
 Open access  Journal Article  DOI:10.1017/S0022112056000354

On the motion of small spheroidal particles in a viscous liquid — Source link 

Philip Geoffrey Saffman

Institutions: University of Cambridge

Published on: 01 Nov 1956 - Journal of Fluid Mechanics (Cambridge University Press)

Topics: Viscous liquid and Particle

Related papers:

 The motion of ellipsoidal particles immersed in a viscous fluid

 The lift on a small sphere in a slow shear flow

 The motion of rigid particles in a shear flow at low Reynolds number

 Behaviour of macroscopic rigid spheres in Poiseuille flow Part 2. Experimental results and interpretation

 The transverse force on a spinning sphere moving in a viscous fluid

Share this paper:    

View more about this paper here: https://typeset.io/papers/on-the-motion-of-small-spheroidal-particles-in-a-viscous-
q54uhe152o

https://typeset.io/
https://www.doi.org/10.1017/S0022112056000354
https://typeset.io/papers/on-the-motion-of-small-spheroidal-particles-in-a-viscous-q54uhe152o
https://typeset.io/authors/philip-geoffrey-saffman-3wgx1wr1y9
https://typeset.io/institutions/university-of-cambridge-2qc4lk4s
https://typeset.io/journals/journal-of-fluid-mechanics-3ayqlpx6
https://typeset.io/topics/viscous-liquid-9bd776js
https://typeset.io/topics/particle-n9xmrpu0
https://typeset.io/papers/the-motion-of-ellipsoidal-particles-immersed-in-a-viscous-3900dbd4ac
https://typeset.io/papers/the-lift-on-a-small-sphere-in-a-slow-shear-flow-1ltpy7jdp5
https://typeset.io/papers/the-motion-of-rigid-particles-in-a-shear-flow-at-low-57o8l6800x
https://typeset.io/papers/behaviour-of-macroscopic-rigid-spheres-in-poiseuille-flow-4ag5ascvbb
https://typeset.io/papers/the-transverse-force-on-a-spinning-sphere-moving-in-a-zlw0tyzhdp
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/on-the-motion-of-small-spheroidal-particles-in-a-viscous-q54uhe152o
https://twitter.com/intent/tweet?text=On%20the%20motion%20of%20small%20spheroidal%20particles%20in%20a%20viscous%20liquid&url=https://typeset.io/papers/on-the-motion-of-small-spheroidal-particles-in-a-viscous-q54uhe152o
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/on-the-motion-of-small-spheroidal-particles-in-a-viscous-q54uhe152o
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/on-the-motion-of-small-spheroidal-particles-in-a-viscous-q54uhe152o
https://typeset.io/papers/on-the-motion-of-small-spheroidal-particles-in-a-viscous-q54uhe152o


540 

On the motion of small spheroidal 
viscous liquid 

particles in a 

By P. G. SAFFMAN 

Trinity College, Cambridge 

(Received 22 M a y  1956) 

SUMMARY 

Small spheroidal particles suspended in a sheared viscous 
liquid are sometimes observed to take up slowly preferred orienta- 
tions, relative to the motion of the undisturbed liquid, which are 
independent of the initial conditions of release. These observa- 
tions cannot be accounted for by the solution, obtained by Jeffery 
(1922), of the linearized Navier-Stokes equations. It is shown in 
this paper that the effect of the inertia of the liquid is to alter 
slowly the orbit of the particle in accordance with Jeffery’s hypo- 
thesis that the particle ultimately moves in such a way that the 
dissipation of energy is a minimum, but that this effect is orders of 
magnitude too small to account for any of the experimental 
observations, 

It is suggested that non-Newtonian properties of the liquid 
account for the observations. It is shown that the rate of orienta- 
tion of a particle would then be independent of its size, and this 
prediction is verified experimentally. Other experimental evi- 
dence in support of this suggestion is also described. 

Some remarks are also made about the possible effect of 
collisions between the particles when more than one particle is 
present. 

1. INTRODUCTION 

The slow motion of a small ellipsoidal particle in a uniformly sheared vis- 
cous fluid was examined by Jeffery (1922). The usual approximation was 
made that the acceleration (commonly called inertia) terms p(au/at + u .Vu) 
in the hydrodynamical equations of motion may be neglected when the 
Reynolds number is sufficiently small. The approximate equations of 
motion 

were then solved with the boundary condition that u = SZ A r at the surface 
of the ellipsoid. Here, u, p ,  p and p denote respectively the velocity, 
pressure, viscosity and density of the liquid, S2 is the angular velocity of the 
ellipsoid (to be found) and the origin of r is the centre of the ellipsoid. The 
angular velocity was determined by the condition that the total force and 

pV2u-Vp = 0, div u = 0, (1) 
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On the motion of small spheroidal particles in a viscous liquid 541 

couple on the body should vanish ; this condition is valid since, as can be 
shown, the inertia of the body may be neglected to the same order in the 
Reynolds number as the approximation involved in (1).  

