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On the Most Likely Voronoi Diagram
and Nearest Neighbor Searching?

Subhash Suri and Kevin Verbeek

Department of Computer Science, University of California, Santa Barbara, USA.

Abstract. We consider the problem of nearest-neighbor searching among a set
of stochastic sites, where a stochastic site is a tuple (si, πi) consisting of a point
si in a d-dimensional space and a probability πi determining its existence. The
problem is interesting and non-trivial even in 1-dimension, where the Most Likely
Voronoi Diagram (LVD) is shown to have worst-case complexity Ω(n2). We
then show that under more natural and less adversarial conditions, the size of the
1-dimensional LVD is significantly smaller: (1) Θ(kn) if the input has only k
distinct probability values, (2) O(n logn) on average, and (3) O(n

√
n) under

smoothed analysis. We also present an alternative approach to the most likely
nearest neighbor (LNN) search using Pareto sets, which gives a linear-space data
structure and sub-linear query time in 1D for average and smoothed analysis
models, as well as worst-case with a bounded number of distinct probabilities.
Using the Pareto-set approach, we can also reduce the multi-dimensional LNN
search to a sequence of nearest neighbor and spherical range queries.

1 Introduction

There is a growing interest in algorithms and data structures that deal with data uncer-
tainty, driven in part by the rapid growth of unstructured databases where many attributes
are missing or difficult to quantify [5, 6, 10]. Furthermore, an increasing amount of ana-
lytics today happens on data generated by machine learning systems, which is inherently
probabilistic unlike the data produced by traditional methods. In computational geometry,
the data uncertainty has typically been thought of as imprecision in the positions of
objects—this viewpoint is quite useful for data produced by noisy sensors (e.g. LiDAR or
MRI scanners) or associated with mobile entities, and many classical geometric problems
including nearest-neighbors, convex hull, range searching and geometric optimization
have been investigated in recent years [2–4, 14, 16–18].

Our focus, in this paper, is on a different form of uncertainty: each object’s location
is known precisely but its presence, or activation, is subject to uncertainty. For instance,
a company planning to open stores may know all the residents’ locations but has only a
probabilistic knowledge about their interest in its products. Similarly, many phenomena
where influence is transmitted through physical proximity involve entities whose positions
are known but their ability to influence others is best modeled probabilistically: opinions,
diseases, political views, etc. With this underlying motivation, we investigate one of the
most basic proximity search problems for stochastic input.
? The authors gratefully acknowledge support from the National Science Foundation, under the

grants CNS-1035917 and CCF-11611495, and DARPA.



Let a stochastic site be a tuple (si, πi), where si is a point in d-dimensional
Euclidean space and πi is the probability of its existence (namely, activation). Let
S = {(s1, π1), (s2, π2), . . . , (sn, πn)} be a set of stochastic sites, where we assume
that the points si’s are distinct, and that the individual probabilities πi are independent.
Whenever convenient, we will simply use si to refer to the site (si, πi). We want to
preprocess S for answering most likely nearest neighbor (LNN) queries: a site si is the
LNN of a query point q if si is present and all other sites closer than si to q are not
present. More formally, let πi = 1− πi, and let B(q, si) be the set of sites sj for which
‖q−sj‖ < ‖q−si‖. Then the probability that si is the LNN of q is πi×

∏
sj∈B(q,si)

πj .
For ease of reference, we call this probability the likeliness of si with respect to q, and
denote it as

`(si, q) = πi ×
∏

sj∈B(q,si)

πj (1)

The LNN of a query point q is the site s for which `(s, q) is maximized.
An important concept related to nearest neighbors is the Voronoi Diagram: it parti-

tions the space into regions with the same nearest neighbor. In our stochastic setting, we
seek the most likely Voronoi Diagram (LVD) of S: a partition of the space into regions
so that all query points in a region have the same LNN. In addition to serving the role of
a convenient data structure for LNN of query points, the structure of LVD also provides
a compact representation of each stochastic site’s region of likely influence.

