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Abstract

There is an increasing use of computers in the design, manufacture and
manipulation of physical objects. An important aspect of reasoning about such
actions concerns the motion of objects in contact. The study of problems of
this nature requires not only the ability to represent physical objects but
the development of a framework or theory im which to reason about them. 1In
this paper such a development is investigated and a fundamental theorem con-
cerning the motion of objects in contact is proved. The simplest form of this
theorem states that if two objects in contact can be moved to another confi-
guration in which they are in contact, then there is a way to move them from
the first configuration to the second configuration such that the objects
remain in contact throughout the motion. This result is proved when transla-
tion and rotation of objects are allowed. The problem dealing with more gen-
eralized types of motion is also discussed. This study has obvious applica-

tions in compliant motion and in motion planning.

Keywords: compliant motion, motion planning, solid modelling, robotics, com-
plexity theory

This work was supported in part by NSF grant ECS-8312096 and an NSERC gra-
duate scholarship.



Introduction
The increasing use of computers in the design, manufacture and manipula-
tion of physical objects underscores the need for a theory to provide a frame-

work for reasoning about transformations of objects. In this paper we take a

first step towards developing such a theory.

One may define an object such as a shaft or connecting rod without
instantiating its position or orientation. More generally one can define a
rectangular solid without specifying its dimensions. In fact omne can define
an ‘object without instantiating its shape. For example, the shape of an
ellipsoid parameterized by the ratio of its axes is determined only when the
parameter is fixed. To obtain a specific instance of the ellipsoid one pro-
vides the ratio of major to minor axis, the length of the major axis and its
orientation with respect to some coordinate system along with the position in
3-space of the center of the ellipsoid. In this framework an object is the
image of an instance of a parameterized homeomorphism from a canonical region
in 13 to ls. Thus all instances of an object are homeomorphic and therefore
topologically equivalent., A sphere and an ellipsoid can be instances of the
same object but a sphere and a torus cannot. A sphere might be given by the

parameterized mapping

f(x,y,z)=(xr+a, yr+b, zr+c)

from a unit sphere centered at the origin in I; where a,b and ¢ give the
coordinates of the center and r is the radius. Corresponding to a particular
instantiation of the sphere is a point in the four dimensional parameter

space.

In this generalized setting a motion is a continuous mapping from [0,1]

into the appropriate parameter space. Thus a motion is a path in the



parameter space. A motion can be a combination of translation, rotation,
growth or more complicated continuous deformation of shape. It is our hope
that this view will be useful in defining and manipulating generic objects as
well as deformable or nonrigid objects. For our purposes we limit ourselves
to motions where the transformation can be parameterized by a finite number of

parameters.

Although it is traditiomal to think of objects in terms of their shape
and dimension and then to deduce functionality from the shape, it is enticing
to think of representing objects by functionality and then deducing shape. In
designing for automatic assembly one is normally free to modify objects for
ease of assembly. Thus designing for functionality and allowing the func-
tionality and assembly process to determine shape and size is a desirable
goal. Furthermore, parameterized design provides additional advantages. For
example, instead of designing a drive shaft for a particular torque, it would
be preferable to design the drive shaft with torque as a parameter. This
allows changes in design specification without necessitating redesign of cém-
ponents. The study of problems of this nature will require substantial
advances in the representation of physical objects and in our ability to rea-
son about them. In this paper we begin with a modest step by establishing a

fundamental theorem concerning the motion of objects in contact.

In the special case where motion is restricted to rotations and transla-
tions the theorem states that if there is a way to move a set of objects from
an initial configuration where the objects form a connected component to a
final configuration where the objects form a connected component then there is
a way to move the objects from the initial to the final configuration such

that at all times the objects form a connected component. To understand the



theorem in a more general setting consider the motion of two objects A and B
relative to one another. Norﬁally one would consider A fixed and that B moves
relative to A. For ordinary motions such as translations or rotations there
is of course no loss in generality in fixing A. However, the fact that A may
be changing shape makes it more desirable to view both objects as moving. A
point in configuration space represents the values for the parameters of A and
B. Certain points correspond to positions and orientations where B overlaps
A. In the situation where configuration space is contractible to a point the
theorem states that the existence of a path, P1 in Figure 1, from initial con-
figuration to final configuration where A and B always intersect and of a
path, P2 in Figure 1, where A and B do not overlap implies the existence of a
path, P3 in Figure 1, where A an§ B touch at all times but are not overlap-
ping. One should observe that the point of contact need not be a continuous

function even though motion is continuous.

