1a2)

2 = an−2
1 b1a1a2a

n−2
1 b1a1 = (a2a

n−2
1 b1a1)

2, b1 = an−1
1 b1a

n−1
1 〉;

Step 4: We add the relations b21 = b1 and a2b1 = b1a2, as a result of being consequences of an−1
1 = 1, a22 = 1,

an−2
1 a2a

n−1
1 b1a

n−1
1 a2a1 = an−2

1 b1a1 and an−2
1 b1a1 = (an−2

1 b1a1)
2:

b21 = 1b11b11 = an−1
1 b1a

n−1
1 b1a

n−1
1 = a1(a

n−2
1 b1a1)

2an−2
1 = a1a

n−2
1 b1a1a

n−2
1 = 1b11 = b1

and

a2b1 = 1a21b11 = an−1
1 a2a

n−1
1 b1a

n−1
1 1 = an−1

1 a2a
n−1
1 b1a

n−1
1 a22 = an−1

1 a2a
n−1
1 b1a

n−1
1 a21a2

= an−1
1 a2a

n−1
1 b1a

n−1
1 a2a

n−1
1 a2 = a1a

n−2
1 b1a1a

n−2
1 a2 = 1b11a2 = b1a2.
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The resulting presentation is

〈a1, a2, b1 | a
2
2 = an−1

1 = (a1a2)
n−2 = (a2a

n−2
1 a2a1)

3 = 1, (a2a
n−1−j
1 a2a

j
1)

2 = 1 (2 6 j 6 n− 3),

an−2
1 a2a1a

n−2
1 b1a1a

n−2
1 a2a1 = a1a2a

n−2
1 b1a1a2a

n−2
1 = an−2

1 b1a1 = (an−2
1 b1a1)

2,

(an−2
1 b1a1a2)

2 = an−2
1 b1a1a2a

n−2
1 b1a1 = (a2a

n−2
1 b1a1)

2, b1 = an−1
1 b1a

n−1
1 , b21 = b1, a2b1 = b1a2〉.

Step 5: We may remove the relations an−2
1 a2a1a

n−2
1 b1a1a

n−2
1 a2a1 = an−2

1 b1a1, a
n−2
1 b1a1 = (an−2

1 b1a1)
2 and

b1 = an−1
1 b1a

n−1
1 , since they are consequences of an−1

1 = 1, a22 = 1, b21 = b1 and a2b1 = b1a2:

an−2
1 a2a1a

n−2
1 b1a1a

n−2
1 a2a1 = an−2

1 a21b11a2a1 = an−2
1 a2b1a2a1 = an−2

1 b1a
2
2a1 = an−2

1 b11a1 = an−2
1 b1a1,

an−2
1 b1a1 = an−2

1 b21a1 = an−2
1 b11b1a1 = an−2

1 b1a
n−1
1 b1a1 = (an−2

1 b1a1)
2

and
b1 = 1b11 = an−1

1 b1a
n−1
1 .

The resulting presentation is

〈a1, a2, b1 | a
2
2 = an−1

1 = (a1a2)
n−2 = (a2a

n−2
1 a2a1)

3 = 1, (a2a
n−1−j
1 a2a

j
1)

2 = 1 (2 6 j 6 n− 3),

a1a2a
n−2
1 b1a1a2a

n−2
1 = an−2

1 b1a1, (a
n−2
1 b1a1a2)

2 = an−2
1 b1a1a2a

n−2
1 b1a1 = (a2a

n−2
1 b1a1)

2,

b21 = b1, a2b1 = b1a2〉,

as required.

Now, recall that, by Proposition 2.2, for n > 3, {α ∈ DPSn | 0 ∈ Dom(α) and 0α = 0} is a submonoid of
DPSn isomorphic to the symmetric inverse monoid I({1, 2, . . . , n− 1}):

I({1, 2, . . . , n− 1})ψ = {α ∈ DPSn | 0 ∈ Dom(α) and 0α = 0},

where ψ : I({1, 2, . . . , n − 1}) −→ I({0, 1, 2, . . . , n − 1}) is the injective homomorphism of monoids defined
in the proof of Proposition 2.2. Since α′

1ψ = α1, α
′
2ψ = α2 and β′1ψ = β1, as an immediate consequence of

Proposition 4.3, we have:

Corollary 4.4 For n > 4, the submonoid {α ∈ DPSn | 0 ∈ Dom(α) and 0α = 0} of DPSn is defined by the
presentation

〈a1, a2, b1 | a
2
2 = an−1

1 = (a1a2)
n−2 = (a2a

n−2
1 a2a1)

3 = 1, (a2a
n−1−j
1 a2a

j
1)

2 = 1 (2 6 j 6 n− 3),

a1a2a
n−2
1 b1a1a2a

n−2
1 = an−2

1 b1a1, (a
n−2
1 b1a1a2)

2 = an−2
1 b1a1a2a

n−2
1 b1a1 = (a2a

n−2
1 b1a1)

2,

b21 = b1, a2b1 = b1a2〉,

which is associated to its set of generators {α1, α2, β1} via the homomorphism of monoids {a1, a2, b1}
∗ −→

I({1, 2, . . . , n− 1}) that extends the mapping a1 7−→ α1, a2 7−→ α2 and b1 7−→ β1.

Next, let n > 4 and consider the alphabet A = {a1, a2, b1, b2, c} and the set R formed by the following 3n+9
monoid relations:

(R1) a
2
2 = 1;

(R2) a
n−1
1 = 1;

(R3) (a1a2)
n−2 = 1;
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(R4) (a2a
n−2
1 a2a1)

3 = 1;

(R5) (a2a
n−1−j
1 a2a

j
1)

2 = 1, j = 2, . . . , n− 3;

(R6) b
2
1 = b1 and b22 = b2;

(R7) a2b1 = b1a2, b2a2 = a2b2, b2a1 = a1b2 and b2b1 = b1b2;

(R8) a1a2a
n−2
1 b1a1a2a

n−2
1 = an−2

1 b1a1;

(R9) (an−2
1 b1a1a2)

2 = (a2a
n−2
1 b1a1)

2;

(R10) a
n−2
1 b1a1a2a

n−2
1 b1a1 = (a2a

n−2
1 b1a1)

2;

(R11) c
3 = c;

(R12) ca1 = ca2;

(R13) a
n−2
1 c = a2c;

(R14) a2a
j
1c = aj1c, j = 1, . . . , n − 3;

(R15) b1a1c = cb2;

(R16) b1a
j
1c = aj1c, j = 2, . . . , n − 3;

(R17) (b1a1)
n−3b1 = c2a2a

n−4
1 ;

(R18) b2c
2 = ca2c;

(R19) (b2c)
2 = b2cb2.

