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A model for the movement of a small viscous droplet on a surface is constructed that 

is based on the lubrication equations and uses the dynamic contact angle to describe 

the forces acting on the fluid at the contact line. The problems analysed are: the 

spreading or retraction of a circular droplet; the advance of a thin two-dimensional 

layer; the creeping of a droplet or cell on a coated surface to a region of greater 

adhesion; the distortion of droplet shape owing to surface contamination. Relevant 

biological problems concerning cell movement and adhesion are described. 

1. Introduction 

Although we shall examine a purely fluid problem of droplet motion, the motivation 

for this work derives from an investigation of the analogous biological phenomenon 

of cell spreading. Since the theory is shaped to this end some knowledge of cell processes 
is necessary. 

The life cycle of a normal cell cultured in witro is marked by extreme changes in 

shape that seem to be intrinsically related to basic metabolic functions (Folkman & 
Greenspan 1976). A cell, which is globular and almost spherical during mitosis, is 

otherwise very flat and spread extensively on the substratum. Both configurations are 

required: the normal cell must be flat for a substantial time in order to survive (in 

contrast to the abnormal or cancerous cell), but ‘round-up’ is essential for division 

and reproduction. For example, an eighteen-hour cell cycle might consist typically of 

a long, sixteen-hour period in the flat, spread state during which time materials are 

accumulated and synthesized, followed by round-up to a sphere t ha t  lasts half an hour, 

division into two daughter cells (spheres) in, say, one hour and a spread once again to 
the pancake geometry in another half hour. 

Interfacial tensions between membrane, substratum and medium are known to 

be involved in cell motility (Carter 1967) and tissue organization (Steinberg 1972) and 

they must also be a part of the physical mechanism of spreading and round-up. 

Although the cell is far too complex a structure for any exact analogy with the wetting 

of a surface by an oil droplet, neither can it be immune to the action of interfacial 

forces. Indeed, the descriptions and photographs of the early stages in the spreading 

of a cell given by Bragina, Vasiliev & Gelfand (1976), and Pegrum & Maroudas (1975) 

and the dependence of cell attachment and the degree of its flattening on chemical 

factors and on the composition of the solid substratum (noted by the latter authors) 

are forceful arguments for such an analogy. Carter (1967) reported that a cell on a 

palladium-coated cellulose acetate surface moves in the direction of greater adherence 

(i.e. greater palladium concentration) and this too seems comparable to the motion 
of an oil globule caused by variable surface tension. 
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A fluid-dynamical model of the cell is required to describe round-up, division (see 

Greenspan 1977) and spread and to comprehend the observed correlations of form 

and function during these phases. In  addition, a model of this kind can be used to 

examine cell motility on the substratum as well as to initiate a more ambitious attack 

on tissue fluid dynamics in general. A very important theoretical objective is the 

ability to differentiate, at some level of understanding, between cell phenomena that 

depend mainly on inanimate fluid mechanisms, instabilities for example, and those 

extraordinary cell processes that characterize life. The chemical system of the cell is 

miraculous and can be invoked (like a Maxwell demon) to explain almost any activity 

or observation. If, however, an inanimate and quite ordinary fluid mechanism accounts 

as well for particular events then there is much less reason for a complex life process 

to the same end. Fluid-dynamical studies of cell biology are certain to provide insight 

into and understanding of the motion of protoplasm (where too often, at present, 

movement is attributed solely to the contraction of polymerized fibres). 

Hydrodynamics on the microscale is a largely unexplored area (see Batchelor 1976) 

and the paucity of data on the rheology of protoplasm compounds the difficulties that 
confront the theoretician. In  these circumstances, it is propitious to examine the 

features of cellular motion and behaviour that can be simulated by liquid droplets 

with approximately the same gross physical properties, as expressed by the appro- 

priate dimensionless numbers. To be specific, we consider the adhesion, spreading and 

movement on a plane surface of a very small, very viscous droplet whose physical 

parameters are as follows: kinematic viscosity, v > 0.1 cm2/s (Hiramoto 1967); 

density, p N 1 g/cm3; interfacial tension, c < 0.1 dynelcm (Harvey 1954); diameter, 

2a N 2 x 10-3cm. Furthermore, the photographs of Bragina et al. (1976) indicate that 

the static contact angle of a fibroblast cell fully spread on glass is in the range 1 0 - 2 0 O .  

The velocity of the advancing contact line is approximately U = 10-8cm/s, a value 

calculated from a 20 pm increase in the diameter of a cell in, say, half an hour. In essence 

then the fluid problem analogous to the spread of a cell concerns a deformable 

droplet and low Reynolds number motion that is produced by surface-tension 

forces at the contact line. Effects of the ambient, less viscous medium are neglected. 