Figure 1. Configuration Space

Care must be exercised in applying the theorem. For example, in Figure 2
there are two objects A and B, A is fixed and B is permitted only to rotate
about x. Rotating B 2m-a in the clockwise direction results in the same

apparent configuration as rotating B a radians in the counterclockwise



direction. However, these two configurations are the same in configuration
space only if we identify points that differ by a rotation of 2m. This
results in a cylindrical shaped space that is not contractible to a point and
hence the hypothesis of our theorem is not valid. Observe that in the above
example the only motion from 6=0 to 6=2m-a is a motion where the objects do

not overlap and thus there is no motion that keeps the objects intersecting.

Figure 2. Restriction to rotational motion

In addition to the obvious applications in compliant motion, the theorem
has potential applications in motion planning and in complexity theory. In
planning of coordinated motion not only must trajectories be determined but
also the relative timing of objects as they move on their individual trajec-
tories. A path in configuration space contains this information about rela-
tive timing. Thus searching the paths in configuration space conceptually
simplifies the problem. In general, configuration space is of very high
dimension. The above éheofem redﬁéesﬁthe search from this high dimensional
space to that of a lower dimensional surface in the space. The surface can be
thought of as composed of faces that intersect in lower dimensional faces that
in turn intersect in still lower dimensional faces. Under suitable restric-

tions, the surface of contact in configuration space will have vertices that



are edge connected. In order to move a set of objects from one configuration
to another we first push the objects together in both the initial and final
configurations. Then we move the objects along faces until they reach lower
dimensional faces. We continue this process until the initial and final con-
figurations have been converted to vertices of the surface in configuration
space at which the objects are in contact. This reduces the problem to a
graph searching problem. In general the number of vertices of the graph will
be astromomical. We need not construct the entire graph but only generate
vertices and edges as the search progresses. With a suitable heuristic it may
be possible, in practical situations, to find the desired path having only
generated a tiny fraction of the graph. The knowledge of such a path could be

used in constructing a path where the objects do not touch one another.

In complexity theory it is often important to show that if a certain
motion exists, then a canonical motion exists. In the case of linkages [4],
for example, it is important from a complexity point of view that various
joints need not be moved to locations that are algebraically independent in
order for a motion to take place. Our theorem establishes that if a motion
exists, then one that follows features of the surface exists and hence a

canonical motion exists.

The paper consists of four sections. In the first section, some general
properties of the space of all configurations are developed. These properfies
are used in the second section to show that certain regions of the space of
all configurations are path connected or contractible to a point. From this
it is shown in the second section that if there is a motion between configura-
tions in which two objects touch then there is a motion between them such that

at all times two objects touch. In the third section an inductive argument is



developed to show the main result. That is, it is shown that if there is a
motion of rotations and translations between two configurations in which the
objects form a connected component then there is a motion which keeps the
objects in a connected component. In the fourth section we discuss the case

where more general motions are allowed.

l. Basic Properties of Configuration Space
Let A be a set in R". The interior of A, denoted int(A), is the union

of all open sets of R"” contained in A. A point x is a limit point of A if

there exists a sequence {xi} of points in A such that

lim xi=x.
i-00

The closure of A is the set of all limit points of A.

An object is a convex, compact region of R" that is the closure of its
interior and is bounded by algebraic surfaces. (The limitation of convexity
will be removed later by introducing composite objects.) Each object contains
a designated point, called the origin, at which the origin of a coordinate
system, affixed to the object, is located. The position and orientation of an
object are specified by the location of the origin of the object in R" and
orientation of the affixed coordinate system relative to the coordinate system
of R". Given a set of objects, a configuration is a vector whose components
specify the position and orientation of each object. The space of all such
vectors is called configuratiop space. Given a set of objects and a point x
in the corresponding configuration space we let B(x) denote the region in
occupied by object B in the given configuration. If b is a point on object B

then let b(x) be the point in r" occupied by b when B is in the position and



orientation specified by x.

Objects Bi and Bj intersect in configuration x if Bi(x)nBj(x)Id. The
objects overlap if their interiors intersect. If the objects intersect but do

not overlap then we say that they touch in configuration x.

It is convenient to partition the set of objects into subsets called com-
posite objects. A composite object is intended to be a single object made up
of smaller objects. With each composite object associate a graph whose ver-
tices are the objects and whose edges are pairs of objects that intersect. A
comﬁosite object is connected if the associated graph is connected. A confi-
guration is proper if each composite object is connected. A configuration is
yalid if in addition to being proper the interiors of each pair of objects in
a composite object do not intersect. Let VALID denote the set of valid confi-

gurations.

Composite objects are used in an inductive argument in Section 3. By
considering two or more objects to be a single composite object we are able to
establish a motion for n objects from a motion for n-1 objects, onme of which
is a composite object. We introduce the notion of valid so that individual
objects in a composite object will touch but not overlap throughout the

motion.

Let QVERLAP denote the set of valid configurations in which two or more
composite objects overlap. Let IOUCH denote the set of valid configurationms
in which two or more composite objects touch and no two composite objects
overlap. Let NONOVERLAP be the complement of OVERLAP with respect to the set

of valid configurations.



