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Abstract—In the context of cellular systems, it has been
shown that multicell processing can eliminate inter-cell inter-
ference and provide high spectral efficiencies with respect to
traditional interference-limited implementations. Moreover, it
has been proved that the multiplexing sum-rate capacity gain
of multicell processing systems is proportional to the number
of Base Station (BS) antennas. These results have been also
established for cellular systems, where BSs and User Terminals
(UTs) are equipped with multiple antennas. Nevertheless, a
common simplifying assumption in the literature is the uncorre-
lated nature of the Rayleigh fading coefficients within the BS-
UT MIMO links. In this direction, this paper investigates the
ergodic multicell-processing sum-rate capacity of the Gaussian
MIMO Cellular Multiple-Access Channel in a correlated fading
environment. More specifically, the multiple antennas of both
BSs and UTs are assumed to be correlated according to the
Kronecker product model. Furthermore, the current system
model considers Rayleigh fading, uniformly distributed UTs over
a planar coverage area and power-law path loss. Based on free
probabilistic arguments, the empirical eigenvalue distribution
of the channel covariance matrix is derived and it is used to
calculate both Optimal Joint Decoding and Minimum Mean
Square Error (MMSE) Filtering capacity. In addition, numerical
results are presented, where the per-cell sum-rate capacity is
evaluated while varying the cell density of the system, as well
as the level of fading correlation. In this context, it is shown
that the capacity performance is greatly compromised by BS-side
correlation, whereas UT-side correlation has a negligible effect
on the system’s performance. Furthermore, MMSE performance
is shown to be greatly suboptimal but more resilient to fading
correlation in comparison to optimal decoding.

Index Terms—Information theory, Information rates, mul-
tiuser channels, MIMO systems, channel correlation, land mobile
radio cellular systems, eigenvalues and eigenfunctions.

I. INTRODUCTION

IN the short history of wireless cellular systems, there has

been an intense evolutionary process trying to optimize the

multiple-access and coding schemes in order to provide the

desired quality of service. In spite of the constant improve-

ment, one characteristic of cellular communication remained,

namely its interference-limited nature. Considering the fact

that the current cellular architectures are approaching their
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limit, the interest of both research and industry turned to

cooperative techniques, such as BS cooperation, relaying and

UT conferencing. In this paper, we focus on cooperating

BSs which are interconnected through ideal links to a central

processor, which has perfect Channel State Information (CSI).

As a result, the received signals from UTs in multiple cells can

be jointly processed (multicell processing). In the context of

this paper, the multicell processing can be either optimal joint

decoding or MMSE joint filtering, followed by single-user

decoding. The capacity enhancement due to BS cooperation

has been extensively studied and has been shown to grow

linearly with the number of BS receive antennas [1], [2].

This result also applies to the case where BSs and/or UTs

are equipped with multiple antennas [3], [4], [5]. However,

the majority of related results have been produced based on

the simplifying assumption that the fading coefficients of the

MIMO subchannels are completely uncorrelated. In reality,

this is not the case, since fading correlation may appear due

to inadequate antenna separation and/or poor local scattering

[6]. In a typical macrocellular scenario, the inadequate antenna

separation mainly affects the UTs, as the components of the

antenna array may be separated by a distance less than half of

the communication wavelength due to their size limitations.

On the other hand, poor local scattering affects mainly the

BSs, as the number of local scatterers is insufficient due to

their elevated position. On these grounds, this paper studies

the effect of MIMO fading correlation on the capacity perfor-

mance of a multicell processing system.

In this direction, it has been shown that the correlated

channel matrix of the point-to-point MIMO channel can be

expressed in terms of the separable variance profile, which

depends on the eigenvalues of the correlation matrices [7],

[8]. In parallel, the channel matrix of a cellular Multiple-

Access (MAC) channel can be expressed in terms of the

path-loss variance profile, which depends on the considered

UT distribution, cell size and path loss exponent [2]. The

main objective of this study is to determine the eigenvalue

distribution of the channel covariance matrix, which deter-

mines the optimal and the MMSE sum-rate capacity. For the

case of point-to-point correlated MIMO channel, the objective

has been accomplished by exploiting the separability of the

variance profile [7], [8]. Similarly, for the case of the cellular

MAC channel the asymptotic eigenvalue distribution was

determined by exploiting the row-regularity of the variance
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profile respectively [2]. Nevertheless, the channel matrix of

a correlated cellular MAC channel – expressed as Hadamard

product of a separable and a row-regular variance profile – is

neither separable nor row-regular and hence a new approach

is needed. In this context, the main contributions of this paper

can be summarized as follows:

1) A cellular MIMO uplink channel model is introduced,

accommodating distributed UTs, a continuous path-loss

model and Kronecker-correlated antennas.