Related Work. The topic of uncertain data has received a great deal of attention in recent
years in the research communities of databases, machine learning, AI, algorithms and
computational geometry. Due to limited space, we mention just a small number of papers
that are directly relevant to our work. A number of researchers have explored nearest-
neighbors and Voronoi diagrams for uncertain data [2, 4, 14], however, these papers focus
on the locational uncertainty, with the goal of finding a neighbor minimizing the expected
distance. In [19], Kamousi-Chan-Suri consider the stochastic (existence uncertainty)
model but they also focus on the expected distance. Unfortunately, nearest neighbors
under the expected measure can give non-sensical answers—a very low probability
neighbor gets a large weight simply by being near the query point. Instead, the most
likely nearest neighbor gives a more intuitive answer.

Over the past decade, smoothed analysis has emerged as a useful approach for
analyzing problems in which the complexity of typical cases deviates significantly
from the worst-case. A classical example is the Simplex algorithm whose worst-case
complexity is exponential and yet it runs remarkably well on most practical instances
of linear programming. The smoothed analysis framework proposed [22] offers a more
insightful analysis than simple average case. Smoothed analysis is also quite appropriate
for many geometric problems [7, 8, 11, 12], because data is often the result of physical
measurements that are inherently noisy.

Our Results. We first show that the most likely Voronoi diagram (LVD) has worst-case
complexity Ω(n2) even in 1D, which is easily seen to be tight. We then show that under
more natural, and less pathological, conditions the LVD has significantly better behavior.
Specifically, (1) if the input has only k distinct probability values, then the LVD has
size Θ(nk); (2) if the probability values are randomly chosen (average-case analysis),
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then the LVD has expected size O(n log n); (3) if the probability values (or the site
positions) are worst-case but can be perturbed by some small value (smoothed analysis),
then the LVD has size O(n

√
n). Of course, the LVD immediately gives an O(log n)

time data structure for LNN queries. Next, we propose an alternative data structure
for LNN queries using Pareto sets. In 1-dimension, this data structure has linear size
and answers LNN queries in worst-case O(k log n) time when the input has only k
distinct probability values, and in O(log2 n) and O(

√
n log n) time under the average

case and smoothed analysis models, respectively. Finally, the Pareto-set approach can
be generalized to higher dimensions by reducing the problem to a sequence of nearest
neighbor and spherical range queries. We give a concrete example of this generalization
to finding the LNN in two dimensions.

2 The LVD can have Quadratic Complexity in 1D

The most likely nearest neighbor problem has non-trivial complexity even in the simplest
of all settings: points on a line. Indeed, the LNN even violates a basic property often
used in data structure design: decomposability. With deterministic data, one can split
the input into a number of subsets, compute the nearest neighbor in each subset, and
then choose the closest of those neighbors. As the following simple example shows, this
basic property does not hold for the LNN.

qs1 s2 s3

1
4

1
3

3
5

Fig. 1. The LNN of q is s2.

Let the input have 3 sites {(−2, 14 ), (1, 13 ), (3, 35 )},
and consider the query point q = 0 (see Figure 1).
Suppose we decompose the input into two subsets, sites
to the left, and sites to the right of the query point. Then,
it is easy to check that s1 is the LNN on the left, and
s3 is the LNN for the right subset. However, the overall LNN of q turns out to be s2, as
is easily verified by the likeliness probabilities: `(s1, q) = 2

3 · 14 = 1
6 , `(s2, q) = 1

3 , and
`(s3, q) =

2
3 · 34 · 35 = 3

10 .
The likeliness region for a site is also not necessarily connected: in fact, the following

theorem shows that the LVD on a line can have quadratic complexity.

Theorem 1. The most likely Voronoi diagram (LVD) of n stochastic sites on a line can
have complexity Ω(n2).