Figure 3 shows two objects, B1 and Bz. Object 32 is stationary and
object B1 is allowed only translational motion. Given two configuratioms in
which the two objects are touching and a motion between the configurations in
which the objects do not overlap, we wish to show that there is a motion where
the objects are always in contact. The graphic representation of configura-
tion space of Figure 1 suggests that the boundary of the region where the
objects intersect corresponds to the configurations where the objects touch.
Figure 3 shows that this is not exactly the case. The configurations where B1
is in the opening of B2 are not in the boundary of the space of configurations
where the objects intersect. The first goal of this section is to show that
the configurations where at least two composite objects touch is exactly

c1(OVERLAP) - OVERLAP .

That is, TOUCH = cl(OVERLAP) n NONOVERLAP.
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Figure 3. Two objects and corresponding configuration space
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The second aim of this section is to prove a lemma concerning TOUCH that
will aid us in the next section in proving that certain motions in TOUCH
exist. Towards this end, we designate one object in each composite object as
the base object. We will call the origin of the base object the origin of the
composite object. Let BASE be the set of proper configurations in which the
base object of some composite object intersects the base object of the nth

composite object. Let

FILL = c1(OVERLAP) u BASE .

In Section 2 we will need the fact that FILL u NONOVERLAP is contractible to a
point. Suppose we had not included BASE in FILL. Consider the example shown
in Figure 4. Here we have three circles that are allowed to move along a
line. Object B is fixed and objects A and B form one composite object in
which B is the base object. In this case NONOVERLAP is four rays and
c1(OVERLAP) v NONOVERLAP is two parallel lines. Thus not only is c1(OVERLAP)
U NONOVERLAP not contractible to a point it is not path connected. However
when we include BASE; the set FILL u NONOVERLAP becomes contractible to a
point. Thus the points of FILL fill in the holes of NONOVERLAP so that the
union of FILL and NONOVERLAP is contractible to a point. We will show that

TOUCH = FILL n NONOVERLAP .

This will be used in the next section to show that if there is a path in NON-
OVERLAP between two configurations in TOUCH then there is a path in TOUCH
between them. Throughout this section B, will denote an object and Ai will

denote a composite object.
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Figure 4. Three circles constrained to horizontal motion,

B is fixed. A and B form a composite object
with B as base.

We now proceed with a series of lemmas. Lemmas 1.1 through 1.4 are used
to establish in Theorem 1.5 that TOUCH = cl(OVERLAP) n NONOVERLAP and in
Theorem 1.6 that TOUCH = FILL n NONOVERLAP. This latter theorem is used in

the next section to prove that certain motions in TOUCH exist.

First we show that for any configuration in which two objects intersect

there is an arbitrarily close configuration in which the two objects overlap.

Lemma l.l: Let § = {xIint(Bi(x))nint(Bj(x))zd}. Then {xlBi(x)nBj(x) z
dlecl(s).

Proof: Let x be a configuration such that Bi(x)nBj(x)xd. Let y be a point on

Bi(x) and z be a point on Bj(x) such that y and z occupy the same point b in
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n . . . . . .
R, Since an object is the closure of its interior there are sequences of

points {ya} of int(Bi(x)) and {za} of int(Bj(x)) such that 1lim Yo=Y and
a-00

lim z =z. Let {xa} be the sequence of configurations in S such that all
@00

objects except Bi and Bj bave the same position and orientation as in confi-

guration x and Bi(xa) and Bj(xa) have the same orientation as in configuration

e . . n . . .
x but Yo and z, are at position b in R. Thus lim X, 7X and so x is in
a>00

cl(s). 0

Next we show that the closure of the set of configurations in which two
objects overlap is contained within the set of configurations where the two
objects intersect. This result combined with the previous lemma establishes

that these two sets are equal.
Lemma 1.2: cl({xlint(Bi(x))nint(Bj(x))id}) = {XIBi(x)nBj(X)zd}-

Proof: Let S = {xlint(Bi(x))nint(Bj(x))zd}. Let x be in cl(S). Then there

exists a sequence of configurations {xa} in S such that lim X, =X.
a-+00

Corresponding to {xa} is a sequence {<ya.za>} where Yo and z, are points of
Bi(xu) and Bj(xa) that occupy the same location in R". Since the objects are
compact the cross product space is compact and so there is a subsequence
{<9G,Qa>} that converges to some pair of points <y,z>., Since objects are