2) Based on a recent Random Matrix Theory result, the

sum-rate capacity calculation problem is transformed

to a non-linear programming problem, which can be

utilized to efficiently calculate the optimal capacity for

finite cellular systems.

3) Furthermore, the asymptotic eigenvalue distribution

of this channel model is analyzed based on free-

probabilistic arguments and closed-forms are derived

for the per-cell sum-rate capacity of the optimal joint

decoder and the MMSE decoder.

4) Based on the derived closed-forms, it is shown that

antenna correlation at the UT-side has no effect on the

performance, while antenna correlation at the BS-side

compromises the multiplexing gain of the system.

5) For a set of practical parameters, the agreement of

analytical closed-forms and Monte Carlo simulations is

established and the effect of BS-side antenna correlation

is evaluated.

The remainder of this paper is structured as follows: Section

II provides a detailed review of the MIMO correlation and

multicell processing uplink channel models. Section III defines

the considered channel model and describes the derivation

of the optimal and MMSE capacity closed-forms. Section V

verifies the accuracy of the analysis by comparing with Monte

Carlo simulations and presents the practical results obtained

for a typical macrocellular scenario. Section VI concludes the

paper.

A. Notation

Throughout the formulations of this paper, R is the cell

radius, N is the number of BSs, K is the number of UTs per

cell and η is the power-law path loss exponent. Additionally,

nBS and nUT are the number of multiple antennas at each

BS and each UT respectively. E[·] denotes the expectation,

(·)∗ denotes the complex conjugate, (·)† denotes the conjugate

transpose matrix, ⊙ denotes the Hadamard product, ⊗ denotes

the Kronecker product and ≍ denotes asymptotic equivalence

of the eigenvalue distributions. The norm of a complex scalar

is denoted by |·| , whereas the Frobenius norm of a matrix or

vector is denoted by ‖·‖. The inequality A � B, where A,B
are positive semidefinite matrices, denotes that A−B is also

positive semidefinite.

II. RELATED WORK & PRELIMINARIES

A. Correlated MIMO Channel Models

Focusing on a point-to-point MIMO link, the channel matrix

can be expressed in general as [9]:

H = R
1/2
R GRR

1/2
H GTR

1/2
T , (1)

where GR and GT are Gaussian matrices, whereas RR,

RH and RT are deterministic or slow-varying matrices. The

matrices RR and RT , also known as the receive and transmit

correlation matrix, depend on the angle spread, the antenna

beamwidth and the antenna spacing at the receive and the

transmit end respectively. The matrix RH introduces the

notion of the keyhole or pinhole channel, which appears when

RH is a low-rank matrix. In cases where there is adequate

scattering to prevent the keyhole effects (i.e. RH is full-rank),

the channel matrix can be written as:

H = R
1/2
R GR

1/2
T , (2)

where G is a Gaussian matrix. This channel matrix represents

the Kronecker correlation model [10], since the covariance of

the vectorized channel matrix can be written as the Kronecker

product of the receive and transmit correlation matrix, namely:

cov (vec (H)) = RR ⊗ RT (3)

or equivalently

E

[

(H)pq (H)
∗
rs

]