Proof. Due to limited space, we sketch the main idea, deferring some of the technical
details to the full version of the paper. The input for the lower bound consists of two
groups of n sites each, for a total of 2n. In the first group, called S, the ith site has
position si = i/n, and probability πi = 1/i, for i = 1, 2, . . . , n. In the second group,
called T , the ith site has position ti = i+1, and probability ε, for a choice of ε specified
later (see Figure 2). We will focus on the n2 midpoints mij , namely the bisectors, of
pairs of sites si ∈ S and tj ∈ T , and argue that the LNN changes in the neighborhood
of each of these midpoints, proving the lower bound.

By construction, the midpoints mij are ordered lexicographically on the line, first
by j and then by i. We will show that the LNN in the interval immediately to the left of
the midpoint mij is si, which implies that the LVD has size Ω(n2). In this proof sketch
we assume that if two sites have the same likeliness then the site with the lower index
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s1 s2 sn t1 t2 t3

ε ε ε
1
1

1
2

1
n

mn1 m12 m22

s2 is LNN

Fig. 2. The lower bound example of Theorem 1 with Ω(n2) complexity.

is chosen as the LNN. Without this assumption the same bound can be obtained with a
slightly altered construction, but the analysis becomes more complicated.

Let us consider a query point q that lies immediately to the left of the first midpoint
m11. It is easy to verify that `(si, q) = 1

n , for all 1 ≤ i ≤ n, and therefore s1 is q’s LNN.
As the query point moves past m11, only the likeliness of s1 changes to 1−ε

n , making
s2 the LNN. The same argument holds as q moves past other midpoints towards the
right, with the likeliness of corresponding sites changing to 1−ε

n in order, resulting in
si becoming the new LNN when q lies just to the left of mi1. After q passes mn1, all
sites of S have the same likeliness again, and the pattern is repeated for the remaining
midpoints. To ensure that no site in T can ever be the LNN, we require that (1−ε)n

n > ε,
which holds for ε = n−2. �

3 Upper Bounds for the LVD in 1D

A matching upper bound ofO(n2) for the 1-dimensional LVD is easy: only the midpoints
of pairs of sites can determine the boundary points of the LVD. In this section, we prove a
number of stronger upper bounds, which may be more reflective of practical data sets. In
particular, we show that if the number of distinct probability values among the stochastic
sites is k, then the LVD has size Θ(kn), where clearly k ≤ n. Thus, the LVD has size
only O(n) if the input probabilities come from a fixed, constant size universe, not an
unrealistic assumption in practice. Second, the lower bound construction of Theorem 1
requires a highly pathological arrangement of sites and their probabilities, unlikely to
arise in practice. We therefore analyze the LVD complexity using average-case and
smoothed analysis, and prove upper bounds of O(n log n) and O(n

√
n), respectively.

3.1 Structure of the LVD

We first establish some structural properties of the LVD; in particular, which midpoints
(bisectors) form the boundaries between adjacent cells of the LVD. For ease of reference,
let us call these midpoints critical. Given a query point q, let L(q) denote the sorted list
of sites in S by their (increasing) distance to q. Clearly, as long as the list L(q) does not
change by moving q along the line, its LNN remains unchanged. The order only changes
at a midpoint mij , in which case si and sj swap their positions in the list. The following
lemmas provide a simple rule for determining critical midpoints.