Our goal now is to show that the monoid DPSn is defined by the presentation 〈A | R〉.

Let f : A −→ DPSn be the mapping defined by

a1f = α1, a2f = α2, b1f = β1, b2f = β2 and cf = γ

and let ϕ : A∗ −→ DPSn be the homomorphism of monoids that extends f to A∗.

First of all, it is a routine matter to check that:

Lemma 4.5 The set of generators {α1, α2, β1, β2, γ} of DPSn satisfies (via ϕ) all the relations from R.

Notice that the previous lemma assures us that, if w1, w2 ∈ {a1, a2, b1, b2, c}
∗ are such that w1 = w2 is a

consequence of R, then w1ϕ = w2ϕ.

The following lemma is an immediate consequence of Proposition 4.1 and Corollary 4.4.

Lemma 4.6 Let w1, w2 ∈ {a1, a2, b1}
∗. If w1ϕ = w2ϕ then w1 = w2 is a consequence of R.

Our next lemma provides us some useful relations that are consequence of R.

Lemma 4.7 One has:

1. The relation a1a2c = c is a consequence of R;

2. The relation c2 = (b1a1)
n−3b1a

3
1a2 is a consequence of R;

3. The relation b1c = c is a consequence of R;
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4. The relation b2c = ca2(b1a1)
n−3b1a

3
1a2 is a consequence of R.

Proof. 1. It follows from relations (R2) and (R13) that a1a2c = a1a
n−2
1 c = 1c = c, which implies that a1a2c = c

is a consequence of R.
2. From relations (R1), (R2) and (R17) we can deduce that c2 = (b1a1)

n−3b1a
3
1a2 is a consequence of R,

since
c2 = c21 = c2a22 = c2a21a2 = c2a2a

n−1
1 a2 = (b1a1)

n−3b1a
3
1a2.

3. If we consider the relations (R6), (R11) and (from 2) c2 = (b1a1)
n−3b1a

3
1a2, then we obtain

b1c = b1c
3 = b1(b1a1)

n−3b1a
3
1a2c = (b1a1)

n−3b1a
3
1a2c = c3 = c,

whence b1c = c is a consequence of R.
4. Finally, by considering the relations (R11), (R18) and c

2 = (b1a1)
n−3b1a

3
1a2, we get

b2c = b2c
3 = ca2c

2 = ca2(b1a1)
n−3b1a

3
1a2

and so b2c = ca2(b1a1)
n−3b1a

3
1a2 is a consequence of R, as required.

Let w ∈ {a1, a2, b1, b2, c}
∗ and x ∈ {a1, a2, b1, b2, c}. We denote by |w|x the number of occurrences of the

letter x in the word w.

Lemma 4.8 Let w ∈ {a1, a2, b1, b2}
∗. Then |w|b2 = 0 if and only if 0 ∈ Dom(wϕ).

Proof. First, suppose |w|b2 = 0. Then w ∈ {a1, a2, b1}
∗, which implies that wϕ ∈ 〈α1, α2, β1〉 = {α ∈ DPSn |

0 ∈ Dom(α) and 0α = 0}, whence 0 ∈ Dom(wϕ).
Conversely, admit that |w|b2 > 1. It follows from relations (R6) and (R7) that w = b2w is a consequence

of R. Then wϕ = (b2w)ϕ = (b2ϕ)(wϕ) = β2(wϕ). Therefore, Dom(wϕ) ⊆ Dom(β2) = {1, 2, . . . , n − 1} and so
0 /∈ Dom(wϕ).

Lemma 4.9 Let w1, w2 ∈ {a1, a2, b1}
∗. If (b2w1)ϕ = (b2w2)ϕ then w1ϕ = w2ϕ.

Proof. It suffices to observe that ((b2wi)ϕ)ψ = (β2(wiϕ))ψ = (wiϕ|Dom(wiϕ)\{0})ψ = wiϕ, for i = 1, 2.

Now, we can prove:

Lemma 4.10 Let w1, w2 ∈ {a1, a2, b1, b2}
∗. If w1ϕ = w2ϕ then w1 = w2 is a consequence of R.

Proof. First, observe that, by Lemma 4.8, we have |w1|b2 = 0 if and only if |w2|b2 = 0.
If |w1|b2 = |w2|b2 = 0 then w1, w2 ∈ {a1, a2, b1}

∗ and so, by Lemma 4.6, w1 = w2 is a consequence of R.
On the other hand, admit that |w1|b2 , |w2|b2 > 0. Then, it follows from relations (R6) and (R7) that there

exist w′
1, w

′
2 ∈ {a1, a2, b1}

∗ such that w1 = b2w
′
1 and w2 = b2w

′
2 are consequences of R. Hence (b2w

′
1)ϕ = w1ϕ =

w2ϕ = (b2w
′
2)ϕ. Thus, by Lemma 4.9, we have w′

1ϕ = w′
2ϕ and so, by Lemma 4.6, we conclude that w′

1 = w′
2 is

a consequence of R. Therefore, b2w
′
1 = b2w

′
2 is a consequence of R, which implies that w1 = w2 is a consequence

of R, as required.

Next, we continue with a series of lemmas now also involving the letter c.

Lemma 4.11 Let w ∈ {a1, a2, b1, b2}
∗. Then there exist w1, w2 ∈ {a1, a2, b1}

∗ such that cwc = w1cw2c is a
consequence of R.
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Proof. We divide this proof into three cases.