= (RR)pr (RT )qs , (4)

where (X)ij is the (i, j)th element of matrix X. According

to the Kronecker correlation model, the correlation between

two subchannels equals to the product of the corresponding

transmit and receive correlation (c.f. Equation (4)). From a

physical point-of-view, the Kronecker model appears when the

antennas are arranged in regular arrays and the correlation

vanishes fast with distance [7]. In this point, it is worth

mentioning that according to [11], [12] a MIMO channel

with a large number of keyholes converges to the Kronecker

MIMO model. An interesting property of the Kronecker model

is its equivalency to the separable correlation model [7],

[8], while studying the eigenvalue distribution of the channel

covariance matrix HH†. More specifically, if RR = UDRU†

and RT = VDT V† are the eigenvalue decompositions of

the receive and transmit correlation matrices respectively, then

-based on the isotropic behavior of Gaussian matrices- the

eigenvalue distribution of HH† = R
1/2
R GRTG†R

1/2
R is

equivalent to the one of D
1/2
R GDTG†D

1/2
R . In this direction,

the equivalent MIMO channel matrix can be written as:

H ≍ D
1/2
R GD

1/2
T . (5)

This equivalency is going to be very useful in the derivations

of Section III.

Let us now focus on the structure of the correlation matrix.

A common model often used to effectively quantify the level

of spatial correlation is the exponential correlation model [13],

[14], [15] . More specifically, according to the exponential

model, the receive/transmit correlation matrix can be con-

structed utilizing a single coefficient ρe ∈ C with |ρe| ≤ 1
as follows:

Rij =

⎧

⎨

⎩

(ρe)
abs(j−i)

, i ≤ j
(

(ρe)
abs(j−i)

)∗
, i > j

(6)

where abs(·) denotes the absolute value. It has been shown

that the exponential model can approximate the correlation in

a uniform linear array under rich scattering conditions [16].
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Similar correlation models, such as the square exponential and

the tridiagonal model can be found in [17].

B. Point-to-point MIMO channel capacity

The already existing approaches for the point-to-point

MIMO channel can be classified in two main categories:

exact analysis and asymptotic analysis. In the exact analysis,

the probability distributions of finite-dimension matrices are

investigated, resulting in closed forms which can produce

exact results. On the other hand, in the asymptotic analysis

a single or both dimensions of the random channel matrix

grow infinitely large in order to allow approximations and

simplifications due to the law of large numbers. Although

the asymptotic analysis may seem less accurate, it has been

widely shown that asymptotic closed forms are able to produce

accurate results even for finite dimensions [18]. What is more,

the asymptotic analysis is ideal for studying cases where

the system size is of no importance, since it reveals the

effect of normalized parameters and provides insights into

the system’s performance [19]. In the category of asymptotic

analysis, the majority of the approaches consider the generic

setting where correlation affects both transmit and receive

end and the numbers of both transmit and receive antennas

grow large together while preserving a fixed ratio. Although

the asymptotic eigenvalue distribution analysis comprises an

approximation for matrices of finite dimensions, it is often

employed in order to isolate the effect of specific physical

parameters and to produce analytical closed forms. This setting

is particularly suitable for studying the uplink channel of mul-

ticell processing cellular systems, since the ratio of transmit

and receive antennas is a constant proportional to the per-cell

number of UTs K .
The performance of multi-antenna channels was originally

investigated in [20], [21] and it was shown that the capac-

ity grows linearly with min (nr, nt), where nr and nt are

the number of receive and transmit antennas respectively.

However, the correlated fading amongst the multiple anten-

nas compromises the capacity performance with respect to

the independent fading case. This phenomenon is widely

established in various regimes and settings; the capacity of

the Kronecker correlated (a.k.a. doubly correlated) MIMO

channel is expressed as a fixed-point equation based on the

Steltjes’ transform [7] of the limiting eigenvalue distribution

of HH†. In the same direction, authors in [22] study the

capacity of the Kronecker correlated MIMO channel based on

the principles of Random Matrix Theory [18]. The derivation

results in a fixed-point equation including functionals of the

SINR and MMSE. In [23] and [8], the expectation and the

variance of the capacity are evaluated using closed forms

based on the solution of 2 × 2 equation systems. In [24], the

principles of majorization theory [25] are applied in order to

show that the average mutual information is a Schur-concave

function with respect to the ordered eigenvalue vector of the

correlation matrix. In addition, the doubly correlated MIMO

channel for Toeplitz correlation matrices is analyzed in [17]

based on the concept of linear spectral statistics. Finally, in

[26], [27] the performance of Kronecker correlated MIMO

channels is studied using the replica method, which originates

in theoretical physics.