Lemma 1. Suppose that the midpoint mij of two sites si and sj (si<sj) is critical, and
consider the points q′ immediately to the left of mij , and q′′ immediately to the right of
mij . Then, either si is the LNN of q′, or sj is the LNN of q′′.
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Proof. Suppose, for the sake of contradiction, that the LNN of q′ is not si, but instead
some other site sz . Consider the list L(q′) of sites ordered by their distance to the query,
and consider the change to this list as the query point shifts from q′ to q′′. The only change
is swapping of si and sj . Then the likeliness of si and sj satisfy `(si, q′′) < `(si, q

′) and
`(sj , q

′′) > `(sj , q
′), while for all other sites s, we have `(s, q′) = `(s, q′′). Therefore,

the LNN of q′′ is either sj or sz . If sz is the LNN of q′′, then mij is not critical (a
contradiction). So sj must be the LNN of q′′ satisfying the condition of the lemma. �

Lemma 2. If the midpoint mij of sites si and sj , for si < sj , is critical, then there
cannot be a site sz with sz ∈ [si, sj ] and πz ≥ max(πi, πj).

Proof. Suppose, for the sake of contradiction, that such a site sz exists. By the position
of sz , we must have ‖sz −mij‖ < min{‖si −mij‖, ‖sj −mij‖}, and the same also
holds for any query point q arbitrary close to mij . Because πz ≥ max(πi, πj), we have
`(sz, q) > `(si, q) and `(sz, q) > `(sj , q), implying that sz is more likely than both si
and sj to be the nearest neighbor of any q arbitrary close to mij . By Lemma 1, however,
if mij is critical, then there exists a q close to mij for which the LNN is either si or sj .
Hence sz cannot exist. �

3.2 Refined Upper Bounds

Our first result shows that if the stochastic input has only k distinct probabilities, then
the LVD has size O(kn). Let {S1, . . . , Sk} be the partition of the input so that each
group has sites of the same probability, ordered by increasing probability; that is, any
site in Sj has higher probability than a site in Si, for j > i. We write ni = |Si|, where∑k
i=1 ni = n.

Lemma 3. The LVD of n stochastic sites on a line, with at most k distinct probabilities,
has complexity Θ(kn).

Proof. The lower bound on the size follows from an easy modification of the construction
in Theorem 1: we use only k − 1 points for the left side of the construction. We now
analyze the upper bound. Suppose the midpoint mij defined by two sites si ∈ Sa and
sj ∈ Sb is critical, where 1 ≤ a < b ≤ k, and without loss of generality, assume that si
lies to the left of sj . The sites in Sb have higher probability than those in Sa, because of
our assumption that a < b. Hence, by Lemma 2, there cannot be a site s ∈ Sb such that
s ∈ [si, sj ]. By the same reasoning, the midpoint of si and a site s ∈ Sb with s > sj
also cannot be critical. Therefore, si can form critical midpoints with at most two sites
in Sb: one on each side. Altogether, si can form critical midpoints with at most 2k other
sites sj with πj ≥ πi. Thus, |LV D| ≤ 2k

∑k
i=1 ni = 2kn. �

3.3 Average-case and Smoothed Analysis of the LVD

We now show that even with n distinct probability values among the stochastic sites,
the LVD has significantly smaller complexity as long as those probabilities are either
assigned randomly to the points, or they can be perturbed slightly to get rid of the highly
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unstable pathological cases. More formally, for the average-case analysis we assume
that we have a fixed set of n probabilities, and we randomly assign these probabilities to
the sites. That is, we consider the average over all possible assignments of probabilities
to sites. The smoothed analysis fixes a noise parameter a > 0, and draws a noise
value δi ∈ [−a, a] uniformly at random for each site (si, πi). This noise is used to
perturb the input, either the location of a site or its probability. The location perturbation
changes each site’s position to s′i = si + δi, resulting in the randomly perturbed input
S ′ = {(s′1, π1), . . . , (s′n, πn)}, which is a random variable. The smoothed complexity
of the LVD is the expected complexity of the LVD of S ′, where we take the worst case
over all inputs S. The smoothed complexity naturally depends on the noise parameter
a, which for the sake of simplicity we assume to be a constant—more detailed bounds
involving a can easily be obtained. Of course, for this model we need to restrict the
positions of sites to [0, 1]. The smoothed model perturbing the probabilities instead of
the positions is defined analogously.