closed, y and z are in Bi and Bj' Define the usual distance metric d. Since

d(yu.za)=0 for all o, clearly lim d(?a.Qu)=o. Since d is continuous we can
a~+00

move the limit inside and get d(y,z)=0. Thus Bi(x) n Bj(x)xd. 0

We now conclude from Lemmas 1.1 and 1.2 that the set of configurations in

which two given objects intersect is equal to the closure of the set of
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configurations in which the interiors of the two objects intersect. Since a
composite object is some union of objects we get that two composite objects
intersect in a configuration if and only if there is an object in each compo-
site object that intersect in the configuration. Thus, the set of configura-
tions where the two composite objects intersect is some union of sets of con-
figurations where two objects intersect. Similarly the set of configurations
where the interiors of two given composite objects intersect is some union of
sets of configurations in which the interiors of two objects intersect. Since
the closure of the union is the union of the closure, the closure of the set
of configurations in which the interiors of two given composite objects inter-
sect is some union of the closure of sets of configurations in which the inte-
riors of two objects intersect. Thus we can conclude that the set of confi-
gurations in which two given composite objects intersect is equal to the clo-
sure of the set of configurations in which the interiors of the two composite
objects intersect. By the same argument we can show that the set of confi-
.gurations in which there are at least two composite objects which intersect is
equal to the closure of the set of configurations where the interiors of at

least two composite objects intersect.

The next step is to show that a composite object also has the property
that it is the closure of its interior. Note that interior points of a compo-

site object may not be interior points of any object.
Lemma 1.3: For composite object A, A=cl(int(A)).

Proof: Let A=u B,. Suppose yeA. Then yeB; for some i. Since Bi=c1(int(Bi))
i

there is a sequence {ya} in int(Bi) such that lim y =y. But each yaeint(Bi)
a

implies each yaeint(A). Thus yecl(int(A)) and so Accl(int(A)).
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Suppose yecl(int(A)). Then y is the limit point of a sequence in int(A)
and hence the limit point of a sequence in A. Since A is closed y must be in

A. Thus cl(int(A))<A. a

Since VALID is a closed set we can compute the closure of OVERLAP by tak-
ing the closure of all configurations where two composite objects overlap and

then intersecting with VALID.

Lemma 1.4: c1(OVERLAP)=cl({x!i,j izj int(Ai(x))nint(Aj(x))zd}nVALID)

={x|3i,j i#j Ai(x)nAj(x)zd}nVALID.

Proof: Let F={x|3i,j i#j int(Ai(x))nint(Aj(x))zd}. Then cl(OVERLAP) =

cl1(FnVALID) ¢ cl(F)ncl(VALID) = cl(F)nVALID because VALID is closed.

Let xecl(F)nVALID. We want to show xecl(OVERLAP). Since xecl(F) we know
by the remark after Lemma 1.2 that for some i and j, i#j, Ai(x)nAj(x)zd. By a
construction similar to that in Lemma 1.3 we create a sequence {xa} with limit
point x such that int(Ai(xa))nint(Aj(x“))zd and xueVALID. Thus xecl(FnVALID)

= c1(OVERLAP). 0

We can now establish the result that TOUCH = cl(OVERLAP) n NONOVERLAP.
Theorem l1.5: TOUCH = cl(OVERLAP) n NONOVERLAP

Proof: By definition TOUCH={x|=H,j i%#j Ai(x)nAj(x)=d} n {xlVi.j i#j
int(Ai(x))nint(Aj(x))=d} n VALID. Therefore, TOUCH = NONOVERLAPn{x|-li,j i#j

Ai(x)nAj(x)xd} = NONOVERLAPncl(OVERLAP) by Lemma 1.4. 0

Iheorem 1.6: TOUCH = FILL n NONOVERLAP
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Proof: By definition FILL = cl1(OVERLAP) uy BASE, Since TOUCH =
c1(OVERLAP) nNONOVERLAP by Theorem 1.5 we get that TOUCH ¢ c1(OVERLAP) ¢ FILL ¢

FILLNNONOVERLAP.

Let xeFILLNNONOVERLAP, If xecl(OVERLAP) then xeTOUCH. Suppose xeBASE.
Since xeNONOVERLAP we have xeVALID. Also xeBASE implies two composite objects
intersect and so xecl(OVERLAP). Thus xeTOUCH. Therefore, FILLNNONOVERLAP ¢

TOUCH. O

2. ‘Bssni:inz Iwo Objects To Touch Throughout A Motion

In this section we show the following intermediate result. Given two
configurations x and y with n objects, at least two of which are touching in
each configuration, if it is possible to move the objects from configuratiom x
to configuration y, then it is possible to do so by a motion such that two
objects are always touching. To do this, we make use of the Mayer-Vietoris
theorem from algebraic topology to show that the path connected components of

TOUCH are in one to one correspondence with the path connected components of

NONOVERLAP.