2. Formulation 

Any attempt to analyse the simply described problem of a self-spreading (or 

moving) droplet on a plane surface encounters formidable theoretical difficulties. 

Since motion is controlled by forces at the fluidlsolid contact line, there is a serious 

question as to how these local molecular processes are to be represented within a 

macroscopic continuum theory. In  static situations, the contact angle at  the interface 

is the classical means of describing the balance of surface-tension forces there. The 

dynamic contact angle, which is the instantaneous slope angle at  a moving edge, is 
the most natural extension of this concept. 

Experiments on advancing contact lines and dynamic contact angles (Ghiradella 
& Radigan 1975; Schwartz & Tejada 1972) indicate that the process by which fluid 

molecules displace those of the surrounding medium in adhering to the surface 

involves an unseen protruding lip of fluid only Angstroms thick. Blake & Haynes 

(1  969), in a study of dynamic contact angles, described the fluid motion within a narrow 

zone about the contact line as a sliding of molecules along the solid surface. Their 
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analysis, which is based on the theory of absolute reaction rates and is applicable to 

slow flows, gave the velocity of the contact line as a function of cos 0, - cos 8, where 

8, and 0 are the static and (observed) dynamic contact angles. The validity of this 

relationship at low velocities is confirmed by the experiments of Schwartz & Tejada 

(1972) and Hoffman (1975), who by means of a shift factor reduced the test data from 

various fluids to a single curve of velocity us. contact angle. 

Hydrodynamical studies by Huh & Scriven (1971), Dussan V. & Davis (1974), 

Dussan V. (1976) and Hocking (1976) show that when a fluid is allowed to slip on the 

surface in the immediate neighbourhood of the contact line previously unacceptable 

results regarding the magnitude of the shear force at  the edge can be corrected. In 

other words, the usual no-slip condition of continuum theory must be modified near 

the site of adherence. Indeed, slippage in this region yields finite shear stresses there 

and only a negligibly small correction to the flow field elsewhere, a result confirmed 

again shortly. 

The dynamic contact angle calculated from a macroscopic theory can be a very 

sensitive mathematical abstraction that is unrelated to the angle actually observed 

and measured in experiments. However, this is not the case for the particular class of 

problems considered here. The conditions assumed imply that the theoretical dynamic 

contact angle is only slightly dependent on the slippage near the liquid/solid boundary 

and as such the concept seems well founded and applicable. In  anticipation of this 

result and the restrictions that the dynamic and static contact angles 0 and 0, are 

small with 18 - S,l .g S,, the velocity of a fluid particle at the contact line is assumed 

to be 

where A is the outward unit normal to the boundary curve r in the plane of the surface. 

Since 

qe = K ( e  - e,) ii, 

COB e, - cos e N (sin e,) (e - e,) 

this is consistent with the formula derived by Blake & Haynes (1969). 

Let 
= 4x9 9 9 4  

h(xe,ye,t) = 0 

describe the free surface of the droplet so that I? is defined by 

and 

For small contact angles 

and we can then write 

Since 

ii = -Vh/lVhl at h = 0. 

6, N tane,, 6 N tan0 = lVhl 

q e  = - ~ ( v h )  (1-es//Vhl)lh=o. (2.2) 

(2.2) provides two differential equations for the Lagrangian co-ordinates of a point 

on the boundary whose integration gives the locus of the particle and hence the 
position of the contact line at  a later time t. 

The intrinsic nonlinearity of fluid flow within a deforming geometry makes for an 

interesting but almost intractable analytical problem which is also very difficult to 
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solve numerically. That motion is produced by forces at  the contact line, where 

there is zero mass in a continuum theory, only further complicates the problem, 

Fortunately, the specific conditions of cell motility described earlier, and of analogous 

fluid problems which concern the slow motion of a small, flat, viscous droplet, are 

exactly those for which lubrication theory is known to be an adequate approximation. 

Basically the physical situation is one for which viscous stresses and surface-tension 

forces are predominant, inertial effects are unimportant and the fluid is always in a 

state of near equilibrium. However, the evolution of the fluid domain with time means 

that even the simplified dynamical problem is still highly nonlinear. 

Lubrication theory consists of a depth -averaged equation of mass conservation and 

a simplified form of the Navier-Stokes equations that is appropriate for a thin layer 

of very viscous fluid. In  the approximate momentum law, the pressure gradient is 

horizontal and balanced entirely by the vertical shear of the horizontal velocity 

q H  = q-(q .k)k ,so tha t  

p =p(x ,y , t ) ,  vHP = pa2qH/a22* (2.4) 

The conservation-of-mass equation when averaged vertically across the thickness h 
of the drop or layer is 

(2.5) 
where 

ah/at + VH . (hQ) = 0, 

The pressure at z = h(x, y, t )  (and hence for 0 < z < h) is equal to the capillary pressure, 

which is the product of the interfacial tension (r and the mean curvature of the free 

surface. For a fairly flat geometry, the balance is given by 

(2.7) 

agH/az = o (2.8) 

p = P ( X ,  y, t )  = - d 2 h .  