Our analysis uses a partition tree T defined on the sites as follows. The tree is rooted
at the site si with the highest probability. The remaining sites are split into a set S1,
containing the sites on the left of si, and a set S2 containing the rest (excluding si, see
Figure 3 right). We then recursively construct the partition trees for S1 and S2, whose
roots become the children of si. (In case of ties, choose si to make the partition as
balanced as possible.) The partition tree has the following useful property.

Lemma 4. Let si and sj be two sites with πi ≤ πj . If the midpoint mij is critical, then
sj is an ancestor of si in T .

Proof. Let sz be the lowest common ancestor of si and sj in T , assuming sz 6= sj . By
construction, sz ∈ [si, sj ] and πz ≥ πj . Hence, by Lemma 2, mij cannot be critical. �

Corollary 1. If the depth of T is d, then the size of the LVD is O(dn).

Thus, we can bound the average and smoothed complexity of the LVD by analyzing
the average and smoothed depth of the partition tree T . In the average case, T is
essentially a random binary search tree. It is well known that the depth of such a tree is
O(log n) (see e.g. [21]). In the smoothed model, if the perturbation is on the position of
the sites, then a result by Manthey and Tantau [20, Lemma 10] shows that the smoothed
depth of T is O(

√
n).1 We can easily extend that analysis to the perturbation on the

probability values, instead of the positions of the sites. In a nutshell, the proof by Manthey
and Tantau relies on the fact that the input elements can be partitioned intoO(

√
n/ log n)

groups such that the binary search tree of a single group is essentially random, and in
this random tree, we can simply swap the roles of probabilities and positions. Thus, the
smoothed depth of T is also O(

√
n) if the probabilities are perturbed. (If a perturbed

probability falls outside [0, 1], it is truncated, but the analysis holds due to our tie-
breaking rule.)

Theorem 2. Given a set of n stochastic sites on the line, its most likely Voronoi Diagram
(LVD) has average-case complexity O(n log n), and smoothed complexity O(n

√
n).

1 In [20] a binary search tree is constructed from a sequence of real numbers. We obtain this
sequence from our input by ordering the stochastic sites by decreasing probabilities. The
construction of binary search trees in [20] then matches our construction of T .
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4 Algorithms for Constructing the LVD

Our main tool for constructing the LVD is the likeliness curve `(si) : R→ R of a site
si, which is simply the function `(si, q) with q ranging over the entire real line R. A
likeliness curve `(si) has O(n) complexity and it is a bimodal step function, achieving
its maximum value at q = si (see Figure 4). By presorting all the sites in the left-to-right
order, we can easily compute each `(si) in O(n) time, as follows. Start at q = si and
walk to the left updating the value `(si, q) at every midpoint of the form mij with
1 ≤ j < i. We do the same for the right portion of `(si), walking to the right instead
(and i < j ≤ n). In the same way we can compute a restriction of `(si) to some
interval I: assuming si ∈ I , it is easy to see that this restriction can be computed in time
proportional to its complexity.

We can now compute the LVD by constructing the upper envelope U of all `(si),
for i = 1, . . . , n. A naive construction, however, still takes O(n2) time since the total
complexity of all likeliness curves is quadratic. Instead, we restrict the likeliness curve of
every site to a critical subpart such that the upper envelope of these partial curves gives
the correct U . In particular, for each site si, define the influence interval Ii as follows.
Let sj be the first site encountered on the left of si for which πj ≥ πi, and let sz be
such a site on the right side of si. Then we define Ii = [mji,miz]. (If sj and/or sz does
not exist, we replace mji with −∞ and/or miz with∞, respectively.) Observe that, for
any q /∈ Ii, either `(si, q) < `(sj , q) or `(si, q) < `(sz, q), since either sj or sz is closer
to q and πj , πz ≥ πi. We define `′(si) as the restriction of `(si) to the interval Ii (see
Figure 4). Clearly, U can be constructed by computing the upper envelope of just these
restrictions `′(si), and the complexity of each `′(si) is exactly the number of midpoints
involving si that lie in Ii. Thus, given the defining sites sj and sz of Ii, the complexity
of `′(si) is the number of sites in the interval [sj , sz] minus one (excluding si).