The equations that determine the motion or orbit of the ellipsoid can 
be integrated when the ellipsoid is one of revolution. Let 8 be the angle 
between the axis of symmetry of the spheroid and the direction of the vortex 
lines of the undisturbed shear, and let (b be the angle between the plane that 
contains the axis of symmetry and the direction of the vortex lines and a 
fixed plane containing the latter direction, that is, (b is the azimuthal angle 
of the axis of symmetry about the direction of the vortex lines. Then the 
orbit of the spheroid is given by the equations 

(2) 
(az + b2)8 = K ( a 2  - b2)sin 9 cos e sin (b cos 6, 
(az + b2)(b = K(a2 cosz4 + bZsin2+), J 

which have the solution 

a Kabt 

6 a2+b2’ 
tan4 = -tan - 

ab 
tan0 = 

k(a2 cosz$ + b2sin2(b)l/2 ’ , 
( 3 )  

where 2a is the length of the axis of symmetry, 2b is the length of the other 
principal axes, K is the magnitude of the undisturbed shear, and k, the 
orbital parameter, is an arbitrary constant of integration that depends upon 
the initial conditions of release. 

These equations show that the motion is periodic with the axis of sym- 
metry describing a (non-circular) cone about the direction of the vortex 
lines, so that the motion is kinematically similar to that of a top. It also 
follows that the value of k, which specifies the particular orbit, is deter- 
mined by the initial conditions, and there is no tendency for the spheroid to 
set itself so that its axes point in a particular direction or to choose a parti- 
cular orbit, that is, there are no preferred orientations relative to the motion 
of the surrounding fluid that the spheroid will eventually take up irrespective 
of the initial conditions. 

Jeffery did not consider the existence of this indeterminateness to be 
entirely satisfactory and expressed the opinion that a more complete investi- 
gation would reveal the existence of preferred orbits. In effect, the sug- 
gestion made was that over a short period of time the orbit is given accurately 
by equations (2) and ( 3 ) ,  but that effects neglected in the analysis have a 
cumulative effect and slowly alter the orbit, so that eventually the particle 
is moving in a preferred orbit which is independent of the initial conditions. 
Jeffery suggested further that these preferred orbits would correspond to 
those solutions of the approximate equations of motion (1) for which the 
rate at which energy is dissipated by viscosity is a minimum. It was then 
shown that, according to this hypothesis, prolate spheroidal particles would 
tend to set themselves with the axis of symmetry parallel to the vortex lines 
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and would rotate about this axis with constant angular velocity, so that the 
whole motion is steady ; and oblate spheroidal particles would tend to set 
themselves with an equatorial axis parallel to the vortex lines and would 
rotate about this axis with a variable angular velocity, so that the whole 
motion is periodic but not steady. 

Several experiments have been performed in order to test the accuracy 
of equations (2) and (3) and to investigate whether preferred orbits do 
indeed exist. The results of these experiments, which will be described 
briefly in $2,  are not uniform. In some cases, preferred orbits do not 
appear to exist ; in other cases, they do exist but are orbits of either minimum 
or maximum energy dissipation. 

This question of preferred orbits is not without practical interest; for 
example, it is closely related to the viscosity of suspensions of non-spherical 
particles. It is the purpose of this paper to discuss some of the effects 
neglected by Jeffery in order to see whether there are any theoretical reasons 
why particles should take up preferred orbits in accordance with Jeffrey’s 
hypothesis, and to suggest a possible explanation of the experimental results. 

In  5 3 we shall discuss the problem generally and show that many effects, 
such as those due to the inertia of the particle or the presence of rigid walls, 
need not be considered ; and that the two most likely effects are the inertia 
of the liquid, which gives rise to the acceleration terms in the equations of 

motion, and non-Newtonian properties of the liquid. The rate at which 
the orbit of the particle is altered by the inertia of the liquid was calculated 
and the results are given in $4. These results provide theoretical support 
for Jeffery’s hypothesis, but are unable to account for any of the experimental 
observations since the predicted rates of orientation are orders of magnitude 
too small. I t  is suggested in $ 5 that non-Newtonian properties of the liquid 
are responsible for the observed phenomena, and experimental evidence in 
support of this suggestion is described. 

When more than one particle is present, as is the case for a suspension, 
there is a further effect to be considered, namely that of collisions and inter- 

actions between the particles (see Manley, Arlov & Mason 1955). In $6, 
we shall give the results (mainly negative) of calculating the mechanics of 
the interaction between two particles whose separation is always large 
compared with their size, and discuss briefly the significance of these results 
and some intuitive ideas about the problem. 