On the free surface, the horizontal shear stress is assumed to be zero, 

(the effects of a surfactant or variable surface tension could be introduced at  this stage), 

whereas on the solid boundary z = 0 

K ( h )  aqH/aZ = qIf* (2.9) 

The slip coefficient function ~ ( h )  is essentially zero except in the vicinity of a contact 

line when the thickness h of the layer is less than say O(lOO0A). (Alternatively, a 

nearby contact line is implied whenever h is so small.) The explicit form used is 

~ ( h )  = a/3h, (2.10) 

where a is a small number, O( 1O-Io cm2) or less is a likely range. [Other, more general 

formulae for the slip coefficient within a lubrication theory are given by Huh & Scriven 
(1971). Neogi & Miller (1976) introduce an effective wall velocity for the spreading 

fluid that is related to the porosity and roughness of the substratum, but formally 

this turns out to be equivalent to (2.10).] Finally, the mass or volume of the droplet 

remains a constant as its shape changes and this implies 

n c  

(2.11) 
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where at' is the area within the contact line. 

Vertical integration of (2.4) incorporating conditions (2.8) and (2.9) yields 

q H  = p-' ( V H ~ )  (8z2-hz-K(h)h) ,  

from which it follows that 

or by (2.7) and (2.10) 
Q = -p-' (v~P) (4h2 K ( h )  h),  

Q = ( ~ / 3 p )  (h2 +a) V(V2h). 

129 

(2.12) 

The substitution of this formula for the depth-averaged velocity in (2.5) leads to a 

single equation for the thickness of the droplet: 

ah/at + (a/3p) v . [h(h2 + a) v (VZh)] = 0. (2.13) 

This must be solved, subject to initial conditions, within the time-varying domain 
bounded by the contour r = h(z,(t), y,(t), t )  = 0, which moves in accordance with 

(2.14) 

The shape of the fully spread, static droplet provides the characteristic values of the 

length, contact angle and thickness which are used to make the problem dimension- 

less. If a, and 0, are the final radius of the drop and the equilibrium contact angle and 

if U = ~ 0 ,  characterizes the velocity of spread, dimensionless variables can be intro- 

duced by the following transformations : 

h+u,0,h; x, y+u,x,u,y; t-+(u,/~0,)t; q+uq. 

With dimensionless parameters defined by 

e = 3pu/0; B, p2 = a/0; a:, 

the governing equation in dimensionless variables is 

& a h / a t + V . [ h ( h 2 + p ) v ( V 2 h ) ]  = 0, 

which must be solved in the area s%' contained by the contact line 

(2.15) 

(2.16) 

= h(x,(t),y,(tLt) = 0. 
At the edge 

and since 

it follows that 

The initial condition is 

and the constancy of droplet volume is expressed by 

q, = k.,(t)P+&(t)j = -(Vh+fi)l,=, = - ( v h ) ( l - l / / v h ~ ) / ~ = o  

Q = &-l(h2 +p2)  V(V2h) 

q, = limQ = (/12/e)V(V2h)lh=0. 

(2.17) 

(2.18) 

(2.19) 
h-0 

h(z, y, 0) = hi@, Y )  (2.20) 

5 

(2.21) 

F L M  84 
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3. Procedure 

In  circumstances for which CT = 0.1 dyne/cm, p = 1 g/cm3, plp = 0.1 cm2/s, 0, 

-N 0-2 rad (lo'), us = cm and K = lO-5cm/s, it follows that 

8 N 10-3. (3.1) 

The parameter a in (2.10) is chosen to make p2 moderately small, say p2 < 1 since this 

seems consistent with the approximation that fluid slippage on the substratum is to 

be significant only when the droplet thickness is O(lO0d) or less. For example, 

a < 10-10 cm2 implies /32 < lop2, but the only restriction really required by subsequent 

This is certainly satisfied as /3 varies over a very wide range including the extreme 

values p2 = O(a)  which might be encountered for a larger droplet (with 8 small but 

us = 1 and 0, = 1). 

The basic procedure is to express h, and all other dependent variables, as power 

series in 8 (but to regard p as anindependent parameter). Given the approximate nature 

of the model, only the lowest-order results for h and Q are of real interest or relevance. 

However, it  is important to check, in at least one example, that the slope or contact 

angle at the boundary is a well-defined and useful concept in that it too can be described 

by a regular perturbation series in 8. 

Let 
h = h0+€hl+ ...; (3.3) 

(3.4) 

the substitution of this series in (2.16) iruplies that 

v . [h0(hi +p) V(V2h0)] = 0. 