Case 1: If w ∈ {a1, a2, b1}
∗ then it suffices to take w1 ≡ 1 and w2 ≡ w.

Case 2: Assume w ∈ {b2}
+. It follows from relations (R6) that cwc = cb2c is a consequence of R. Then, if

we take w1 ≡ b1a1 and w2 ≡ 1 and consider the relation (R15), we obtain

cwc = cb2c = cb21c = b1a1c1c = w1cw2c

and so cwc = w1cw2 is a consequence of R.

Case 3: Assume w ∈ {a1, a2, b1, b2}
+ \ ({b2}

+ ∪ {a1, a2, b1}
+). It follows from relations (R6) and (R7) that

there exists w2 ∈ {a1, a2, b1}
+ such that cwc = cb2w2c is a consequence of R. Then, being w1 ≡ b1a1, by

applying the relation (R15), we have

cwc = cb2w2c = b1a1cw2c = w1cw2c,

which implies that cwc = w1cw2c is a consequence of R.

Lemma 4.12 Let w ∈ {a1, a2, b1, b2}
∗. Then there exist w1, w2 ∈ {a1, a2, b1, b2}

∗ such that cwc = w1c
2w2 is a

consequence of R.

Proof. By Lemma 4.11 there exist u1, u2 ∈ {a1, a2, b1}
∗ such that cwc = u1cu2c is a consequence of R. We

complete the proof by showing that there exist w1, w2 ∈ {a1, a2, b1, b2}
∗ such that u1cu2c = w1c

2w2 is a
consequence of R. We will proceed by induction on the length |u2| of u2.

Suppose that |u2| = 0. Then u2 ≡ 1. It is clear that, if we take w1 ≡ u1 and w2 ≡ 1, then u1cu2c = w1c
2w2

is a consequence of R.
Let k > 1 and assume that, for all u ∈ {a1, a2, b1}

∗ such that |u| < k, there exist w1, w2 ∈ {a1, a2, b1, b2}
∗

such that u1cuc = w1c
2w2.

Suppose that |u2| = k. As a consequence of relations (R1), (R2) and (R6), we deduce that u2 = u3 is a
consequence of R, for some subword u3 ∈ {a1, a2, b1}

∗ of u2 such that none of the words of {ai1 | i > n−1}∪{ai2 |
i > 2} ∪ {bi1 | i > 2} is a factor of u3. Notice that |u3| 6 |u2|.

If |u3| < |u2| then, by the induction hypothesis, there exist w1, w2 ∈ {a1, a2, b1, b2}
∗ such that u1cu3c =

w1c
2w2 is a consequence of R. Clearly, since u2 = u3 is a consequence of R, we have that u1cu2c = u1cu3c is a

consequence of R and so u1cu2c = w1c
2w2 is a consequence of R.

Now, consider that |u3| = |u2|. Thus u2 ≡ u3 and, consequently, none of the words of {ai1 | i > n−1}∪{ai2 |
i > 2} ∪ {bi1 | i > 2} is a factor of u2.

Let u4 ∈ {a1, a2, b1}
+ be a suffix of u2 and let u5 ∈ {a1, a2, b1}

∗ be such that u2 = u5u4. Then, we can
choose u4 and u5 satisfying one of the following cases, which we study separately, concluding the proof.

Case 1: Assume that u4 ≡ b1. By Lemma 4.7, b1c = c is a consequence of R and so we have

u1cu2c = u1cu5u4c = u1cu5b1c = u1cu5c,

whence u1cu2c = u1cu5c is a consequence of R. Since |u5| = |u2| − 1 < |u2|, by the induction hypothesis there
exist w1, w2 ∈ {a1, a2, b1, b2}

∗ such that u1cu5c = w1c
2w2 is a consequence of R. Thus u1cu2c = w1c

2w2 is a
consequence of R.

Case 2: Suppose that u4 ≡ a2 and u5 ≡ 1. Then u2 ≡ a2 and, by relation (R18), we have

u1cu2c = u1ca2c = u1b2c
2 = w1c

2w2,

where w1 ≡ u1b2 and w2 ≡ 1. Hence u1cu2c = w1c
2w2 is a consequence of R.

Case 3: Take u4 ≡ a1a2. It follows from Lemma 4.7 that a1a2c = c is a consequence of R and so

u1cu2c = u1cu5u4c = u1cu5a1a2c = u1cu5c.
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Then, u1cu2c = u1cu5c is a consequence of R. Observe that |u5| = |u2| − 2 < |u2|. Hence, by the induction
hypothesis, there exist w1, w2 ∈ {a1, a2, b1, b2}

∗ such that u1cu5c = w1c
2w2 is a consequence of R. Therefore,

u1cu2c = w1c
2w2 is a consequence of R.

Case 4: Let u4 ≡ b1a2. By Lemma 4.7 we have that b1c = c is a consequence of R. By considering the
relations (R7), we obtain

u1cu2c = u1cu5u4c = u1cu5b1a2c = u1cu5a2b1c = u1cu5a2c.

Then, u1cu2c = u1cu5a2c is a consequence of R. Notice that |u5a2| = |u2| − 1 < |u2|. So, by the induction
hypothesis, there exist w1, w2 ∈ {a1, a2, b1, b2}

∗ such that u1cu5a2c = w1c
2w2 is a consequence of R. Hence,

u1cu2c = w1c
2w2 is a consequence of R.

Case 5: Assume that u4 ≡ a1 and u5 ≡ 1. Then u2 ≡ a1. From relation (R12) we have

u1cu2c = u1ca1c = u1ca2c,

which implies that u1cu2c = u1ca2c is a consequence of R. By Case 2 there exist w1, w2 ∈ {a1, a2, b1, b2}
∗ such

that u1ca2c = w1c
2w2 is a consequence of R. Hence u1cu2c = w1c

2w2 is a consequence of R.

Case 6: Suppose that u4 ≡ aj1, for some j ∈ {2, . . . , n − 3}, and u5 ≡ 1. Then u2 ≡ aj1 and it follows from
relations (R12) and (R14) that

u1cu2c = u1ca
j
1c = u1ca2a

j−1
1 c = u1ca

j−1
1 c.