2. RELEVANT EXPERIMENTAL RESULTS 

Experiments using prolate and oblate spheroids were carried out by 
Taylor (1923). Binder (1939), Trevelyan & Mason (1951), and Manley & 
Mason (1956) describe experiments in which cylindrical rods of large 
aspect ratio were used (the aspect ratio is the ratio of the length to the 
diameter). In all these experiments, the particles were suspended in 
liquids contained between rotating concentric cylinders. This motion 
differs from the uniform shear of infinite extent envisaged by Jeffrey in the 
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existence of Coriolis forces, wall and end effects, and the fact that the shear 
in the neighbourhood of the particle is only approximately uniform. How- 
ever, these effects can easily be shown to be negligible to the order considered 
by Jeffery, although their possible influence on the existence of preferred 
orbits has to be kept in mind (see $83  and 4 below). 

He observed that, 
as far as he could tell, the spheroids moved as predicted by equations (2) and 
(3), and that, after about 20 minutes for the prolate spheroids and five 
minutes for the oblate ones (these figures correspond roughly to 180 com- 
plete revolutions for the prolate spheroids and 40 for the oblate ones), the 
spheroids took up orbits in accordance with Jeffery’s hypothesis. In these 
experiments, K = 1.65 sec-I, E = 0.5 when a = 0.13 cm, and E = - 0.75 when 
a = 0.05 cm. Here E denotes the ratio (a-b) /a ,  sometimes called the 
‘ ellipticity ’ of the spheroid. The viscosity of water-glass is very roughly 
1,000 gm/cm sec. 

The 
orbits of the particles are described as being in qualitative agreement with 
equations (2) and (3), although there must be some discrepancy since these 
equations describe the motion of spheroids and not cylindrical rods. When 
the aspect ratio of the rods was less than 15, the rods orientated themselves 
along the vortex lines, in accordance with Jefkry’s hypothesis, but when 
the aspect ratio was greater than 15, the rods set themselves perpendicular 
to the vortex lines in an orbit of maximum energy dissipation. 

Trevelyan & Mason and Manley & Mason used cylindrical rods of 
glass, dacron, nylon and human hair in corn syrup. They verified equations 
(2) and (3) to a reasonable degree of accuracy considering that rods and not 
spheroids were used, but their observations of the existence of preferred 
orbits for a single particle are inconclusive. They someti-nes observed a 
slow tendency for a particle to align itself along the vortex lines or to take up 
an orbit in which it was perpendicular to the vortex lines, but in other cases 
the orbit varied erratically with time. The manner in which the orbit 
varied appeared to be random and independent of the particle size, the 
aspect ratio, and the magnitude of the undisturbed shear. 

Manley & Mason carried out also experiments with suspensions of 
particles of large aspect ratio. Suspensions in which the particles were 
initially distributed isotropically were sheared, and a statistical tendency 
was found for those orbits with large values of k to be favoured, that is, 
there was a tendency for particles to orientate themselves along the vortex 
lines. 

Taylor used aluminium spheroids in water-glass. 

Binder used particles of human hair suspended in glycerine. 

3. THE NON-LINEARITY OF THE PROBLEM 

We shall now consider whether a theoretical treatment which uses the 
approximate equations (1) can explain these experimental observations or 
predict the existence of preferred orbits. In  other words, when the per- 
turbations due to the effect of rigid walls in the experimental apparatus, or 
the possibility that the shear is only approximately uniform, or any similar 
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544 P. G. Saffman 

alterations in the idealized external conditions envisaged by Jeffery, are 
taken into account using the approximate equations (l), does the orbit of 
the particle remain constant in time or alter slowly until a preferred orbit is 
reached ? 

Now equations (1) are linear and hence all pressures and stresses are 
proportional to the magnitude of the undisturbed shear and are therefore 
linear in K. It  follows that the equations determining the orbit are linear 
in K ,  i.e. 6 and 6 are given by the products of K and functions of 0 and 4. 
The extra effects can be regarded as giving rise to perturbations of the orbit 
given by (3), and any variations of the orbit with time are then best repre- 
sented by changes in the mean value of the orbital parameter k, where k can 
vary between 0 and co, being zero when the axis of symmetry is perpendi- 
cular to, and infinite when parallel with, the vortex lines, and the mean is 
taken over a complete revolution of the payticle. On putting 0, as given by 
(3), in the expressions obtained for 6 and #J when the extra effects are taken 
into account, and averaging over a complete revolution, we then obtain 

1 dk 

k dt 
- - = Kf(k), (4) 

wheref(k) depends on the shape but not the size of the particle and (as in all 
subsequent equations of this,kind) k is to be understood as representing the 
average value over a complete revolution. Hence, if the shear is reversed, 
by, for example, the cylinders being rotated in opposite directions, then 
dkjdt will change sign ; and if a preferred orbit exists in one case, a different 
preferred orbit will arise when the shear is reversed. 