It should be noted that the aforementioned results specif-

ically focus on the point-to-point correlated MIMO channel.

In the following paragraph, we describe the channel character-

istics of a multiple-access channel which is the information-

theoretic basis of the cellular uplink channel.

C. Cellular uplink models

This section focuses on the evolution of channel modelling

in the area of BS cooperation. The description starts with

single-antenna cellular systems and concludes with the ex-

tension of the channel model for multiple-antennas at both

transmit and receive ends. The Gaussian Cellular Multiple-

Access Channel (GCMAC) has been the starting point for

studying the Shannon-theoretic limits of cellular systems. It

all began with Wyner’s model [28], which assumes that all

the UTs in the cell of interest have equal channel gains, which

are normalized to 1. It considers interference only from the

UTs of the two neighboring cells, which are all assumed to

have a fixed channel gain, also known as interference factor

α, which ranges in [0, 1]. Assuming that there is a power-law

path loss model which affects the channel gain, Wyner has

modeled the case where the UTs of each cell are collocated

with the cell’s BS, since no distance-dependent degradation of

the channel gain is considered. The same assumption is made

by Somekh-Shamai [1], which have extended Wyner’s model

for flat fading environment. In both [28] and [1], a single

interference factor α is utilized to model both the cell density

and the path loss. The interference factor α ranges in [0, 1] ,

where α = 0 represents the case of perfect isolation among

the cells and α = 1 represents the case of BSs’ collocation,

namely a MIMO MAC channel. Subsequently, the models in

[29], [4] were presented, which differ from the aforementioned

models in the sense that they consider interference from all

the cells of the system (i.e. multiple-tier interference). In [4],

the multiple-tier interference model is combined with multiple

antennas and the asymptotic performance of optimal and group

MMSE decoders is derived for orthogonal intra-cell UTs. In

[29], an interference coefficient is defined for each BS-UT

link based on the power-law path loss model. Although the

author in [29] takes into account a more realistic structure

of the path loss effect, the UTs of each cell have still equal

channel gain and this refers to the case where the UTs of

each cell are collocated with the cell’s BS. Nevertheless, this

model is more detailed than the previously described models,

since it decomposes the interference factor α, so that the cell

density/radius and the path loss exponent can be modelled and

studied separately. Finally, the model used in [30] extends the

previous models by considering that the UTs are no longer

collocated, but they can be (uniformly) distributed across the

cell’s coverage area. In this point, it should be noted that

for all the aforementioned Gaussian multiple-access channel

models the optimal capacity-achieving transmission strategy

is superposition coding over the available bandwidth [31],

[1]. In other words, the ensemble of system UTs transmits

simultaneously over the same bandwidth.

In the latter model [30], by assuming power-law path loss,

flat fading and uniformly distributed UTs, the received signal
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at cell n, at time index i, is given by:

yn[i] =
N
∑

m=1

K
∑

k=1

ςnm
k gnm

k [i]xm
k [i] + zn[i], (7)

where xm
k [i] is the ith complex channel symbol transmitted by

the kth UT of the mth cell and {gnm
k } are independent, strictly

stationary and ergodic complex random processes in the time

index i, which represent the flat fading processes experienced

in the transmission path between the nth BS and the kth UT in

the mth cell. The fading coefficients are assumed to have unit

power, i.e. E[|gnm
k [i]|2] = 1 for all (n, m, k) and all UTs are

subject to an average power constraint, i.e. E[|xm
k [i]|2] ≤ P

for all (m, k). The interference factors ςnm
k in the transmission

path between the mth BS and the kth UT in the nth cell are

calculated according to the “modified” power-law path loss

model [29], [32]:

ςnm
k =

(

1 + dnm
k

)−η/2
. (8)

Dropping the time index i, the aforementioned model can be

more compactly expressed as a vector memoryless channel of

the form:

y = Hx + z. (9)

The channel matrix H can be written as,

H = Σ ⊙ G, (10)

where Σ is a N × KN deterministic matrix and G is a

Gaussian N ×KN matrix with complex circularly symmetric

(c.c.s.) independent identically distributed (i.i.d.) elements of

unit variance, comprising the corresponding Rayleigh fading

coefficients. The entries of the Σ matrix are defined by the

variance profile function

ς
(

u, v
)