Thus, u1cu2c = u1ca
j−1
1 c is a consequence of R. Since |aj−1

1 | = |u2| − 1 < |u2|, we can use the induction

hypothesis to conclude that there exist w1, w2 ∈ {a1, a2, b1, b2}
∗ such that u1ca

j−1
1 c = w1c

2w2 is a consequence
of R, which implies that u1cu2c = w1c

2w2 is a consequence of R.

Case 7: Assume that u4 ≡ an−2
1 . Then, we have

u1cu2c = u1cu5u4c = u1cu5a
n−2
1 c = u1cu5a2c,

by applying the relation (R13). So, u1cu2c = u1cu5a2c is a consequence of R. As |u5a2| = |u2| − (n − 2) +
1 = |u2| − (n − 3) < |u2| then, by the induction hypothesis, there exist w1, w2 ∈ {a1, a2, b1, b2}

∗ such that
u1cu5a2c = w1c

2w2 is a consequence of R. Thus, u1cu2c = w1c
2w2 is a consequence of R.

Case 8: Take u4 ≡ a2a
j
1, for some j ∈ {1, . . . , n − 3}. Then, by the relations (R14), we have

u1cu2c = u1cu5u4c = u1cu5a2a
j
1c = u1cu5a

j
1c.

Thus, u1cu2c = u1cu5a
j
1c is a consequence of R. Since |u5a

j
1| = |u2| − 1 < |u2|, the induction hypothesis assures

us that there exist w1, w2 ∈ {a1, a2, b1, b2}
∗ such that u1cu5a

j
1c = w1c

2w2 is a consequence of R, which implies
that u1cu2c = w1c

2w2 is a consequence of R.

Case 9: Let u4 ≡ b1a1. Then, we have

u1cu2c = u1cu5u4c = u1cu5b1a1c = u1cu5cb2,

which follows from relation (R15). Hence, u1cu2c = u1cu5cb2 is a consequence of R. Since |u5| = |u2|− 2 < |u2|,
by the induction hypothesis, there exist w1, w

′
2 ∈ {a1, a2, b1, b2}

∗ such that u1cu5c = w1c
2w′

2 is a consequence
of R and so u1cu2c = w1c

2w2 is a consequence of R, where w2 ≡ w′
2b2.

Case 10: Finally, assume that u4 ≡ b1a
j
1, for some j ∈ {2, . . . , n− 3}. It follows from relations (R16) that

u1cu2c = u1cu5u4c = u1cu5b1a
j
1c = u1cu5a

j
1c,

whence u1cu2c = u1cu5a
j
1c is a consequence of R. As |u5a

j
1| = |u2|− 1 < |u2| then, by the induction hypothesis,

there exist w1, w2 ∈ {a1, a2, b1, b2}
∗ such that u1cu5a

j
1c = w1c

2w2 is a consequence of R. Thus, u1cu2c = w1c
2w2

is a consequence of R, as required.
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Lemma 4.13 Let w ∈ {a1, a2, b1, b2, c}
∗ \ {a1, a2, b1, b2}

∗.

1. If |w|c is even, then there exists w′ ∈ {a1, a2, b1, b2}
∗ such that w = w′ is a consequence of R;

2. If |w|c is odd, then there exist w1, w2 ∈ {a1, a2, b1, b2}
∗ such that w = w1cw2 is a consequence of R.

Proof. First, we prove the lemma, by induction on m = |w|c, for words w ∈ {a1, a2, b1, b2, c}
∗ \ {a1, a2, b1, b2}

∗

of the form
w ≡ v0cv1cv2c · · · cvm−1cvm,

for some m ∈ N, v0, vm ∈ {a1, a2, b1, b2}
∗ and v1, v2, . . . , vm−1 ∈ {a1, a2, b1, b2}

+.
If m = 1 then w ≡ v0cv1 and the result follows trivially.
Thus, let m > 2 and assume that the result is valid for m− 1.
Take v ≡ v1cv2c · · · cvm−1cvm. Then w ≡ v0cv.
Admit that |w|c is even. Then |v|c is odd. Hence, by the induction hypothesis, there exist w1, w2 ∈

{a1, a2, b1, b2}
∗ such that v = w1cw2 is a consequence of R. Therefore, w = v0cw1cw2 is a consequence of R.

Then, by Lemma 4.12, we may consider w′
1, w

′
2 ∈ {a1, a2, b1, b1}

∗ such that cw1c = w′
1c

2w′
2 is a consequence of

R and so w = v0w
′
1c

2w′
2w2 is a consequence of R. Since c2 = (b1a1)

n−3b1a
3
1a2 is a consequence of R, by Lemma

4.7, being w′ ≡ v0w
′
1(b1a1)

n−3b1a
3
1a2w

′
2w2 ∈ {a1, a2, b1, b2}

∗, we obtain that w = w′ is a consequence of R.
Next, suppose that |w|c is odd. Then |v|c is even and so, by the induction hypothesis, there exists w′ ∈

{a1, a2, b1, b2}
∗ such that v = w′ is a consequence of R. Hence, w = v0cw

′ is a consequence of R.

Now, let w ∈ {a1, a2, b1, b2, c}
∗ \{a1, a2, b1, b2}

∗ be any word. Then, by taking in account the relation (R11),
it is clear that

w = u0c
i1u1c

i2u2c
i3 · · · cik−1uk−1c

ikuk

is a consequence of R, for some k ∈ N, i1, . . . , ik ∈ {1, 2}, u1, u2, . . . , uk−1 ∈ {a1, a2, b1, b2}
+ and u0, uk ∈

{a1, a2, b1, b2}
∗. Notice that |w|c and |u0c

i1u1c
i2u2c

i3 · · · cik−1uk−1c
ikuk|c have the same parity.