Likewise, the replacement of Q by 

Q = Qo+sQl+ ... 
in (2.18) shows that 

(3.5) 

In  order that all physical variables of the problem be regular functions of E ,  the solution 

of (3.4) must also annihilate the O(l/s) term in the last equation for the velocity. It 
follows that the only acceptable solution satisfies 

or 
V(V2ho) = 0, 

V2ho = -A( t ) ,  (3.7) 

where A(t)  is an arbitrary function of time. The,interpretation is clear: the mean 
curvature of the droplet surface depends only on time and not on position. In  other 

words, the surface curvature is spatially uniform during the slow motion of the droplet, 
and a state of quasi-equilibrium is established by the balance of internal and capillary 

pressures, both of which are functions only of time. 

The depth-averaged velocity is determined at  the next order of calculation from 
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The boundary conditions must also be expressed as perturbation series in order to 

complete the boundary-value problem for h,. Although the theory is developed to this 

extent for a few problems considered in the next section, the main interest at  present 

concerns droplet shape and movement rather than internal fluid velocity and this 

information is already obtainable from ho(x, y ,  t ) .  (For certain idealized geometries, 

Qo can be calculated directly from (3.9) but in general h, must be determined first and 

this is a difficult task.) In  view of these objectives, it is convenient to eliminate the 

subscript notation (so that h, is written simply as h),  in which case the basic, 0(1), 

boundary-value problem to be solved is 

with 

on the moving boundary I?, for which 

The initial condition is 
qe = keP+gei,g = - (Vh)  (1  - 1/IVhl)lh-o. 

h(z ,  990) = hi(G y )  

and the constancy of drop volume requires 

/Id h dx dy = V,/S, a: (a constant), 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 

where &'is the area enclosed by r at time t. Therefore, a solution of Poisson's equation 

is sought within a moving boundary whose specification is part of the problem. 

4. Spreading and retraction of droplets 

The circular drop 

We consider first the radial spread or retraction of a circular droplet. Since this motion 

is axisymmetric, the independent variables are the radius r and time t .  The moving 

contact line is 

for which 
r = a(t) ,  (4.1) 

h(a(t), t )  = 0, (4.2) 

and a = 1 is the h a 1  equilibrium radius. The solution of (3.10) which satisfies (4.2) 

and is regular at the origin is 
h = tAa2[1- ( r / ~ ) ~ ] .  

The arbitrary function A is determined from (3.14) and the condition that in the final 

equilibrium state Ih,( = 1 at r = a = 1. The result is A = 2/a*, and the droplet shape 
a t  time t is then 

h = (2aZ)-l [ l -  ( r / ~ ) ~ ] .  (4.3) 

The velocity at the contact line is radial and in this case (3.12) becomes 

or by (4.3) 
(4.4) 

5 - 2  
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FIGURE 1. Droplet radius vs. time for circular spreading 

and retraction with initial values of 0.3 and 1.5. 

The position of the contact line is determined by integrating this differential equation 

to obtain 
2a+ 1 

(4.5) 

The arbitrary constant, which can be evaluated from the initial conditions, affects 

only the origin of the time axis and an appropriate translation converts a particular 
solution into a universal function a = a(r),  where r = t + c. Figure 1 shows a(t)  for 

spreading and retraction for initial values a, = 0.3 and 2. 

The dimensionless scheme adopted is not especially appropriate for studying the 

spreading of a droplet whose equilibrium contact angle is zero. However, this particular 

limiting case corresponds to the solution of (4.4) when the radius is small, which is 

a N [4( t+c)]) .  
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The spreading rate u is then proportional at  large times to t-3. Neogi & Miller (1976), 

in a similar analysis of spreading on a rough surface that employs porosity instead of 

the dynamic contact angle, found a spreading rate proportional to t-9, in agreement 

with experiments on polymer melts and glycerol. The difference in rates does not 

seem significant. 

Since Q = QP, equation (3.9) can be written as 

a a 
- (rh) +- (rhQ) = 0. 
at ar 

However, it follows from (4.3) that 

a u‘a 
- (rh) = - - - (r2h), 
at a ar 

which allows the integration of the velocity equation 

Q = (h/a) r .  

and leads to the formula 

(4.6) 

Of course (4.31, (4.4) and (4.6) are the lowest-order terms h,, a, and Q, of a consistent 

perturbation expansion, details of which are given in the appendix in order to resolve 

certain mathematical issues. The principal conclusion of that analysis is that 

and 

which implies that the correction to the contact angle is small when E is small for all 

physically realistic values of p. In  other words, the contact angle is a well-defined 

quantity as long as the restrictions imposed are satisfied. 