It follows immediately that, if the motion is such that the physical 
situation is unaltered by a reversal of the shear, thenf(k) must be zero and 
the particle rotates in a constant orbit. In other words, the use of equations 
(1) will predict that the orbit remains fixed unless there is a certain degree 
of asymmetry in the external conditions. (Another way of seeing this 
result is to note that, according to equations (l), the motion is reversible.) 
This result was indeed verified directly for the case of a spheroid near a 
rigid plane wall. The wall effect was calculated by a method due to Lorentz 
(1907), and the necessary modifications to (2) and (3) were found. It was 
found, as expected, that the mean value of k over one revolution remains 
constant. 

Further, this argument also shows that the inertia of the particle may be 
neglected since the equations for the orbit, with the inertia of the particle 
taken into account, are linear in K .  

It is clear now that the question of preferred orbits is to some extent 
dependent on the design of the experimental apparatus. However, the 
Couette flow between rotating cylinders that was used in the experiments 
described in the previous section and with which we are primarily concerned 
possesses the necessary symmetry for the above result to be valid. Further, 
it is to be expected that Aows for which the symmetry condition is not valid 
will be the exception rather than the rule ; and even in these cases, the result 

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 C

al
te

ch
 L

ib
ra

ry
, o

n 
19

 N
ov

 2
01

8 
at

 2
3:

59
:4

8,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s .

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

56
00

03
54

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0022112056000354


On the motion of small spheroidal particles in a viscous liquid 545 

may still hold since the linearity of equations (1) and the consequent 
superposability of solutions enables the motion to be split into two parts, 
one of which is reversible and the other not, and the part that is not reversible 
may not produce a couple on the particle. For example, if account is taken of 

the relative velocity of particle and liquid owing to their different densities, 
this relative velocity does not change sign when the shear is reversed but 
the couple it produces on the particle is zero. 

We must therefore look for non-linear terms that are neglected in (1). 
T h e  first such terms that come to mind are the acceleration (inertia) terms 
and in the next section we shall examine their effect. We shall see, however, 
that the experimental phenomena cannot be explained in this way and some 
other non-linear effect must be sought. Non-Newtonian prdperties of the 
liquid give rise to non-linear effects and these will be discussed in $5 to- 
gether with some relevant experimental results. 

There is, of course, the possibility that external effects of a random nature 
influence the orbits of the particles. It is difficult to understand the experi- 
ments with single particles by Manley & Mason (1956) in any other way. 
Indeed, they say that slow convection currents were present and regard 
these as the explanation of the randomness of their observations, and the 
opinion is expressed that the orbit would remain constant in the absence of 
such random effects. However, experiments that are capable of being 
repeated, such as those of Taylor or those described in 4 5, cannot be explained 
in this way. 

4. THE INERTIA OF THE LIQUID 

T h e  full equations of motion of an incompressible liquid are 

p- Du = -Vp+pVZu, d ivu  = 0. 
Dt 

T o  calculate the effect of the acceleration terms by obtaining the complete 
solution of (5) is, in general, a problem of great difficulty, but we can by 
simple dimensional considerations obtain the order of magnitude of their 
effect. Forp(Du/Dt) /pVu is of order R, where R denotes the Reynolds 
number Ka2/v (v 3 p/p), and on making the plausible assumption that the 
extra stresses introduced when the acceleration terms are taken into account 
are smaller by a factor of order R than the stresses calculated neglecting 
these terms, we obtain for the rate of change of the orbit due to the inertia 
of the liquid 

1 dk 

k d t  - V 

whereg(k/a) depends on the shape of the particle, and the factor E ( = (u - 6)/a) 
has been introduced to emphasize the fact that dk/dt vanishes from consider- 
ations of symmetry when the particle is a sphere. 

Now the sign of g(k/a) is of interest in connection with Jeffery’s hypo- 
thesis, and it is also not without value to have an estimate of its numerical 
magnitude. It was therefore decided to calculate this function by taking 
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account of the acceleration terms in (5) by means of an iterative procedure. 
That is, denoting the solution of (5) with pDu/Dt neglected by u(l) andpcl), 
where u(l) = D ~r at the surface of the spheroid and u(l) tends to the 
undisturbed velocity as Y + co (this solution is, of course, the one found by 
Jeffery), we consider the equations 

and try to find a solution which satisfies the boundary conditions u = !2 A r 
on the spheroid and u - u(l) -+ 0 as r + m. 