Next, by replacing in u0c
i1u1c

i2u2c
i3 · · · cik−1uk−1c

ikuk each c2 by (b1a1)
n−3b1a

3
1a2, we obtain a word w′

such that, by Lemma 4.7, u0c
i1u1c

i2u2c
i3 · · · cik−1uk−1c

ikuk = w′ is a consequence of R and the parity of
|u0c

i1u1c
i2u2c

i3 · · · cik−1uk−1c
ikuk|c and |w′|c are the same. It follows that w = w′ is a consequence of R and

|w|c and |w′|c have the same parity.
If i1 = i2 = · · · = ik = 2 (and so |w|c is even), then w′ ∈ {a1, a2, b1, b2}

∗, which ends the proof.
On the other hand, if there exists j ∈ {1, . . . , k} such that ij = 1, then w′ is a word of the form

v0cv1cv2c · · · cvm−1cvm, for somem ∈ {1, . . . , k}, v0, vm ∈ {a1, a2, b1, b2}
∗ and v1, v2, . . . , vm−1 ∈ {a1, a2, b1, b2}

+.
Therefore, the result follows by the first part of the proof, as required.

Lemma 4.14 Let w ∈ {a1, a2, b1, b2, c}
∗ \ {a1, a2, b1, b2}

∗ such that |w|c is odd. Then there exist w1 ∈ {a1, a2}
∗

and w2 ∈ {a1, a2, b1, b2}
∗ such that w = w1cw2 is a consequence of R.

Proof. Let us consider u1, u2 ∈ {a1, a2, b1, b2}
∗ such that w = u1cu2 is a consequence of R, which are guaranteed

by Lemma 4.13. Observe that, if u1 ∈ {a1, a2}
∗, then there is nothing left to prove. Thus, from now on, we

assume that u1 ∈ {a1, a2, b1, b2}
∗ \ {a1, a2}

+.
We will prove by induction on the length of u1 that there exist w1 ∈ {a1, a2}

∗ and w2 ∈ {a1, a2, b1, b2}
∗ such

that u1cu2 = w1cw2 is a consequence of R, thus completing the proof.
If |u1| = 0 then u1 ≡ 1 ∈ {a1, a2}

∗, and the result follows.
Let k > 1 and assume that, for all u, v ∈ {a1, a2, b1, b2}

∗ such that |u| < k, there exist w1 ∈ {a1, a2}
∗ and

w2 ∈ {a1, a2, b1, b2}
∗ such that ucv = w1cw2 is a consequence of R.

Suppose |u1| = k. It follows from relations (R1), (R2) and (R6) that u1 = u3 is a consequence of R, for
some subword u3 ∈ {a1, a2, b1, b2}

∗ of u1 such that none of the words of {ai1 | i > n − 1} ∪ {ai2 | i > 2} ∪ {bi1 |
i > 2} ∪ {bi2 | i > 2} is a factor of u3. Notice that |u3| 6 |u1|.
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If |u3| < |u1| then, by the induction hypothesis, there exist w1 ∈ {a1, a2}
∗ and w2 ∈ {a1, a2, b1, b2}

∗ such
that u3cu2 = w1cw2 is a consequence of R. Since u1 = u3 is a consequence of R then u1cu2 = u3cu2 is a
consequence of R and so u1cu2 = w1cw2 is a consequence of R.

Now, assume that |u3| = |u1|. Thus, u1 ≡ u3 and, consequently, none of the words of {ai1 | i > n− 1}∪{ai2 |
i > 2} ∪ {bi1 | i > 2} ∪ {bi2 | i > 2} is a factor of u1.

Let u4 ∈ {a1, a2, b1, b2}
+ be a suffix of u1 and let u5 ∈ {a1, a2, b1, b2}

∗ such that u1 = u5u4. Then, we can
choose u4 and u5 satisfying one of the following cases, which we study separately, concluding the proof.

Case 1: Assume that u4 ≡ b1. By Lemma 4.7, the relation b1c = c is a consequence of R, which implies that

u1cu2 = u5u4cu2 = u5b1cu2 = u5cu2,

whence u1cu2 = u5cu2 is a consequence of R. Since |u5| < |u1| then, by the induction hypothesis, there exist
w1 ∈ {a1, a2}

∗ and w2 ∈ {a1, a2, b1, b2}
∗ such that u5cu2 = w1cw2 and so u1cu2 = w1cw2 is a consequence of R.

Case 2: Let u4 ≡ b2. Again, by Lemma 4.7, the relation b2c = ca2(b1a1)
n−3b1a

3
1a2 is a consequence of R.

This implies that
u1cu2 = u5u4cu2 = u5b2cu2 = u5ca2(b1a1)

n−3b1a
3
1a2u2.

Thus, u1cu2 = u5ca2(b1a1)
n−3b1a

3
1a2u2 is a consequence of R. Since |u5| < |u1| then, by the induction hypoth-

esis, there exist w1 ∈ {a1, a2}
∗ and w2 ∈ {a1, a2, b1, b2}

∗ such that u5ca2(b1a1)
n−3b1a

3
1a2u2 = w1cw2, whence

u1cu2 = w1cw2 is a consequence of R.

Case 3: Suppose that u4 ≡ an−2
1 . By using the relation (R13), we obtain

u1cu2 = u5u4cu2 = u5a
n−2
1 cu2 = u5a2cu2

and so u1cu2 = u5a2cu2 is a consequence of R. As |u5a2| < |u1|, by the induction hypothesis, there exist
w1 ∈ {a1, a2}

∗ and w2 ∈ {a1, a2, b1, b2}
∗ such that u5a2cu2 = w1cw2 is a consequence of R and thus we conclude

that u1cu2 = w1cw2 is a consequence of R.

Case 4: Take u4 ≡ b2a
j
1, for some j ∈ {1, . . . , n − 3}. By considering the relations (R7) and the fact that,

by Lemma 4.7, the relation b2c = ca2(b1a1)
n−3b1a

3
1a2 is a consequence of R, we obtain

u1cu2 = u5u4cu2 = u5b2a
j
1cu2 = u5a

j
1b2cu2 = u5a

j
1ca2(b1a1)

n−3b1a
3
1a2u2,

whence u1cu2 = u5a
j
1ca2(b1a1)

n−3b1a
3
1a2u2 is a consequence of R. Since |u5a

j
1| < |u1| then, by the induction

hypothesis, there exist w1 ∈ {a1, a2}
∗ and w2 ∈ {a1, a2, b1, b2}

∗ such that u5a
j
1ca2(b1a1)

n−3b1a
3
1a2u2 = w1cw2 is

a consequence of R. Therefore, u1cu2 = w1cw2 is a consequence of R.