Frontal spreading 

It is instructive to examine the self-spreading of a thin layer h = h(x, t )  with a straight, 

infinitely long contact line. The motion of this two-dimensional ‘droplet’ can be com- 

pletely determined to O(c2) in the perturbation formalism. 

The solution of the basic boundary-value problem for this geometry is 

h = (Za)- l [ l -  (x/a)”, (4.7) 

where x = a( t ) ,  the position of the contact line, satisfies 

It follows that 

- 

u = ip- 1. 

This implies a spreading ra,te for small a and large t (values corresponding to the 
spread of a fluid whose equilibrium contact angle is zero) that is proportional to t-8.  
Examination of the terms of next order again shows only O(e1ogP) corrections to 
both h and h,. 
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5. Creeping motion of a droplet on a coated surface 

A surface is coated with a material that affects the equilibrium contact angle of a 

droplet placed upon it. If the contaminant layer is deposited uniformly, the droplet 

will spread to a static configuration dictated by the new contact angle. However, if 

the coating is not uniform then the droplet will move in a direction that increases the 

adherence, or equivalently, that lowers the contact angle. The contact line advances 

or recedes where the dynamical contact angle is larger or less than the local equilibrium 

value. Carter’s experiment with cells that migrate towards a region of greater con- 

centration of palladium coating a surface of cellulose acetate is the biological analogue 

of such droplet phenomena. 

To study this effect, it is assumed that the equilibrium contact angle is a function 

of position on the plane, i.e. 8 = O(z,y). (The equilibrium contact angle at (x,y) 
is defined as the contact angle of a droplet on an equivalent surface whose coating 

has everywhere the properties that the real coating has a t  (x, y).) In  the simplest 

case, we assume a linear variation expressed dimensionally by 

8(2) = 8,(1 -Ax). (5.1) 

The equilibrium contact angle then decreases as x increases but the gradient is assumed 

to be very gradual, h < 1. (Obviously, the weak restriction, x < l /h ,  also holds.) 

The only modification required in the formulation is to retain the equilibrium contact 

angle as a function of position. The net effect of this in the dimensionless boundary- 

value problem is to replace (3.12) by 

9 e  = - (Vh) ( 1  -w4/ lVhl ) .  ( 5 4  

The problem then is to determine the motion and shape of an initially circular droplet 

placed on a surface for which the local equilibrium contact angle varies linearly with 

distance. Surprisingly, this complicated problem admits a very simple solution: the 

droplet remains circular but expands slightly as it moves with a velocity that is 

essentially proportional to h (i.e. - O’(x)). 
The hypotheses that the droplet is always circular and moves with variable speed 

in the + x direction are proved correct by actually constructing the solution on this 

basis. To this end, let a(t) be the radius of the circular droplet and V ( t )  its velocity in 

the x direction. It is then advantageous to view the movement from the ( 6 , ~ )  co- 

ordinate system centred in the droplet (see figure 2) with 

the cylindrical co-ordinates ( r ,  $) appropriate for this geometry are defined by 

5 = rcos#, y = rsin#. 

The transformation to the moving system leaves (3.10) unchanged, so that the 

solution of this equation for a circular droplet shape is still 

h = (2aZ)-l [I - ( r / ~ ) ~ ] .  (5.4) 
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0 20 

1 

FIQURE 2. Radius a(t)  and distance travelled L(t)  for a droplet moving on a surface with a linear 
gradient of the equilibrium contact angle; A = 0.1. The light line for a near t = 0 corresponds to 
the movement of a droplet whose initial radius is 0.5. Insert defines variables and shows the motion 

of particles on the contact line as the droplet creeps forward. 

The true velocity of a particle located at  polar co-ordinates (a( t ) ,  $ ( t ) )  on the contact 

line is the sum of the translational velocity of the centre of the droplet and the rota- 

tional velocity about the origin: 

which is equivalent to 

This velocity is related to  the contact angle at  (a, $) by (5.2) and since - V h  = P 
it follows that 

and 

However, 

qe = Vi+aP+a$+, (5.5) 

q, = (Vcos$+h)F+(a+-  Vsin$)+. (5.6) 

q t )  + vcos$(t)  = 1/a3-8(41ra, 

a&t) - V sin #( t )  = 0. 