=
(

1 + d (u, v)
)−η/2

, (11)

where u ∈ [0, 1] and v ∈ [0, K] are the normalized indices

for the BSs and the UTs respectively and d (u, v) is the

normalized distance between BS u and user v. In the case of

multiple UT and/or BS antennas (nUT and nBS respectively),

the channel matrix H can be written as,

H = ΣM ⊙ GM , (12)

where GM is a standard complex Gaussian NnBS×KNnUT

matrix with elements of unit variance, comprising the Rayleigh

fading coefficients between the KNnUT transmit and the

NnBS receive antennas. Similarly, ΣM is a NnBS×KNnUT

deterministic matrix, comprising the path loss coefficients be-

tween the KNnUT transmit and the NnBS receive antennas.

Since the multiple antennas of each UT / BS are collocated,

ΣM can be written as a block matrix based on the variance

profile matrix Σ of Equation (10)

ΣM = Σ⊗ J, (13)

where J is a nBS × nUT matrix of ones.

III. CHANNEL MODEL & ASSUMPTIONS

Let us assume that K UTs are uniformly distributed in each

cell of a planar cellular system (Fig. 1) comprising N base

stations and that each BS and each UT are equipped with nBS

and nUT antennas respectively.

Fig. 1. Ground plan of the cellular system comprising of BSs with multiple
antennas and UTs distributed on a uniform hexagonal grid.

Under conditions of correlated flat fading, the received

signal at cell n, at time index i, is given by:

yn[i] =
N
∑

m=1

K
∑

k=1

ςnm
k (RR

nm
k )

1
2 Gnm

k [i] (RT
nm
k )

1
2 xm

k [i]

+ zn[i], (14)

where xm
k [i] is the ith complex channel symbol vector nUT ×1

transmitted by the kth UT of the mth cell and {Gnm
k } is a

nBS×nUT random matrix with independent, strictly stationary

and ergodic complex random elements in the time index i.
According to the Kronecker correlation model, RT

nm
k and

RR
nm
k are deterministic transmit and receive correlation ma-

trices of dimensions nUT ×nUT and nBS ×nBS respectively.

In this context, the following normalizations are considered

in order to ensure that the correlation matrices do not affect

the path loss gain of the BS-UT links: tr (RT
nm
k ) = nUT

and tr (RR
nm
k ) = nBS for all (n, m, k). The matrix product

(RR
nm
k )

1
2 Gnm

k [i] (RT
nm
k )

1
2 represents the multiple-antenna

correlated flat fading processes experienced in the transmission

path between the nBS receive antennas of the nth BS and

the nUT transmit antennas of the kth UT in the mth cell.

The fading coefficients are assumed to have unit power, i.e.

Ei[G
nm
k [i]Gnm

k [i]†] = I for all (n, m, k) and all UTs are sub-

ject to a power constraint P , i.e. Ei[x
m
k [i]xm

k [i]†] 	 P
nUT

InUT

for all (m, k). The vector zn[i] represents the AWGN noise at

the receiver with E[zn[i]] = 0, E[zn[i]zn[i]†] = σ2I. To sim-

plify notations, the parameter γ = P/σ2 is defined as the UT

transmit power normalized by the receiver noise power. The

variance coefficients ςnm
k in the transmission path between

the mth BS and the kth UT in the nth cell are calculated

according to the “modified” power-law path loss model (cf.

(8)). Dropping the time index i, the aforementioned model can

be more compactly expressed as a vector memoryless channel
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of the form

Y = HX + Z, (15)

where Y = [y(1)... y(N)]T with y(n) = [y1... ynBS ] repre-

senting the received signal vector by the nBS antennas of the

nth BS, X = [x
(1)
(1) . . .x

(1)
(K)x

(2)
(1) . . . . . .x

(N−1)
(K) x

(N)
(1) . . .x

(N)
(K)]

T

with x
(n)
(k) = [x1... xnUT ] representing the transmit signal

vector by the nUT antennas of the kth UT in the nth cell and

Z=[z(1)... z(N)]T with z(n) = [z1... znBS ] being i.i.d c.c.s.

random variables representing AWGN. In order to simplify

the notations, it is assumed that all BSs/UTs are characterized

by identical receive RR and transmit RT correlation matrices.