Case 5: Assume that u4 ≡ b1a1. Then, by applying relation (R15), we have

u1cu2 = u5u4cu2 = u5b1a1cu2 = u5cb2u2

and so u1cu2 = u5cb2u2 is a consequence of R. Since |u5| < |u1| then, by the induction hypothesis, there exist
w1 ∈ {a1, a2}

∗ and w2 ∈ {a1, a2, b1, b2}
∗ such that u5cb2u2 = w1cw2 is a consequence of R. Thus, u1cu2 = w1cw2

is a consequence of R.

Case 6: Let us consider that u4 ≡ b1a
j
1, for some j ∈ {2, . . . , n − 3}. By the relations (R16), we get

u1cu2 = u5u4cu2 = u5b1a
j
1cu2 = u5a

j
1cu2,

whence u1cu2 = u5a
j
1cu2 is a consequence of R. As |u5a

j
1| < |u1|, we can use the induction hypothesis, which

guarantees that there exist w1 ∈ {a1, a2}
∗ and w2 ∈ {a1, a2, b1, b2}

∗ such that u5a
j
1cu2 = w1cw2 is a consequence

of R. It follows that u1cu2 = w1cw2 is a consequence of R.

Case 7: Suppose that u4 ≡ a2a
j
1, for some j ∈ {1, . . . , n− 3}. Then, by the relations (R14), we obtain

u1cu2 = u5u4cu2 = u5a2a
j
1cu2 = u5a

j
1cu2,
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which implies that u1cu2 = u5a
j
1cu2 is a consequence of R. Clearly, |u5a

j
1| < |u1| and so, by the induction

hypothesis, there exist w1 ∈ {a1, a2}
∗ and w2 ∈ {a1, a2, b1, b2}

∗ such that u5a
j
1cu2 = w1cw2 is a consequence of

R. Hence, u1cu2 = w1cw2 is a consequence of R.

Case 8: Let u4 ≡ b1a2. We have that b1c = c is a consequence of R, by Lemma 4.7. By considering also the
relations (R7), we have

u1cu2 = u5u4cu2 = u5b1a2cu2 = u5a2b1cu2 = u5a2cu2

and so u1cu2 = u5a2cu2 is a consequence of R. Since |u5a2| < |u1| then, by the induction hypothesis, there
exist w1 ∈ {a1, a2}

∗ and w2 ∈ {a1, a2, b1, b2}
∗ such that u5a2cu2 = w1cw2 is a consequence of R, whence

u1cu2 = w1cw2 is a consequence of R.

Case 9: Take u4 ≡ b2a2. By Lemma 4.7, we have that the relation b2c = ca2(b1a1)
n−3b1a

3
1a2 is a consequence

of R. By applying also relations (R7), we get

u1cu2 = u5u4cu2 = u5b2a2cu2 = u5a2b2cu2 = u5a2ca2(b1a1)
n−3b1a

3
1a2u2.

So u1cu2 = u5a2ca2(b1a1)
n−3b1a

3
1a2u2 is a consequence of R. It is clear that |u5a2| < |u1| and thus, by the

induction hypothesis, there exist w1 ∈ {a1, a2}
∗ and w2 ∈ {a1, a2, b1, b2}

∗ such that u5a2ca2(b1a1)
n−3b1a

3
1a2u2 =

w1cw2 is a consequence of R. Therefore, u1cu2 = w1cw2 is a consequence of R.

Case 10: Finally, assume that u4 ≡ a1a2. Since a1a2c = c is a consequence of R, by Lemma 4.7, we have

u1cu2 = u5u4cu2 = u5a1a2cu2 = u5cu2,

whence u1cu2 = u5cu2 is a consequence of R. Since |u5| < |u1|, the induction hypothesis guarantees that
there exist w1 ∈ {a1, a2}

∗ and w2 ∈ {a1, a2, b1, b2}
∗ such that u5cu2 = w1cw2 is a consequence of R. Thus,

u1cu2 = w1cw2 is a consequence of R, as required.

Lemma 4.15 Let u1, v1 ∈ {a1, a2}
∗ and u2, v2 ∈ {a1, a2, b1, b2}

∗ be such that (u1cu2)ϕ = (v1cv2)ϕ. Then
(cu2)ϕ = (cv2)ϕ and, there exist u3, v3 ∈ {a1, a2, b1}

∗ such that u1cu2 = u3cu2 and v1cv2 = v3cv2 are conse-
quences of R and (u3c)ϕ = (v3c)ϕ.

Proof. First, observe that

(u1cu2)ϕ = (u1ϕ)(cϕ)(u2ϕ) = (u1ϕ)γ(u2ϕ) and (v1cv2)ϕ = (v1ϕ)(cϕ)(v2ϕ) = (v1ϕ)γ(v2ϕ)

and so, as |Dom(γ)| = 2, we have |Dom((u1cu2)ϕ)| = |Dom((v1cv2)ϕ)| 6 2. Since u1, v1 ∈ {a1, a2}
∗, it follows

that u1ϕ, v1ϕ ∈ 〈α1, α2〉 = {α ∈ DPSn | |Dom(α)| = n}, whence Dom(u1ϕ) = Im(u1ϕ) = Dom(v1ϕ) =
Im(v1ϕ) = {0, 1, . . . , n− 1} and 0(u1ϕ) = 0(v1ϕ) = 0. Moreover,

Dom((u1cu2)ϕ) ⊆ Dom((u1c)ϕ) = Dom((u1ϕ)γ) = {0, i} and (u1ϕ)γ =

(

0 i
1 0

)