(5.7) 

( 5 . 8 )  

(5.9) 8 = 1-hz = 1-h r c o s # +  ( s,” V d t ) ,  

and the result of substituting this formula in (5.7) is 

U( t )+  Vcos#( t )  = Vdt+hacos$(t) .  (5.10) 
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According to (5 .8 ) ,  particles at  q5 = 0, ?r do not change their positions on the circum- 

ference as the droplet moves. Therefore, by evaluating this equation at  these two 

locations, both a( t )  and V ( t )  may be determined. That is, a t  # = 0 

and at  q5 = ?r 

as v = -- 1 + h  Vdt+ha  
a3 so” 

a- V = -- 1 + A  Vdt -ha ,  
a3 s,” 

from which it follows by addition and subtraction that 

. I  
u = a3 - - 1 + h 1; V d t ,  (5.11) 

v = ha. (5.12) 

A single equation for the radius a is 

6+(3/u4)c i -h2a = 0 ;  (5 .13)  

the initial conditions at  t = 0 are 

a = ai, a = l/+l. (5.14) 

The distance moved by the droplet is given by the position of its centre: 

L(t) = J; V( t )d t  = h p t ) d t .  (5.15) 

Equations (5.4), (5 .11) ,  (5.12) and (5.15) completely describe the shape, position and 

velocity of the droplet at  any time. In  addition, integration of (5 .8)  completes the 

determination of the Lagrangian co-ordinates (a(t) ,  $( t ) )  of a particle on the contact 

line. 

Substitution for V in (5.8) gives 
4 = Asin#, 

+ ( t )  = 2 tan-1 (e--At tan &hi), (5 .16)  

where q5i is the initial polar angle of the point being tracked. As time increases so does 

I$(t)( (unless #i = 0 ) ,  and this means that a particle on the contact line moves around 

the circumference towards the rear of the droplet as the droplet advances, see figure 3. 

For h small, the motion of a droplet whose initial radius is ai occurs in two stages. 

The initial phase, lasting only a few time units, is one in which the droplet quickly 

adjusts to its immediate surroundings by spreading or retracting to unit size. This is 

followed by a much longer period (whose time scale is O ( l / h ) )  during which the 

droplet slowly movesin the direction of greater adherence to the substratum, i.e. along 

the + x axis. 
Since the initial stage has already been examined in 5 4, we shall concentrate here 

on the motion over the long time scale At, in which case the initial radius of the droplet 

appears essentially to be ai = 1. An accurate approximate solution of (5 .13)  and 

(5.14) is then readily achieved by the substitution 

a(t) = 1 + hy-(t) 

the integration of which yields 

(5.17) 
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FIUURE 3. Contact-line distortion v8. polar angle for a droplet 
on a contaminated surface for K = +n, 77 and 27. 

so that 

with 
t + 3 ( 1 + h 2 & 4 % - ( 1 + h 2 Y )  = 0 

C = O = ~  at t = ~ .  

(5.18) 

It is sufficient to set h = 0 in this equation (instead of developing < as a perturbation 

expansion) and to this degree of approximation we find that 

6 = ~ t - + ( i - e - 3 t ) ,  
O r  

a( t )  = 1 + *h2[t - &( 1 - e-3t)] .  

L(t)  = h[t + hhZ(t2 - Qt + #( 1 - e-3 t ) ) ] .  
It follows that 

( 5 . 1 9 )  

( 5 . 2 0 )  

In  terms ofthe long time scale variable 7 = At, these formulae can be expressed approxi- 

mately as 

( 5 . 2 1 )  

The radius evidently changes very little as the droplet moves a substantial distance; 

for h = 0.01 the radius of the droplet expands by 3 yo in moving a distance of 5 dia- 

meters (7 = 10). The numerical evaluations of ( 5 . 1 3 )  for a(t)  and L(t) are shown in 
figure 3 and confirm the accuracy of these conclusions. 

If the gradient &(z) of the equilibrium contact angle on the coated surface is small, 

SO that there is very little variation about the perimeter of the droplet at any time, 

1 
a N I+@?+ ..., 

L N 7+*/172+ ... . 
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then the velocity of the droplet (or cell) will be opposite but proportional to the 

gradient. To see this, the contact angle is written as a Taylor series about the centre 

of the droplet: 
B(x) = O(L +a cos q5) z O(L) + O‘(L) a cos $. (5.22) 

Two terms of the series suffice because V ( L )  = - A  is assumed small. Since this expres- 

sion is entirely analogous to (5.9) in its q5 dependence, the analysis proceeds as before 
to  the stated conclusions: 

ci = i l a 3 - q ~ )  (5.23) 
and 

‘c7 = - O’(L) a = ha. (5.24) 

Many variants of this problem are possible, including the response of a droplet to a 

contamination field that produces a wavelike variation of the contact angle 

8 = O(x- Ut), 

but these will not be presented here. We also omit discussion of the corresponding 

one-dimensional problems, which, though easily solved, provide little additional 

information. 

6. Droplet distortion due to surface contamination 

Surface coating, contamination or roughness distorts the shape of a droplet by 
modifying the local equilibrium contact angle. The droplet is drawn towards regions 

of greater adherence (i.e. smaller contact angle) and likewise retracts from regions of 

weaker attachment. It is of interest to examine distortion of the droplet as a function 

of the structure and scale of the contamination field. The spread of cells and of com- 

parably sized droplets of Dow Corning 550 fluid do show asymmetries which may be 

attributable to the variation of surface properties. 