Notice_that if TOUCH was a retract of NONOVERLAP then if there was a
motion in NONOVERLAP between two configurations in TOUCH then we could con-
clude that there was a motion in TOUCH between these configurations. This is
because there must be a continuous function f£:NONOVERLAP-TOUCH such that
f(t)=t V teTOUCH and so if m is a motion in NONOVERLAP between t;»t,€eTOUCH

1 and t2.

then f(m(t)) is a continuous path in TOUCH between t
However we cannot guarantee that TOUCH will be a retract of NONOVERLAP.
Consider Figure 5 where there is one stationary object A and another object B

which is free to move about. Configuration space is just lz where a
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configuration consists of the position of the center of the disk. NONOVERLAP
is the unshaded region in the figure. Thus in this case NONOVERLAP is not

retractible to TOUCH, the boundaries of NONOVERLAP in configuratiom space.

TOUCH

NONOVERLAP NONOVERLAP

7.

Configuration Space

Figure 5. TOUCH not a retract of NONOVERLAP

We begin by defining a motion. A movement of the objects corresponds in
an obvious manner to a path in configuration space. Thus a motion is a con-
tinuous function from [0,1] to configuration space. If m is a motion them the
reversal of the motion m® is defined as m' (t) = m(l-t). If m, and m, are

motions where ml(l) = mz(O) then the composition m = xnllhn2 is a motion

defined by

' m, (2t)  0st<1/2

m(t) =
m2(2t-1) 1/2st<1.

At certain times we shall be comcerned with motions where the orientation

of each object is maintained while each object is moving along a straight line

at a constant rate. Thus in configuration x(t) the location of point b of an
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object is given by

b(xt) = b(xo) + [b(xl) - b(xo)Jt.

When we talk about a motion in which objects move in a straight line we are
referring to a motion of the above type. When we talk about moving a compo-
site object in a straight line, the objects making up the composite object

maintain their relative spacing.

In many of the following results a straight line motion is used. In
Lemma 2.1 we show that a straight line motion of two objects keeps the objects
intersecting if they intersect at the beginning and at the end of the straight

line motion.

Lemma 2.1: Let x and y be configurations and B1 and B2 be objects. Suppose

that b1 and c, are points of B1 and b2 and c, are points of B, such that

2

1 and 32 along straight lines so

that ) and c, are positioned at cl(y) keeps the objects intersecting. See

bl(x)=b2(x) and cl(y)=c2(y). Then moving B

Figure 6.

Proof: At time t during the motion, the point of B1 on the line between b1

and ¢, given by bt=b1+(c1-bl)t occupies the same point as the point of B, on

the line between b, and c, given by bt=b2+(c2-b2)t. g
t =0 e=1

= = b =¢, =c¢

bt = b1 ¢ t 1 2

Figure 6. Straight line motion
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Now it is shown that there is a motion between any two configuratioms in
PROPER in which the base object of some composite object intersects the base
object of the nth composite object such that during the motion all configura-
tions have that property. This is done by showing that there is some fixed
configuration with the property such that there is a motion, which keeps the
property true, between any configuration with the property and the fixed comn-

figuration.

Lemma 2.2: BASE is path connected.

Proof: Fix some configuration y in BASE such that in y, the origin of every
object has the same location. Let xeBASE. Move the objects in a straight
line from configuration x to the configuration z that has the same orienta-
tions as x but the location in z of the origins of the objects are as in y.
By Lemma 2.1 any objects that intersect in x will intersect throughout the
motion. Now rotate the objects about their origins to the orientations given
by y. Thus there is a path in BASE from any xeBASE to y. Since motions are
reversible there is a path in BASE from y to any xe€BASE and so BASE is path

connected. O

The following theorem shows that FILL is path connected by constructing a
motion from any configuration in FILL to some configuration in BASE. BASE is
path connected, by the previous result, and since BASE is contained in FILL we

s

conclude that FILL is path connected.

Theorem 2.3: FILL is path connected.
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Proof: Let xeFILL. We will show that there is a path in FILL from x to some
configuration in BASE and since BASE is path connected and motions are rever-

sible we will conclude that FILL is path connected.

By defimition FILL = cl(OVERLAP) u BASE. If xeBASE then we are done.
Suppose xecl(OVERLAP). Then Ai(x)nAj(x)zd for some i and j, i#j and xeVALID.
Let b be the origin of the base object of Ai and b' the origin of the base

object of the nth

composite object. Move Ai and Aj in a straight line (con-
sidering Ai and Aj as one composite object) to the configuration where the
location of b is b'(x). All other objects remain stationary. Thus the motion

is in cl(OVERLAP) and hence in FILL and the resulting configuration is in

BASE., Therefore FILL is path connected. a

The next lemma will be used when we show that FILL u NONOVERLAP is con-
tractible to a point. We show that there is a path in VALID from any confi-
guration in VALID to a configuration in BASE in which the origins of all the
composite objects have the same location. The same construction can be used
to construct a path in BASE from any configuration in BASE to some configura-
tion in BASE in which the origins of all the composite objects.have the same

location.