,

for some i ∈ {1, . . . , n− 1}, and

Dom((v1cv2)ϕ) ⊆ Dom((v1c)ϕ) = Dom((v1ϕ)γ) = {0, j} and (v1ϕ)γ =

(

0 j
1 0

)

,

for some j ∈ {1, . . . , n− 1}. We also have

Dom((cu2)ϕ) = Dom(γ(u2ϕ)) ⊆ {0, 1} and Dom((cv2)ϕ) = Dom(γ(v2ϕ)) ⊆ {0, 1},

1 ∈ Dom((cu2)ϕ) ⇐⇒ i = j and i ∈ Dom((u1cu2)ϕ) = Dom((v1cv2)ϕ) ⇐⇒ 1 ∈ Dom((cv2)ϕ)

and
0 ∈ Dom((cu2)ϕ) ⇐⇒ 0 ∈ Dom((u1cu2)ϕ) = Dom((v1cv2)ϕ) ⇐⇒ 0 ∈ Dom((cv2)ϕ),
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whence Dom((cu2)ϕ) = Dom((cv2)ϕ). Furthermore, if 0 ∈ Dom((cu2)ϕ) then

0(cu2)ϕ = (0(u1ϕ))(cu2)ϕ = 0(u1cu2)ϕ = 0(v1cv2)ϕ = (0(v1ϕ))(cv2)ϕ = 0(cv2)ϕ

and if 1 ∈ Dom((cu2)ϕ) then

1(cu2)ϕ = 1γ(u2ϕ) = 0(u2ϕ) = (i(u1ϕ)γ)(u2ϕ) = i(u1cu2)ϕ =

= i(v1cv2)ϕ = (i(v1ϕ)γ)(v2ϕ) = 0(v2ϕ) = 1γ(v2ϕ) = 1(cv2)ϕ.

Thus (cu2)ϕ = (cv2)ϕ.

Next, we divide the proof in two cases.

Case 1: Suppose that |Dom((u1cu2)ϕ)| = 2 or Dom((u1cu2)ϕ) = {i}. Then,

{0, i} = Dom((u1cu2)ϕ) = Dom((v1cv2)ϕ) = {0, j}

or
{i} = Dom((u1cu2)ϕ) = Dom((v1cv2)ϕ) ⊆ {0, j}

and so, in both scenarios, we have j = i and so (u1c)ϕ = (u1ϕ)γ = (v1ϕ)γ = (v1c)ϕ. Hence, being u3 ≡ u1 and
v3 ≡ v1, we have u1cu2 ≡ u3cu2, v1cv2 ≡ v3cv2 and (u3c)ϕ = (v3c)ϕ, which concludes the proof in this case.

Case 2: Now, admit that Dom((u1cu2)ϕ) = {0} or Dom((u1cu2)ϕ) = ∅. In both scenarios, it follows that
i 6∈ Dom((u1cu2)ϕ) = Dom((v1cv2)ϕ). Then, by the above observations, we conclude that 1 6∈ Dom((cu2)ϕ) =
Dom((cv2)ϕ) and so 0 6∈ Dom(u2ϕ)∪Dom(v2ϕ). Hence, u2ϕ, v2ϕ 6∈ 〈α1, α2, β1〉 and so |u2|b2 > 1 and |v2|b2 > 1.
Therefore, taking in account relations (R6) and (R7), we deduce that u2 = b2u2 and v2 = b2v2 are consequences
of R and so, by applying also the relation (R15), we conclude that u1cu2 = u1b1a1cu2 and v1cv2 = v1b1a1cv2
are consequences of R.

Now, since

(b1a1c)ϕ = (b1ϕ)(a1ϕ)(cϕ) = β1α1γ =

(

0
1

)

and 0(u1ϕ) = 0(v1ϕ) = 0, then

(u1b1a1c)ϕ = (u1ϕ)(b1a1c)ϕ =

(

0
1

)

= (v1ϕ)(b1a1c)ϕ = (v1b1a1c)ϕ

and so, by considering u3 ≡ u1b1a1 ∈ {a1, a2, b1}
∗ and v3 ≡ v1b1a1 ∈ {a1, a2, b1}

∗, we obtain that u1cu2 = u3cu2
and v1cv2 = v3cv2 are consequences of R and (u3c)ϕ = (v3c)ϕ, as required.

Lemma 4.16 Let w1 ∈ {a1, a2, b1, b2, c}
∗ \ {a1, a2, b1, b2}

∗ and w2 ∈ {a1, a2, b1, b2, c}
∗ be such that |w1|c and

|w2|c have the same parity. If w1ϕ = w2ϕ then w1 = w2 is a consequence of R.

Proof. First, suppose that w2 ∈ {a1, a2, b1, b2}
∗. Then |w2|c is even and so |w1|c is also even. Thus, by Lemma

4.13, there exists w ∈ {a1, a2, b1, b2}
∗ such that w1 = w is a consequence of R. Hence w2ϕ = w1ϕ = wϕ, which

implies, by Lemma 4.10, that w2 = w is a consequence of R. Therefore w1 = w2 is a consequence of R.
Now, admit that w2 ∈ {a1, a2, b1, b2, c}

∗ \ {a1, a2, b1, b2}
∗.

If |w1|c and |w2|c are both even then, by Lemma 4.13, there exist u1, u2 ∈ {a1, a2, b1, b2}
∗ such that w1 = u1

and w2 = u2 are consequences of R. This implies that u1ϕ = w1ϕ = w2ϕ = u2ϕ. Therefore, by Lemma 4.10,
u1 = u2 is a consequence of R and thus w1 = w2 is a consequence of R.