The minor anomalies of the solid surface, whatever their source, will be described 

by an equilibrium contact angle that is a function of position given in dimensionless 

notation by 

(6.1) 

where his a small parameter. The effect of this slight variation on the spread and shape 

of an initially circular droplet can be determined by a conventional perturbation 

analysis of the fundamental boundary-value problem, (3.10) et seq., in which (3.12) 

is replaced by 

The general solution of 

in cylindrical co-ordinates ( r ,  q5) is 

&x, Y) = 1 + A@@, y), 

4, = -(vh)(l-e(x,Y)/JVhl)J,=o. (6.2) 

V’h = - A  

00 

h = - & A ( t ) r 2 + B ( t ) + h  (b,(t)cosnq5+c,(t)sinnq5)rn; (6.3) 
n = l  

the coeGcient functions must satisfy the requisite boundary conditions (6.2), which 

in component form are 

(6.4) 
1: = -h , . ( l - e /pq ih=o ,  

r i  = --r-lh&l -B/lVhl)(h=O. 
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The conservation of droplet volume is expressed by 

where &'is the surface area contained by the curve h = 0. It is the extreme complexity 

of the Lagrangian boundary conditions that necessitates the use of perturbation 
theory. However, the procedure is carried out for only one step, to O(h)  terms, and the 

formalism is simplified accordingly. Therefore, let the contact line be described by 

r = 4 0  + Ay($, t )  (6.6) 

so that h(a + Ay, t )  = 0 (6.7) 

and write A = A,+AA,, B = Bo+ABl. (6.8) 

The coefficients b, and c, need not be expanded to this order of approximation, but 
the Lagrangian co-ordinates of a point on the contact line, which are involved in 

(6.4), must be expressed in powers of A. The relationship between the radial and azi- 
muthal velocity components of a particle on the edge is provided by differentiating 

(6.6) to obtain 

This shows that only the first term of the expansion 

(6.9) w = 4 t )  + 4% + 74 d). 

$ = $0 + O ( 4  

appears in the calculation for either .i or a to the degree of accuracy required and the 
subscript zero is dropped. 

The substitution of these perturbation series in (6.4), (6.5), (6.7) and (6.9) and the 

expenditure of the usual amount of effort required by this method (the details of which 

are omitted in the interest of brevity) lead to the following results. From (6.5) and 

(6.7), we obtain 

A,  = 2/a4, B, = 1/2a2, B, = &a2Al, (6.10) 

while (6.4) and (6.9) yield (4.4) once again and 

d = 0, (6.11) 

(6.12) 1 
00 

- &Al a2 + (b ,  cos nq5 + cn sin nq5) a, , 
n = l  

m 
71 Vt  = - @(a cos 4, a sin q5) + 2 + &LA, - C n(b, cos nq5 + c, sin n$) an-,. (6.13) 

n = l  

Thus (6.11) implies that the azimuthal co-odinate q5 of a point on the contact line is a 

constant to O(h)  i.e. the particle path is a ray from the centre. The last two equations 

can then be treated as ordinary Fourier series expansions. The elimination of 7 

between (6.12) and (6.13) allows equations for A,, b, and cn to be determined from the 
corresponding Fourier coefficients of @(a cos q5, a sin q5) and the initial conditions. 

These ordinary differential equations are 

d 
-(a5ki1)+3aA1 dt = @(acosq5,asinq5)dq5, (6.14) 

(6.15) 
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the initial conditions are A ,  = 0 = b, = c, and a = ai. Once the coefficient functions 

are known, the contact line is determined by (6.6) and (6.12) and the droplet ahape 

is obtained from (6.3) or 

As a specific example, we calculate the final shape of a unit droplet (a = 1) on a 

(6.17) 

surface for which 

This function satisfies the necessary condition for the droplet to remain motionless, 

0(z, y) = sin kxsin ley. 

jo2T a(cos 4, sin 4) ei$d4 = 0, 

and describes a periodic distortion of surface contamination whose length scale is 

nlk. The distortion of the droplet depends on the magnitude of this length compared 

with unity, the radius of the droplet, but for the theory to be valid Ak/n must also be 

small. 

It follows from the substitution of (6.17) in (6.14) and (6.15) that 

A ,  3 0, b, = 0,  cZn+, = 0 
and 

2 nn 
c2, = - - sin - J2,(24k), 

2n-1  2 

where J is the Bessel function of the first kind. Therefore 

(6.18) 

(6.19) 

where for convenience we define K = 24k. This is a rapidly converging series and unless 

K is large the deviation of the contact line is almost entirely given by the first term 

- 2J2(K) sin 24.  