Lemma 2.4: From every configuration in VALID (BASE) there is a path in VALID
(BASE) to some configuration in BASE in which the origins of the composite

objects coincide.

Proof: Let xeVALID (BASE). Move the composite objects in a straight line
from x to the configuration where all the origins have location equal to the
location in x of the origin of the nth composite object. The resulting confi-

guration is in BASE and the motion described is as desired by Lemma 2.1. O
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We now use the motions constructed in Lemmas 2.2 and 2.4 to show that
FILL u NONOVERLAP is contractible to a point. That is, we show that there is

a configuration yeS=FILL u NONOVERLAP and a continuous function f£f:8x[0,1]+8

such that
f(x.()) = X
VxeS
f(x’l) = y
f(y,t) = y Vtel0,1] .

In order that FILLUNONOVERLAP be contractible to a point we cannot iden-
tify a rotation of 2n with no rotation at all as is dome in Schwartz and
Sharir [7]. Thus in configuration space a dimension corresponding to a rota-
tion is infinite even though every 2m radians the object returns to its

apparent initial position.

JIheorem 2.5: FILL u NONOVERLAP is contractible to a point.

Proof: Let S=FILL v NONOVERLAP, Then S=BASE u VALID. Let y be the fixed

configuration in BASE as in Lemma 2.2. Define £:5x[0,1]+S

f(x,t) = ml(2t) 0<t<1/2 where m, is the motion described in Lemma 2.4
and m1(0)=x

m2(2t-1) 1/25t<] where m, is the motion described in Lemma 2.2
and m2(0)=m1(1)

Then f(x,0) = x
X€eS
f(x,1) = y
f(y,t) = y te[0,1]
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By the construction of m, and m,, f is continuous. Thus f is a homotopy
between the retraction r:S+{y} and the identity i:S+S. That is {y} is a

deformation retract of S and so S is contractible to a point. a

The above construction gives a motion in S=FILLUNONOVERLAP from any con-
figuration in S to the fixed configuration yeS. Thus if 3 and x, are two
configurations in S and o, is the motion constructed from x; toy in S then

mlllm; is a motion in S from x; to x, and so S is path connected.

Corollary 2.6: FILLUNONOVERLAP is path connected.

If configuration space 1is restricted so that each parameter' that
corresponds to an orientation is only allowed to range within some closed and
bounded interval then the portion of FILL in this restricted space is clearly
still path connected. Also FILLUNONOVERLAP is still contractible to a point
in this restricted configuration space. For the rest of this section we will
be considering such a restricted configuration space. Thus when we speak of
some set such as NONOVERLAP then we will mean the part of the set which is in

the restricted configuration space.

Iheorem 2.7: NONOVERLAP consists of a finite number of path connected com-

ponents.

Proof: As in Schwartz and Sharir [7] we divided configuration space into fin-
itely many cells such that the set of polynomials that describe the relative
positions of the objects are sign invariant within each cell. Then NONOVERLAP
is the finite union of some of these cells and for any two points X,y in a
cell there is a path within the cell between them. Thus there must be fin-

itely many path connected components in NONOVERLAP. O
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Theorem 2.8 (Mayer-Vietoris): The sequence

HI(A U B) » HO(A n B)'-> HO(A)GHO(B) > HO(A u B) » {0}

is an exact sequence.
Proof: See Massey [5]. 0

In the following we will use the Mayer-Vietoris sequence with A = FILL and B =
NONOVERLAP to show that in our restricted configuration space TOUCH and NONO-

VERLAP have the same number of path connected components.
Iheorem 2.9: HO(NONOVERLAP) = Hy(FILLNNONOVERLAP) = H,(TOUCH).

Proof: By Theorem 2.5, S=FILLUNONOVERLAP is contractible to a point and so
Io,(s)={0} (see Massey [6]). Since o, (s) is abelian Hl(S)=Hj(S)={0}. Also
we have that HO(S)=Z because by Corollary 2.6, S is path connected. By
Theorem 2.3 FILL is path connected so HO(FILL)=Z. Therefore the sequence in

Theorem 2.8 is as follows:
hy h, hy by
{0} +HO(TOUCH) +2 © HO(NONOVERLAP) +Z-+{0}.

Since the sequence is exact, Im(h3)=ker(h4)=z and so by is onto. Also
ker(h2)=Im(hl)={0} and so h, is one-to-one. Thus we have the situation shown

in Figure 7.