If |w1|c and |w2|c are both odd then, by Lemma 4.14, there exist u1, v1 ∈ {a1, a2}
∗ and u2, v2 ∈ {a1, a2, b1, b2}

∗

such that w1 = u1cu2 and w2 = v1cv2 are consequences of R. Thus, (u1cu2)ϕ = w1ϕ = w2ϕ = (v1cv2)ϕ and so,
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by Lemma 4.15, (cu2)ϕ = (cv2)ϕ and there exist u3, v3 ∈ {a1, a2, b1}
∗ such that u1cu2 = u3cu2 and v1cv2 = v3cv2

are consequences of R and (u3c)ϕ = (v3c)ϕ. Hence, we have

(c2u2)ϕ = (cϕ)((cu2)ϕ) = (cϕ)((cv2)ϕ) = (c2v2)ϕ and (u3c
2)ϕ = ((u3c)ϕ)(cϕ) = ((v3c)ϕ)(cϕ) = (v3c

2)ϕ.

Now, since |c2u2|c = |c2v2|c = 2 and |u3c
2|c = |v3c

2| = 2 then, by the first part of the proof, we conclude that
c2u2 = c2v2 and u3c

2 = v3c
2 are consequences of R, whence c3u2 = c3v2 and u3c

3 = v3c
3 are consequences of R

and so, by relation (R11), cu2 = cv2 and u3c = v3c are also consequences of R. Thus, we have

w1 = u1cu2 = u3cu2 = u3cv2 = v3cv2 = v1cv2 = w2,

which implies w1 = w2 is a consequence of R, as required.

Finally, we present our last lemma.

Lemma 4.17 Let w1 ∈ {a1, a2, b1, b2, c}
∗ \ {a1, a2, b1, b2}

∗ and w2 ∈ {a1, a2, b1, b2, c}
∗ be such that |w1|c and

|w2|c have different parity. If w1ϕ = w2ϕ then w1 = w2 is a consequence of R.

Proof. Observe that, since |w|c = 0, so an even number, for all w ∈ {a1, a2, b1, b2}
∗, we may suppose, without

loss of generality, that |w1|c is odd and |w2|c is even.
If w2 ∈ {a1, a2, b1, b2}

∗ then it is obvious that w2 = v is a consequence of R, where v ≡ w2.
If w2 ∈ {a1, a2, b1, b2, c}

∗ \ {a1, a2, b1, b2}
∗ then, as |w2|c is even, Lemma 4.13 guarantees us the existence of

v ∈ {a1, a2, b1, b2}
∗ such that w2 = v is a consequence of R.

Either way, there exists v ∈ {a1, a2, b1, b2}
∗ such that w2 = v is a consequence of R.

Also, since |w1|c is odd, by Lemma 4.14 there exist u1 ∈ {a1, a2}
∗ and u2 ∈ {a1, a2, b1, b2}

∗ such that
w1 = u1cu2 is a consequence of R.

Next, as in the proof of the Lemma 4.15, we have

Dom((u1cu2)ϕ) ⊆ Dom((u1c)ϕ) = Dom((u1ϕ)γ) = {0, i} and (u1ϕ)γ =

(

0 i
1 0

)

,

for some i ∈ {1, . . . , n− 1}, and (u1cu2)ϕ = w1ϕ = w2ϕ = vϕ. On the other hand, since u2, v ∈ {a1, a2, b1, b2}
∗,

we deduce that
0 ∈ Dom(u2ϕ) =⇒ 0(u2ϕ) = 0, 1 ∈ Dom(u2ϕ) =⇒ 1(u2ϕ) 6= 0,

0 ∈ Dom(vϕ) =⇒ 0(vϕ) = 0 and i ∈ Dom(vϕ) =⇒ i(vϕ) 6= 0,

whence
0 ∈ Dom(vϕ) =⇒ 1 ∈ Dom(u2ϕ) and 0 = 0(vϕ) = 0((u1cu2)ϕ) = 1(u2ϕ) 6= 0

and
i ∈ Dom(vϕ) =⇒ 0 ∈ Dom(u2ϕ) and 0 = 0(u2ϕ) = i((u1cu2)ϕ) = i(vϕ) 6= 0,

from which we conclude that (u1cu2)ϕ = vϕ = ∅.
Now, since |b2cb2|c = |u1cu2|c = 1 and (b2cb2)ϕ = (b2ϕ)(cϕ)(b2ϕ) = β2γβ2 = ∅ = (u1cu2)ϕ, by Lemma 4.16,

we get that u1cu2 = b2cb2 is a consequence of R. Moreover, we also have that |b2cb2c|c and |v|c are both even
and (b2cb2c)ϕ = ((b2cb2)ϕ)(cϕ) = ∅γ = ∅ = vϕ and so, by Lemma 4.16, we also obtain that v = b2cb2c is a
consequence of R.

Therefore, by the relation (R19) we deduce that b2cb2c = b2cb2 is a consequence of R, whence u1cu2 = v is
a consequence of R and so w1 = w2 is a consequence of R, as required.
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Finally, as a consequence of Proposition 4.1 and Lemmas 4.5, 4.10, 4.16 and 4.17, we immediately have our
main result of this section:

Theorem 4.18 For n > 4, the monoid DPSn is defined by the presentation 〈A | R〉 on 5 generators and 3n+9
relations.

For completeness, we end this section, and the paper, with the following presentations for the monoids
DPS1, DPS2 and DPS3.

Since DPS1 = I({0}) = 〈∅〉, it is obvious that 〈z | z2 = z〉 is a presentation for DPS1.

Next, as DPS2 = I({0, 1}) =

〈(

0 1
1 0

)

,

(

0
0

)〉

, it is easy to check that

〈

a, s | a2 = 1, s2 = s, (sa)2 = sas = (as)2
〉

is a presentation for DPS2 associated to this set of generators.

Finally, recall that DPS3 = 〈α1, β2, γ〉. Then, by using GAP computational system [17], we can easily verify
that

〈

a1, b2, c | a
2
1 = 1, b22 = b2, a1b2 = b2a1, c

3 = c, b2c
2 = c2b2 = ca1c, (a1c

2)2 = (c2a1)
2, (b2c)

2 = b2cb2
〉

is a presentation for DPS3 associated to the generators α1, β2 and γ.
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[5] J. Araújo, W. Bentz, J.D. Mitchell and C. Schneider, The rank of the semigroup of transformations
stabilising a partition of a finite set, Mathematical Proceedings of the Cambridge Philosophical Society,
159 (2015), 339–353.
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