A most serious difficulty now arises since it can be shown that no solution 
of (5’) can be constructed which satisfies the boundary condition at infinity : 
this is sometimes known as Whitehead’s paradox and was first encountered 
by Whitehead (1893) when considering the uniform translation of a sphere. 
However, there are reasons for believing that this difficulty can be overcome 
in the following way : there is evidence that if a suitable boundary condition 
at infinity is chosen for u, then the solution of (5’) that satisfies this boundary 
condition will represent accurately in the neighbourhood of the particle the 
second approximation to the solution of (5). This boundary condition at 
infinity is deduced from the solution of the Oseen-type equations for the 
problem, but in the present problem these equations are difficult and have 
so far not yet been solved. However, by analogy with simpler cases, it 
appears that the requisite boundary condition is 1x1- u(l)- hRu(l’1 = u (Y) as 
r + m, where h is a numerical constant (possibly zero) of order one. Equa- 
tions (57 can then be solved, the second approximation to the couple on the 
particle can be calculated in terms of 0, K and A, and the orbit of the particle 
can be determined. It is clear that the effect of h is equivalent to a small 
change in the magnitude of the undisturbed shear and so, to the order con- 
sidered, A will not enter the expression for dk/dt and its actual value is not 
needed for the purpose of this paper. It must be emphasized, however, 
that this boundary condition may well be wrong and this doubt is to be kept 
in mind whilst interpreting the results obtained below.* 

Result of the calculation 

Although it seems possible, in principle, to carry out the iteration for a 
spheroid of arbitrary shape, the analysis that appears to be required is such 
that no practical method could be found. The analysis was therefore con- 
fined to the comparatively simple case of a nearly spherical spheroid, so 
that powers of E higher than the first could be neglected. The solution was 
then obtained by expanding the velocity and pressure in series of solid 
harmonics multiplied by powers of r. Since the algebra is tedious and 

* I a m  deeply indebted to Dr I. Proudman for information and advice concerning 
the validity of iterated solutions of the Navier-Stokes equations and about the 
boundary condition to be satisfied at infinity. I t  is regretted that a description of 
the reasons for suggesting the above boundary condition would be quite lengthy 
and out of place in the present context. 
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involved, it would serve no useful purpose to  reproduce it here and only the 
final result will be given. 

It was found that when the acceleration terms are taken account of in the 
above manner, 

U2K2E + 0.24 - . 1 dk - _  
k d t i  V 

(7)  

This result is equivalent to g(K/a) having the value 0.24 + O(E). 
0 and so dk/dt > 0, i.e. the long axis tends to 

set itself in the direction of the vortex lines ; for an oblate spheroid, E < 0 
and so dk/dt > 0, i.e. the short axis tends to set itself perpendicular to the 
vortex lines. Thus, the effect of the inertia of the liquid is in accordance 
with Jeffery’s hypothesis and provides theoretical support for this hypo- 
thesis. 

For a prolate spheroid, E 

Comparison with experiment 

Let us now compare the observed rates of orientation with those pre- 
dicted by equations (6) or (7). The relevant experiments are those of 
Taylor (1923) (these experiments were repeated by myself and similar 
results obtained). It is true that E is not sufficiently small for (7) to be 
accurate, and that Coriolis forces of the same order of magnitude as the 
acceleration terms should be taken into account, but (7) should give the order 
of magnitude of the effect of the inertia of the liquid without serious error. 
(The ratio of Coriolis to acceleration terms is U/K or ( Q ’ / K ) ~ ,  according as 
to which is the larger, where CY is the angular velocity of the particle around 
the axis of the cylinders ; this ratio is either of order one or zero in the experi- 
ments described in this paper.) On putting the data given by Taylor into 
equation (7) ,  or using equation (6) with the plausible assumption that 
g(k/a)  is of order one, we find that ( l / k ) ( d k / d t )  is at most sec-l. Now a 
change in the orbit should be observable when k changes by a factor e, and 
the time for this to happen is not less than lo5 seconds = 28 hours ! Since 
the observed times were not greater than 20 minutes, there can be little 
doubt that the effects of the inertia of the fluid are too small to produce the 
observed phenomena. 

When the aspect ratio of the particles is large, equation (7)  is likely to be 
in serious error, and a direct comparison with the experimental observations 
on cylindrical rods cannot be made. However, a general examination of 
the equations for the case of large aspect ratio shows that ( l /k ) (dk/d t )  is then 
probably proportional to b2Kz(loga/b)2/v. If this be so, it is easily shown 
that the times needed for a change of orbit to be clearly observable are orders 
of magnitude larger than those observed by Binder (1939), and are also long 
compared with the duration of the other experiments on cylindrical rods 
quoted previously. 