Therefore HO(TOUCH)?IM(hZ). The ni's are the cosets of Im(hz)_and 80
there is a one-to-one correspondence between any a and Im(hz). Hence
ZGHO(NONOVERLAP) = ZeIm(h,) = ZeH (TOUCH). Then since H(NONOVERLAP) <
Z®,.,.0Z (n copies of Z) and HO(TOUCH) T Z6...6Z (m copies of Z) by Theorem

2.7 it must be that m=n and so HO(NONOVERLAP) g HO(TOUCH). < |
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{0} H0 (TOUCH) ZoH, (NONOVERLAP) yA {0}

Figure 7. Mayer-Vietoris sequence

Thus it has been shown that the number of path connected components of

NONOVERLAP, denoted by #NONOVERLAP, equals the number of path connected com-

ponents of TOUCH, denoted by #TOUCH. Let wn=#TOUCH=#NONOVERLAP and let

tl""’tm be the path connected components of TOUCH and Dyseeesty be the path

connected components of NONOVERLAP.

Lemma 2.10: Each ti intersects at most one o, .

Proof: Suppose there is a t. such that tinnkzd and tinnjxd. Let xlenj.
x €., x3£tinnj and x4€tinnk' Then since nj is path connected there is a path
P1 in nj from x1 to x,. S%Pilarly there is a path P2 in‘nk from x, to x, and
a path P3 from ) to x, in ti' Since TOUCH=FILLANONOVERLAP by Theorem l.6 we
get TOUCHSNONOVERLAP and so a path in t, is a path in NONOVERLAP. Thus
P1IIP3||P2 is a.path from x; in o to X, in n, and the path is in NONOVERLAP.

Hence nj and n, must be the same path connected component of NONOVERLAP, a
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Thus for each i, tinnkzd for at most one k and since TOUCHGNONOVERLAP we

know that for every t. there is one n, such that t.cn Now it will be shown

k.

that each n contains at most one ti and so each o, contains exactly one ti'

Lemma 2.11: For each n, there is a tj such that tjcnk.

Proof: We must show that for any xeNONOVERLAP there is motion in NONOVERLAP
from x to some configuration yeTOUCH. Let =xeNONOVERLAP and suppose xeTOUCH.
Let 8 and a, be the origins of A1 and A2 respectively and let
s(t)=taz(x)+(1-t)a1(x). Let m(t) be the motion such that al(m(t))=s(t) and

everything else stays comnstant. Let t0=min{m(t)éNONOVERLAP-TOUCH}. Thus clij
t

such that Ai(m(to))nAj(m(to))zd. 1f aeAi(m(to))nAj(m(to)) then aeAi(m(to))—

int(Ai(m(to))) and aeAj(m(to))-int(Aj(m(tO))) otherwise we would contradict

the definition of ty- Therefore m(to)eTOUCH as required. O

Theorem 2.12: For each o, there is exactly one tj such that tj;nk.

By Lemma 2.10 each

Proof: By Lemma 2.1] we know there is at least one tj:nk.
e, is contained in at most one n, . Since #NONOVERLAP = #TOUCH we conclude
that there is exactly one tj contained in each o . O

We call a motion m of n objects a k-component motiop if for all t in the
closed interval [0,1], m(t) has at most k connected components. A configura-

tion x is said to be a k-compopent configuration if x has at most k connected

components.

Thus Theorem 2.12 can be restated: If there is an n-component motion
from x to y (i.e. x.yenk) and x and y are (n-1)-component configurations, then

there is an (n-1)-component motion from x to y (i.e. x.yetj).
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3. Ihe Existence of a Motiop ip Contact
In this section we establish our main result. Suppose we have n objects
and that x and y are two configurations in which the n objects form a con-
nected composite object. Suppose further that there is a motion from confi-
guration x to configuration y such that no two objects overlap. Then there is

a motion such that all configurations throughout the motion are also con-

nected.

For the remainder of the section, all configurations will be in NONOVER-
LAP. Thus if it is said that a configuration x has k components then we mean

that x is in NONOVERLAP and x has k components.

Let Pl'PZ""Pp be the partitionings of the n objects into k+l or fewer
connected components. We say that a configuration x satisfies Pi if the con-
nected component of Pi are contained in the connected components of x. Let %,
and x, be configurations of n composite objects both of which have k, l<k<n,
or less connected components and let m be a (k+l)-component motion from x, to
X, Partition NONOVERLAP into regions so that all x satisfying a given Pi are
in one region. Further partition NONOVERLAP into path connected components.
Without loss of generality we assume that m never returns to a path connected
component satisfying Pi once it has left it. Let T, = {t Im(t) satisfies Pi}.
1<i<p. Since m(t) is a contipuous function and '1'i is the set of all t such
that m(t) is a closed region of configuration space, each Ti is a closed set.

Furthermore, each Ti is a finite union of closed intervals. Partition the

interval [0,1] into a finite number of closed subintervals Ji = [ai'ai+l

1

1<ist, such that for each Ji there are k+l sets of composite objects where
each set remains as a connected composite object during the motion m on inter-

val Ji' We can assume that the,Ji's are maximal with respect to the above
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conditions. Thus m(ai). 1si<t+l, is a k-component configuration and the
motion m., which is m on Jos is a (k+1)-component motion. Notice that during
o, the composite objects in each of the k+l sets that define Ji remain as a
connected composite object and so we can think of m, as a motion of k+l compo-

site objects rather than a motion of n composite objects.