Figure 3 illustrates the distortion of the contact line in three cases: K = &r, n and 

2n. It is evident that the higher harmonics are not significant for K < n; moreover, 

the effect of the contamination on the droplet is very nearly maximal at  K = n. 

The spatial distribution given by (6.17) is one for which the perturbation of the 
contact angle is alternately positive and negative on a chequered grid of identical 

squares of diagonal 2nIK. For the values chosen the respective diagonals are 6, 2 and 

1 and the grids for the last two cases are shown superposed on the unit droplet in 

figure 4. When K = n and a maximal response is induced, each square is approximately 

the size of the droplet. The droplet distorts by moving into regions where the contact 

angle is decreased (marked with a minus) and retracting from regions of higher contact 

angle (marked plus). The situation is similar but much less pronounced for the largest 

grid; the smallest grid ( K  = 277) offers many possibilities for local spreading and 

retraction and hence for the generation of higher harmonics in the Fourier series. We 

conclude t h a t  surface variations on the length scale of the droplet are most important 

in producing distortions. 

The response of a round, spreading or retracting droplet on an uncontaminated 

surface to a perturbation of shape can be examined by setting 0 = 0 in (6.14) and 

(6.15). For a = 1, the coefficients A,, b, and c, ( n  =i= 1)  tend to zero exponentially as 
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1 -DURE 4. Droplet on a surface contaminated in a chequered pattern corresponding to t - -e  values 
(a)  K = 7r and (a) K = 27r of figure 3. The equilibrium contact angle decreases or increases in 
regions marked minus or plus. The droplet moves in the directions of the arrows. 

t increases. All initial perturbations must decay a t  the same rate, which shows that 
the circular geometry is a stable configuration. Perturbations can also be shown to 

decay in the cases of a spreading or retracting droplet whose radius is a function of 

time a(t)  given by (4.5). 

7. Summary 

Despite rather obvious limitations, lubrication theory is an effective means of 
studying the motion of thin viscous layers on a surface. (Lacking adequate numerical 

models, i t  is perhaps the only feasible method a t  present.) The analysis here was 
directed specifically at the movement of small fluid droplets and analogous biological 

problems of cell motion and we have described in some detail contact-line behaviour 

and the conditions of droplet motion and distortion. 

The salient features and principal conclusions can be summarized as follows: 

(i) the model is based on the lubrication equations and the dynamic contact angle 

expresses the forces exerted on the fluid a t  the moving contact line; (ii) the dynamic 

contact angle is shown to be a well-founded and meaningful concept within the 

imposed restrictions; (iii) the droplet maintains a spatially uniform, but time- 

dependent mean curvature in moving on the solid surface; (iv) the spreading and 

retraction of droplets are stable processes in that a circular contact line always 

evolves in time; (v) the velocity of a small droplet on a contaminated surface is 

opposite but proportional to  the gradient of the equilibrium contact angle; (vi) a 

creeping droplet expands only slightly in moving several diameters from its original 

position; (vii) surface contamination on the scale of the droplet diameter is most 

effective in producing distortions of the droplet surface and its contact line. Agree- 

ment with certain experiments is good, and the theory suggests others for further 
comparison, but it is not surprising that many (if not most) adherence phenomena lie 
outside the scope of this work. However, some of these may be amenable to  analysis 

along similar lines by including new physical processes. Among the more important 

modifications is the introduction of a surface-active chemical of either external or 

internal origin (in the cell) which would be incorporated by an appropriate condition 

on the free surface. This and other variations relevant to  biological problems are being 

studied and will be reported in due course. 
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Appendix 

In  5 4, the solution for the spreading droplet was expressed as perturbation series 

h = ho+ehl+ ..., 
a = a,+ea,i- ...; 

the functions h, and a, are given as h and a in (4.3) and (4.5). The complete boundary- 

value problem for h, is 

with 

and 
ah,/ar = 0 = a3h,/ars on r = 0 

I h, +al ah,/ar = 0 

Constant droplet volume requires that 

lom h, r dr = 0. 

If g = r/u,, then substitution for h, in (A I )  and integration of that equation yields 

where 

Therefore ah,/ag is a regular function in 0 < 5 < I, and at the edge 6 = 1 

where 

Moreover it follows from (A 2) that 

Analysis of these equations shows that ,  for all f, in the unit interval 

when h is small. The final integration of (A 3), 

h = 2a: P, c = 8al/ag - 2 4  u,[l - h tan-, (llh)]. 

ah,/a< = - @a: 6, + 4aJa& 

w = log [A( 1 + h2)-+] + 1 - h tan-1 ( ~ / h ) .  

6, + 3aJa; = wa: 6,. 

ah,/ag = O(l0g A )  

is not reducible to simple functions but examination of the integrals involved leads to 

the conclusion that 
hl = O(l0gA). 
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