The motion of small particles in a tube 
Of further interest is another phenomenon predicted by Jeffery. I t  

can easily be shown that small particles suspended in the liquid flowing 
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through a capillary tube will, according to equation (l), remain at a fixed 
distance from the axis of the tube ; however, it is a consequence of Jeffery’s 
hypothesis of minimum energy dissipation that they should move slowly 
towards the axis since the shear there is least, so the extra energy dissipation 
owing to the presence of the particles is then reduced. (This phenomenon 
appears to be quite well known, and is observed, for example, by physio- 
logists studying the motion of blood corpuscles in the capillaries of the body. 
I am not aware, however, of any accurate quantitative measurements that 
have been published.) 

The effect of the inertia of the fluid on the motion of a small sphere of 
radius a in a flow with a parabolic velocity profile u = tcz + Pzz was worked 
out by iteration as before and it was found that the inertia terms give rise to 

a sideways velocity w, perpendicular to the directions of the flow and the 
vortex lines, given by 

V (8) 
@a4 

w + - 0.43 -. 

This velocity moves the sphere to a region where the magnitude of the shear 
is least, and so the effect of the inertia of the fluid is again in accordance with 
Jeffery’s hypothesis. Dr M. J. Taylor has, however, communicated to me 
some rough experimental data of his own, from which it appears that  the 
velocities predicted by (8) are too small by a factor of order 10. 

T o  sum up, if the inertia of the liquid is the dominant non-linear effect, 
then there is theoretical support for Jeffery’s hypothesis. It appears, how- 
ever, that in the experiments described in this paper, the inertia terms are 
too small to account for the observations, and we shall now go on to discuss 
the possible effects of non-Newtonian properties of the liquid. 

5. NON-~QEWTONIAN PROPERTIES OF THE LIQUID 

It is assumed in the derivation of the Navier-Stokes equations (5) that 
the stress tensor pij is linearly related to the rate-of-strain tensor 

by the equation pi, = -paii +peii. (9) 

A liquid for which (9) does not hold is said to be non-Newtonian, and this 
definition obviously covers a wide range of liquids with various properties. 
However, we are concerned here with incompressible liquids which are 
almost Newtonian, that is, liquids in which anomalous effects caused by 
deviations from equation (9) are small. For such liquids, we may take the 
stress-strain relation as 

pi, = -pSij + peij + oQij, (10) 

in which p is constant and aQii, where a is a constant with the dimensions 
of viscosity divided by time which is some measure of the non-Newtonian 
properties of the liquid, is a quadratic functional of the rate-of-strain tensor 
which may involve both the values of eij at earlier times and higher spatial 
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derivatives of eii. It is also supposed that the motion is sufficiently slow 
for powers of eii higher than the second to be neglected. 

If it be 
supposed that the liquid is isotropic when at rest, that the stress depends 
only on the instantaneous rate-of-strain, and that the stress-strain relation 
is analytic, then it can be shown that aQi, may be taken as p'e,, eki + p"eEl $,, 
where p' and p" are constants (for a full review of the subject, see Truesdell 
(1952)). But in the present problem, where the motion is not steady, this 
form of the quadratic term may well not be valid. Apart from some evidence 
that p' is positive if this form of the quadratic term is valid, there appears to 
be no non-Newtonian liquid for which the form or magnitude of the quad- 
ratic term has been established. 

The equations of motion of the liquid are apij/ax, = 0, since the inertia 
of the liquid may be neglected. Because the non-Newtonian terms are 
supposed to be small, a solution of these equations could be attempted by 
iteration, provided that a suitable form for Qij were postulated. (It is to 
be noted that the difficulty at infinity which arose when the acceleration 
terms were taken into account by iteration would not arise here.) I t  can 
be seen that, after solving the equations of motion and equating the couple 
on the particle to zero, we should finally obtain 

The nature of the quadratic term in (10) is by no means clear. 

where h(k/a) depends on the shape of the particle and on the form of Qij. The 
right-hand side of (11) might be identically zero, but there is no a priori 
reason why this should be so and it seems most unlikely that this should be 
the case. 

The rate of orientation of the particle is known when h(k/a)  is known 
but no attempt was made to determine h(k/a) because the form of Qij is not 
known beyond reasonable doubt. Even if aQij were known or postulated 
with a reaso Iabie degree of certainty, there appears to be no practical way 
of solving tl e equations for a spheroid of arbitrary shape, and to carry out 
the analysis for a nearly spherical spheroid would require very heavy algebra 
and would probably not be of much use since oQtj would probably contain 
sufficient unknown constants for agreement with experiment to be reached 
without difficulty. However, it follows from (11) that the rate of orien- 
tation of a particle of given shape in a given liquid is independent of its size ; 
whereas the rate of orientation due to the inertia of the liquid is, for a given 
shape, proportional to the surface area of the particle. The following simple 
experiment was therefore carried out in order to see whether the rate of 
orientation is independent of the size; it was verified roughly that this is 
indeed the case. 