We will use such a partitioning of the interval [0,1] in the following
result where we show that it is possible to reduce the number of components
during a motion to the number of components in the initial and final confi-

gurations if there is a motion during which there is one more component.

Lemma 3.1: Let n be the number of composite objects and let k be such that
- 1<k<n. If there is a (k+l)-component motion between two k-component confi-

gurations then there is a k-component motion between them.

Proof: The proof is by induction n, the number of composite objects.
Base Step: If n=2 then k=n-l1 and the result follows from Theorem 2.12.

Induction Step: Assume the result holds when there are less than n com-
posite objects. Suppose we have n composite objects. For k=n-1 the lemma is

true by Theorem 2.12,

Let k be such that 1sk<n-1l. Partition [0,1] into Jysecesd, as above.
Then m, is a (k+1)-component motion of k+1 composite objects between k-

component configurations a; and a,

i+1° Since k+l<n the induction hypothesis

holds for each o, and so there is a k-component motion m'i between a; and
2lI...Ilm't is a k-component motion between the given

k-component configurations. O

1 = ot '
ai,1° Thus m m 1Hm
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Now an immediate corollary to Lemma 3.1 for the case of connected confi-

gurations is stated.

Corollary 3.2: If there is a (k+l)-component motion between two connected
configurations of composite objects (l<k<n) then there is a k-component motion

between them.

It is now possible to prove the major aim of this paper. Thus we now
show that if there is any motion between two connected configuratioms such
that during the motion no two composite objects overlap then there is a motion
between the configurations such that all configurations during the motion are

connected and no two composite objects overlap.

ITheorem 3.3: If there is any motion between two connected configurations x
and y then there is a motion between them such that throughout the motion the

configurations are connected.

Proof: Suppose there is a (k+l)-component motion between x and y for k2l.
Then by Corollary 3.2 there is a k-component motion between x and y. Thus by

induction there is a l-component motion between x and y. 0

4. Generalizations

In the previous sections we restricted motion to be translation and rota-
tion. There it was shown that if there was a motion between two connected
configurations such that throughout the motion no two objects overlapped, then
there was a motion between the configurations such that throughout the motion
the objects formed a connected configuration. This result depended on the
fact that certain subsets of configuration space were path connecﬁed and that

one subset, namely FILL u NONOVERLAP was contractible to a point. These facts
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used translational motions in their proofs. Notice that the results hold if
the only motions allowed are translations. However as noted earlier if only

rotations are permitted then the result does not hold as stated.

For more general motion that allows continuous deformation of the objects
such as stretching or radial growth about some point of an object, we must
make sure that FILL and FILL u NONOVERLAP are again path connected and FILL U
NONOVERLAP is contractible to a point. If so, we can again conclude that if
there is a generalized motion, that keeps the objects from overlapping one
another, between two connected configurations then there is a generalized
motion between these configurations that keeps the configurations connected

throughout.

Suppose motions consist of translations and any kind of continuous defor-
mation of objects such that the objects remain convex and the deformation has
a‘fixed point. The motions described in Theorem 2.3 and Theorem 2.5 can be
extended in the obvious way to include the type of motion described above.
Thus FILL U NONOVERLAP is contractible to a point and FILL is path connected
for these motions and hence we can conclude that if there is a motion in NONO-
VERLAP between two connected configurations then there is a motion that keeps

the objects connected throughout.

For some types of generalized motions FILL will not be path connected.
Suppose FILL is not path conmnected but it is the case that the set consisting
of all the configurations of one path conmnected componenﬁ of FILL and all the
configurations in a path connected component of NONOVERLAP which intersects
the path connected component of FILL is contractible to a point. Then by tak-
ing A to be the path connected component of FILL and B to be the path con-

nected component of NONOVERLAP in the Mayer-Vietoris sequence of section 2 we
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can conclude that for twec configurations which are in both the path connected
component of FILL and the path connected component of NONOVERLAP and hence in

TOUCH, there is a motion in TOUCH between these configurations.

If we strengthen the definition of VALID such that VALID remains a closed
set in configuration space then the results of the previous sections still
hold. For example instead of just requiring that a ﬁomposite object be con-
nected we could insist that the objects of the composite object touch each
other in a specific manner. In this way Q; could have nonconvex objects by
dividing them into convex pieces and then defining VALID so that a configura-
tion is in VALID only if the convex pieces form the nonconvex object that is
required. An example of this is shown in Figure 8 where the four rectangular

objects form a nonconvex composite object and a configuration must have these

objects touching in this way for it to be in VALID.

SN N NN\
y /
/ /
/ /
/ /
/1IN NN N NN

Figure 8. A nonconvex object
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