However, it should be noted that the following analysis can be

straightforwardly generalized to encompass the more realistic

case of different correlation matrices for each BS/UT. The

channel matrix H can be written as

H = ΣM ⊙
((

IN ⊗ RR

1
2

)

GM

(

IKN ⊗ RT

1
2

))

, (16)

where GM is a NnBS × KNnUT Gaussian matrix with

i.i.d. c.s.s. elements of unit variance. As explained before,

the Kronecker correlation model is equivalent to a separable

variance profile model in terms of its eigenvalue distribution.

Based on this equivalence, the channel matrix can be rewritten

as follows:

H = ΣM ⊙
((

IN ⊗ RR

1
2

)

GM

(

IKN ⊗ RT

1
2

))

≍ ΣM ⊙
(

D̃
1
2

RGMD̃
1
2

T

)

= ΣM ⊙
(

d̃
†
Rd̃T

)
1
2 ⊙ GM (17)

where D̃R and D̃T are the diagonal eigenvalue matrices of

IN×N ⊗ RR and IN×N ⊗ RT respectively and d̃R and d̃T

are row vectors containing the diagonal elements of D̃R and

D̃T respectively. As it can be seen, the MIMO correlation

model has been transformed into an uncorrelated model with

a variance profile Ω = ΣM⊙ (d̃†
Rd̃T)

1
2 , which is neither row

regular nor separable.

IV. EIGENVALUE DISTRIBUTION ANALYSIS & CAPACITY

RESULTS

A. A Random Matrix Theory approach

On the basis of a recent result in Random Matrix Theory

[33, Theorem 2.4 and Theorem 4.1] the optimal per-cell sum-

rate capacity of the derived channel model is given by:

Copt(γ, N, nBS , K, nUT ) =
1

N

(

log det

(

γ

nUT
T−1

)

+ log det

(

γ

nUT
T̃−1

)

− 1

KNγ

∥

∥

∥Ω ⊙
(

tT t̃
)

1
2

∥

∥

∥

2
)

(18)

where T and T̃ are given as the solution of the following

NnBS + KNnUT equations:

ti =
γ

1 + 1
KNnUT

tr
(

Ω̃iT̃
) for i = 1 . . .NnBS (19)

t̃j =
γ

1 + 1
KNnUT

tr (ΩjT)
for j = 1 . . .KNnUT (20)

with the unknown variables

T = diag (t) and t = [t1 . . . tNnBS
]

T̃ = diag
(

t̃
)

and t̃ = [t̃1 . . . t̃KNnUT
]

and

Ωj = diag (ωj)
2

where ωj = [ω1j . . . ωNnBSj ] is the jth column of Ω

Ω̃i = diag (ωi)
2

where ωi = [ωi1 . . . ωiKNnUT
] is the ith row of Ω

This result simplifies the capacity computation in large sys-

tems by converting the original problem to a non-linear

programming problem. Hence, this approach can be utilized

to efficiently calculate the optimal capacity for finite cellular

systems. However, the size of the problem i.e. the number of

equations still depends on the size of the system N and thus

this solution cannot provide asymptotic results.

B. A Free Probability Approach

This section describes a free probability approach which can

be utilized to derive a closed form for the probability density

function of the asymptotic eigenvalue distribution. Firstly,

the uncorrelated model is studied, followed by the transmit

and receive single-side correlation model. Subsequently, the

produced results for the single-side case are utilized to deduce

the solution for the double-side case. In this point, it should

be noted that free probability theory was established by

Voiculescu [34] and it has been also used in [14], [15] to in-

vestigate the case of point-to-point MIMO channels correlated

on a single side according to the exponential model.