Lemma 5. The complexity of the union of all `′(si), for i = 1, 2, . . . , n, is O(nd),
where d is the depth of the partition tree T of the input sites. Furthermore, the union of
`′(si) can be represented by d curves of O(n) complexity each.

Proof. Let σ1, . . . , σr be the set of sites at a fixed depth in the partition tree T in order,
and let τi, for 1 ≤ i < r, be the lowest common ancestor of σi and σi+1 in the tree.
It is easy to see that the influence interval of a site σi is defined by a site in [τi−1, σi]
(possibly τi−1) and a site in [σi, τi] (possibly τi), assuming 1 < i < r (otherwise the
influence interval may extend to −∞ or +∞, see Figure 3). Hence the complexity

s1 s2 s3 s4 s5 s6 s7 s8 s9

I6
I2

I1 I4
I3 I5

I7
I9

I8

s6

s2 s7

s1 s4

s8s3 s5

s9

T

Fig. 3. The influence intervals (left) and the partition tree (right).
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si

Ii

`′(si)

`(si)

Fig. 4. The likeliness curve `(si) of si and its restriction `′(si) to Ii.

of `′(σi) is bounded by the number of sites in the interval [τi−1, τi]. Furthermore, all
influence intervals of the sites σ1, . . . , σr are disjoint, and so we can combine all `′(σi)
into a single curve with O(n) complexity. The result follows by constructing such a
curve for each level of the partition tree. �

We can use Lemma 5 to efficiently compute the upper envelope U . First, we compute
the d curves f1, . . . , fd mentioned in Lemma 5, one for each level of T . As we construct
T , we simultaneously compute `′(si) for each site si, in time O(|`′(si)|) time. This
takes O(n) time per level of T . We can then easily combine the individual parts `′(si) to
obtain the curves f1, . . . , fd. The total running time of computing the curves f1, . . . , fd
is O(n log n+ dn).

Finally we can construct U by computing the upper envelope of the curves f1, . . . , fd.
We scan through the curves from left to right, maintaining two priority queues: (1) a
priority queue for the events at which the curves change, and (2) a priority queue for
maintaining the curve with the highest likeliness. Both priority queues have size d, which
means that each event can be handled in O(log d) time.

Lemma 6. If d is the depth of T , then the LVD can be constructed in O(n log n +
dn log d) time.

The algorithm is easily adapted for the case of k distinct probabilities. Consider the
sites σ1, . . . , σr (in order) for a single probability value. Since they all have the same
probability, they bound each other’s influence intervals, and hence all influence intervals
are interior disjoint. Now assume that a site sj is contained in the interval [σi, σi+1].
Then sj can add to the complexity of only `′(σi) and `′(σi+1), and no other `′(σz) with
z 6= i, i+1. Thus, we can combine the partial likeliness curves `′(σi) into a single curve
of O(n) complexity. In total we obtain k curves of O(n) complexity each, from which
we can construct the LVD.

Theorem 3. The LVD of n stochastic sites in 1D can be computed in worst-case time
O(n log n+nk log k) if the sites involve k distinct probabilities. Without the assumption
on distinct probabilities, the construction takes O(n log n log log n) time in the average
case,2 and O(n

√
n log n) time in the smoothed analysis model.

2 In general, E[d log d] 6= E[d] logE[d], but using the results of [13], we can easily show that
E[d log d] = O(logn log log n) in our setting.
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5 Time-Space Tradeoffs for LNN Searching

The worst-case complexity of the LVD is Ω(n2) even in 1 dimension and the Voronoi
region of a single site can have Ω(n) disjoint intervals. This raises a natural question:
can the 1-dimensional LNN search be solved by a data structure of subquadratic size
and sub-linear query time? While we cannot answer that question definitively, we offer
an argument suggesting its hardness below.