Experimental procedure 

the outer one was 8.4 cm and that of the inner one was 2.8 cm. 
The apparatus consisted of two concentric cylinders : the diameter of 

Prolate and 
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oblate spheroids, similar in shape but of different sizes were made on a lathe 
from aluminium wire. The longest and shortest axes of the smallest prolate 
spheroid were 0.25 cm and 0.10 cm respectively, and of the smallest oblate 

spheroid 0.17cm and 0.10cm. The other spheroids were twice and three 
times as large. The outer cylinder rotated one revolution in 4-3 seconds 
and the inner one was kept at rest. The particles were placed midway 
between the cylinders so that K was about 0.82sec-l. Two liquids were 
used : a highly viscous form of ammonium polymethyl acrilate, and water- 
glass. The densities of these liquids were measured in the usual way and 
the viscosities by timing the rate of fall of a small lead sphere of known size. 
The density of the ammonium polymethyl acrilate was close to that of 
water, that of the water-glass was about 1-5 times that of water ; the kine- 
matic viscosities were, as it happened, approximately the same, being about 
1000 cm2 sec-l. 

A common property of a non-Newtonian liquid is that, when confined 
between rotating cylinders, it will climb up the inner cylinder, provided the 
upper surface is free (see, for example, Weissenberg 1947). It was noticed 
that the ammonium polymethyl acrilate climbed up the inner cylinder by as 

much as one centimetre, whilst the water-glass did not climb up at all. This 
indicated that the non-Newtonian properties of the water glass were small 
compared with those of the other liquid. 

The experimental results for the ammonium F olymethyl acrilate were 
as follows. The prolate spheroids were placed with their long axis hori- 
zontal, and after about five minutes the long axis was vertical. The oblate 
spheroids were placed with their short axis vertical, and after about six 
minutes the short axis was horizontal. As far as I could tell from these 
crude observations, the rate of orientation was independent of the size of 
the particles. When water-glass was used, it was found that the orbits of 
the spheroids remained constant over times up to an hour. 

These results are consistent with the suggestion that the explanation of 
the observed phenomena lies in non-Newtonian properties of the liquid. 
There is an apparent discrepancy, however, between these results for water- 
glass and the observations of Taylor (1923). But Sir Geoffrey Taylor has 
informed me that, in his experiment, the water-glass rose some distance up 
the inner cylinder, and this was also the case when I repeated Taylor’s 
experiment with a different supply of water-glass and at probably a higher 
temperature than the experiments described above. Bearing in mind that 
water-glass is by no means a standard product, and that non-Newtonian 
properties are often critically dependent upon temperature (although the 
temperature dependence here is in the opposite direction from what would 
be intuitively expected), this apparent discrepancy appears to yield further 
evidence in favour of the above suggestion. Further, Dr S. G. Mason has 
informed me that the corn syrup used in the experiments in which he parti- 
cipated (where no preferred orbits were observed with single particles) was 
found to be Newtonian over a wide range of velocity gradients. 

There thus seems to be strong evidence that the existence of preferred 
orbits is related to the effect of non-Newtonian viscosity and that some of 
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the experimental observations of spheroidal particles suspended in the 
Couette flow between concentric cylinders will be explained when the action 
and effect of non-Newtonian properties can be calculated. 

Further, (T is a measure of the elastic properties of the liquid, since it is 
easily shown that the quadratic term in (10) does no work when the liquid 
is deformed and returned to its original state, so that oIp is a measure of the 
relative magnitudes of the elastic and viscous properties of the liquid." 
(u/p is probably proportional to p ly ,  where y is the elastic modulus of rigidity 
of the liquid.) To  account for the experiments described above, u/p for 
ammonium polymethyl acrilate would have to be of order 10-3sec-1. 

An experiment to investigate the possible relationship between the elastic 
properties of a variety of non-Newtonian liquids and the rate at which pre- 
ferred orbits are reached would be of great interest in this connection, as 
wopld also be an accurate experiment to check that the rate of orientation 
is proportional to the square of the undisturbed shear. 