5.1 A 3SUM Hard Problem

Consider the following problem, which we call the NEXT MIDPOINT PROBLEM: given
a set of n sites on a line, preprocess them so that for a query q we can efficiently
compute the midpoint (for some pair of sites) that is immediately to the right of q.
The problem is inspired by the fact that an LNN query essentially needs to decide the
location of the query point among the (potentially Ω(n2) critical) midpoints of the input.
The following lemma proves 3SUM-hardness of this problem. (Recall that the 3SUM
problem asks, given a set of numbers a1, . . . , an, does there exist a triple (ai, aj , az)
satisfying ai + aj + az = 0.)

Lemma 7. Building the data structure plus answering 2n queries of the NEXT MID-
POINT PROBLEM is 3SUM-hard.

Proof. Consider an instance of the 3SUM problem consisting of numbers a1, . . . , an.
We use these numbers directly as sites for the NEXT MIDPOINT PROBLEM. If there
exists a triple for which ai + aj + az = 0, then the midpoint mij is at −az/2. Thus, for
every input number az , we query the NEXT MIDPOINT data structure just to the left and
just to the right of −az/2 (all numbers are integers, so this is easy). If the next midpoint
is different for the two queries, then there exists a triple for which ai + aj + az = 0.
Otherwise, such a triple does not exist. �

Remark. Thus, unless 3SUM can be solved in significantly faster than O(n2) time,
either the preprocessing time for the Next Midpoint problem is Ω(n2), or that the query
time is Ω(n). However, our reduction does not imply a hardness for the LNN problem in
general: the order of the midpoints in the example of Theorem 1 follows a very simple
pattern, which can be encoded efficiently.

5.2 LNN Search Using Pareto Sets

We now propose an alternative approach to LNN search using Pareto sets, which trades
query time for space. Consider a query point q, and suppose that its LNN is the site si.
Then, si must be Pareto optimal with respect to q, that is, there cannot be a site sj closer
to q with πj ≥ πi. In fact, recalling the influence intervals Ii from the previous section,
it is easy to check that si is Pareto optimal for q if and only if q ∈ Ii. This observation
suggests the following algorithm for LNN: (1) compute the set S of sites si with q ∈ Ii,
(2) compute `(s, q) for each s ∈ S, and (3) return s ∈ S with the maximum likeliness.

Step (1) requires computing the influence intervals for all sites, which is easily
done as follows. Sort the sites in descending order of probability, and suppose they
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are numbered in this order. We incrementally add the sites to a balanced binary search
tree, using the position of a site as its key. When we add a site si to the tree, all the
sites with a higher probability are already in the tree. The interval Ii is defined by the
two consecutive sites sj and sz in the tree such that si ∈ [sj , sz]. Thus, we can find
sj and sz in O(log n) time when adding si to the tree, and compute all the influence
intervals in O(n log n) total time.3 To find the intervals containing the query point, we
organize the influence intervals in an interval tree, which takes O(n log n) time and
O(n) space, and solves the query in O(log n+r) time, where r is the output size. By the
results in previous sections, we have r ≤ min{k, d}, where k is the number of distinct
probabilities and d is the depth of T .

Step (2) requires computing the likeliness of each site efficiently, and we do this by
rewriting the likeliness function as follows:

`(si, q) = πi ×
∏

sj∈(q−a,q+a)
πj where a = |q − si| (2)

With Equation (2), we can compute the likeliness of a site by a single range search
query: an augmented balanced binary search tree, requiring O(n) space and O(n log n)
construction time, solves this query in O(log n) time.

Theorem 4. There is a data structure for 1D LNN search that needs O(n) space and
O(n log n) construction time and answers queries in (1) worst-case O(k log n) time if
the sites involve k distinct probabilities, (2) expected time O(log2 n) in the average case,
and (3) expected time O(

√
n log n) in the smoothed analysis model.

Remark. The query bounds of Theorem 4 for the average and smoothed analysis model
are strong in the sense that they hold for all query points simultaneously, and not just
for a fixed query point. That is, the bounds are for the expected worst case query time,
rather than the expected query time.

6 The Pareto-Set Approach in Higher Dimensions

Our Pareto-set approach essentially requires the following two operations: (1) find the
Pareto set for a query point q, and (2) compute the likeliness of a site w.r.t. q. In higher
dimensions, the second operation can be performed with a spherical range query data
structure, for which nearly optimal data structures exist [1]. The first operation can
be reduced to a sequence of nearest neighbor queries, as follows: (1) find the nearest
neighbor of q, say si, among all sites and add si to the Pareto set, (2) remove all
sites with probability at most πi, and (3) repeat steps (1) and (2) until no sites are
left. We, therefore, need a data structure supporting the following query: given a query
point q and a probability π, find the closest site to q with probability higher than π. A
dynamic nearest neighbor data structure can be adapted to answer this query as follows:
incrementally add sites in decreasing order of probability, and make the data structure

3 If there are sites with the same probability, we must first determine their influence intervals
among sites with the same probability, before adding them to the tree. This can easily be
achieved by first sorting the sites on position.
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partially persistent. In this way, the data structure can answer the query we need, and
partially persistent data structures often require only little extra space.

The required number of nearest neighbor and spherical range queries is precisely the
number of elements in the Pareto set. For a query point q, consider the sequence of the
sites’ probabilities ordered by their increasing distance to q. Observe that the size of the
Pareto set is precisely the number of left-to-right maxima in this sequence (see [20]).
Therefore, the size of the Pareto set is (1) at most k when the input has at most k distinct
probabilities, (2) O(log n) in the average case model, and (3) O(

√
n) in the smoothed

analysis model. (Unlike the bound of Section 5.2, however, this result holds for any
arbitrary query but not for all queries simultaneously.) A concrete realization of this
abstract approach is discussed below for LNN search in 2D.

2D Euclidean LNN Search. For the sake of illustration, we consider only the average
case of LNN queries. In this case, an incremental construction ordered by decreasing
probabilities is simply a randomized incremental construction. We can then use the
algorithm by Guibas et al. [15, Section 5] to incrementally construct the Voronoi diagram
including a planar point location data structure, which uses O(n) space on average.
Although not explicitly mentioned in [15], this data structure is partially persistent.
Using this data structure we can answer a nearest neighbor query in O(log2 n) time.
For the circular range queries, we use the data structure by Chazelle and Welzl [9,
Theorem 6.1], which uses O(n log n) space and can answer queries in O(

√
n log2 n)

time. The final result is a data structure that uses, on average, O(n log n) space and can
answer LNN queries in O(log2 n · log n+

√
n log2 n · log n) = O(

√
n log3 n) time.

7 Concluding Remarks

The introduction of uncertainty seems to make even simple geometric problems quite
hard, at least in the worst case. At the same time, uncertain data problems and algo-
rithms may be particularly well-suited for average-case and smoothed analyses: after all,
probabilities associated with uncertain data are inherently fuzzy measures, and problem
instances whose answer changes dramatically with minor perturbations of input may
suggest fragility of those probabilistic assumptions.

Our research suggests a number of open problems and research questions. In the
1-dimensional setting, we are able to settle the complexity of the LVD under all three
analyses (average, smoothed, and worst-case), and it will be interesting to extend the
results to higher dimensions. In particular, we believe the worst-case complexity of the
d-dimensional LVD is Ω(n2d), but that is work in progress. Settling that complexity in
the average or smoothed analysis case, as well as in the case of k distinct probabilities,
is entirely open.
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