6. SUSPENSIONS OF MANY PARTICLES 

When considering a suspension of many particles, we are primarily 
interested in the proportion of particles whose orbital parameters lie in a 
given range, since this is needed for a calculation of the bulk properties of 
the suspension and is also the quantity that is actually measured. That is, 
we wish to determine the values of the function p ( k )  where p ( k )  dk denotes 
the proportion of particles with orbital parameters in the range (k ,  k + dk).  
If we were to follow a definite particle, we would find that its orbit is con- 
tinually being altered in apparently discontinuous jumps by collisions with 
other particles (see Mantey & Mason 1956) and that there might also be a 
slow change due to the effects described in the previous sections. In this 
section, however, we shall not discuss these latter effects but confine our- 
selves to a discussion of the effect of collisions. (It is worth mentioning, 
in passing, that a suspension of non-spherical particles is anisotropic and 
this implies that the bulk properties of the suspension may be to some 
extent non-Newtonian. This in turn may effect the external motion-for 
example, a suspension contained between rotating cylinders may climb up 
the inner cylinder, even though the pure liquid does not-and so affect the 
motion of an individual particle and give rise to preferred orbits. This 
effect will not be discussed here.) 

It does not necessarily follow, of course, thatp(k) is altered by collisions, 
for example, it may be that the effect of a collision is to interchange the 
orbital parameters of the particles that collide ; however, there is no a priori 
evidence that this is the case and it seems most likely that the effect of colli- 
sions is to alter the orbits until a statistically steady state is reached. I t  
might at first be thought that, if the interactions were calculated using 
equations (l), the linearity of the equations and the consequent reversibility 
of the motion would imply that p(K) is not altered by collisions, since if 

* This was pointed out to me by Dr K. Weissenberg. 
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dp(k)/dt is not zero, its sign is reversed by reversing the external shear. 
This is a well-known paradox of Statistical Mechanics, however, and it can 
in fact be shown that the reversibility of the motion does not imply that 

dp(k)/dt = 0 ;  see Tolman (1938) where this problem is discussed in con- 
nection with the Boltzmann H-Theorem. In other words, it is sufficient 
to calculate the collisions using the approximate equations (1). 

The possibility exists that the steady state cou!d be calculated without 
a detailed knowledge of the mechanics of an interaction by means of the 
ideas of Statistical Mechanics. This can be done if it is known whether 
there is any general property of the orbits that is conserved during a collision, 
something which corresponds, for example, to  the conservation of energy 
for collisions between the molecules of a gas. With this idea in mind, the 
mechanics of an interaction in which d,  the minimum distance of separation, 
is always much greater than a, a typical dimension of the particles, was 
worked out. Since if there is a quantity that is conserved for a general inter- 
action, it will be conserved for an interaction in which aid is small, and it is 
possible to carry out the analysis for this case by neglecting powers of aid 

higher than the third. 
The result of this lengthy calculation was that the arbitrary parameters 

that give the relative configuration of the particles before the interaction 
commences can be so varied that the orbits of the particles can be altered 
independently by the interaction. Further, it was found that the orbits of 
the particles are changed by the interaction in such a way that the statistical 
properties of the suspension are unaltered. Hence, there is no conservation 
principle, so that the ideas of Statistical Mechanics cannot be applied, and 
it is necessary to consider the detailed mechanics of a close interaction or 
collision before information about the effect of collisions can be obtained ; 
unfortunately, there appears to be no way of doing this. 

Finally, there are two intuitive hypotheses about the effect of collisions 
that are perhaps worth mentioning. The first of these is that those orbits 
are favoured for which the energy dissipation is small, and the second is that 
the orbits favoured are those for which the volume swept out by the particle 
is small. The first hypothesis is reminiscent of Jeffery’s, but the situation 
here is different from that of $4 since we are concerned with solutions of 
equations (1) and not with the effect of terms neglected in these equations. 
The second one, which was suggested to me by Dr J. W. Glen, is based on 
the intuitive idea that the smaller the volume swept out by a particle, the 
smaller the frequency of collisions made by the particle, with the result that 
the particle stays in its orbit longer. It follows from the first hypothesis 

that there is a tendency for particles to align themselves with the long axis 
along the direction of the vortex lines, so that p ( k )  is large for large k if the 
particles are prolate and for small k if they are oblate ; and it follows from 
the second hypothesis that the tendency is for the axis of symmetry to lie 
along the direction of the vortex lines, so thatp(k) is large for large k for both 
prolate and oblate particles. Thus, for prolate particles, the predictions 
are the same and in accordance with the observations of Manley & Mason 
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(1956), but the predictions for oblate particles are in disagreement. An 
experiment using oblate particles would be of some interest in this 

connection. 

I wish to thank Sir Geoffrey Taylor for suggesting this problem to me, 
and I am grateful to both him and Dr G. K. Batchelor for the kind interest 
that they have shown in this work. I also wish to thank Dr K. Weissenberg 
for the supply of some ammonium polymethyl acrilate. 
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