1) Uncorrelated Point-to-point Channel: In this case, there

is no variance profile or equivalently the variance profile is

matrix of ones. Therefore, considering a Gaussian channel

matrix G ∼ CN (0, I), the empirical eigenvalue distribution

of 1
N G†G converges almost surely (a.s.) to the non-random

limiting eigenvalue distribution of the Marčenko-Pastur law

[35], whose Shannon transform is given by

V 1
N

G†G(y) a.s.−→ VMP(y, β) (21)

where VMP (y, β) = log

(

1 + y − 1

4
φ (y, β)

)

+
1

β
log

(

1 + yβ − 1

4
φ (y, β)

)

− 1

4βy
φ (y, β)

φ (y, β) =

(
√

y
(

1 +
√

β
)2

+ 1 −
√

y
(

1 −
√

β
)2

+ 1

)2

and η-transform is given by [36, p. 303]

ηMP (y, β) = 1 − φ (y, β)

4βy
(22)

where β is the ratio of the horizontal to the vertical dimension

of the G matrix. The transforms of the Marčenko-Pastur law

are going to be useful in the capacity derivations of the

uncorrelated case.
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2) Uncorrelated Cellular Channel: In this case, there is a

row-regular path-loss variance profile and thus the channel

matrix is written as H = ΣM ⊙ GM. For the sake of

completeness, we include the derivation of the asymptotic

eigenvalue distribution of 1
N HH† based on the analysis in

[29]. In this direction, 1
N H†H can be written as the sum of

KNnUT × KNnUT unit rank matrices, i.e.

1

N
H†H =

NnBS
∑

i=1

h
†
ihi, (23)

where hi ∼ CN (0,Vi) denotes the ith 1 × KNnUT row

vector of 1√
N

H, since the term 1
N has been incorporated in

the unit rank matrices. The covariance matrix equals Vi =
1
N (diag(σi))

2
, where diag(σi) stands for a diagonal matrix

with the elements of vector σi across the diagonal with σi

being the ith row of ΣM. The unit-rank matrices Wi = h
†
ihi

constitute complex singular Wishart matrices with one degree

of freedom and their density according to [37, Theorem 3-4]

is

fVi
(Wi) = B−1

Vi
det (Wi)

1−KnUT N
e−tr(V−1

i
Wi)

BVi
= πKnUT N−1det (Vi) . (24)

If h
†
i = QiSi is a singular value decomposition, then the

density can be written as

fVi
(Wi) = B−1

Vi
det

(

SiS
†
i

)1−KnUT N

e−tr(V−1

i
QiSiS

†

i
Q

†

i ).

(25)

It can be easily seen that if Vi = I, the matrices would be

unitarily invariant [38, Definition 17.7] and therefore asymp-

totically free [39]. Although in our case Vi = 1
N (diag(σi))

2
,

we assume that the asymptotic freeness still holds. Similar ap-

proximations have been already investigated in an information-

theoretic context, providing useful analytical insights and

accurate numerical results [40], [41]. In this context, the R-

transform of each unit rank matrix [18, Example 2.28] is given

by

Rhi
†hi

(w) =
1

KnUT N

‖hi‖2

1 − w ‖hi‖2 (26)

and the asymptotic R-transform of H†H is equal to the sum

of the R-transforms of all the unit rank matrices [18, Theorem

2.64]

lim
N→∞

R 1
N

H†H(w) ≃ lim
N→∞

NnBS
∑

i=1

Rhi
†hi

(w)

= lim
N→∞

1

KnUT N

NnBS
∑

i=1

‖hi‖2

1 − w ‖hi‖2

(27)

Since the variance profile function of Equation (11) defines

rectangular block-circulant matrix with 1 × K blocks which

is symmetric about v = Ku, the channel matrix H is

asymptotically row-regular [18, Definition 2.10] and thus the

asymptotic norm of hi converges to a deterministic constant

for every BS, i.e ∀i

lim
N→∞

‖hi‖2
= lim

N→∞

1

N

KNnUT
∑

j=1

ς2
ij =

∫ KnUT

0

ς2(u, v)dv

(28)

where ςij is the (i, j)th element of the ΣM matrix. In addition,

based on the row-regularity it can be seen that ∀v

nBS

∫ KnUT

0

ς2(u, v)dv =

∫ nBS

0

∫ KnUT

0

ς2(u, v)dudv.

(29)

Therefore, Equation (27) can be simplified to [18, Theorem

2.31, Example 2.26]

lim
N→∞

R 1
N

H†H(w) (30)

≃ 1

KnUT

∫ nBS

0

∫ KnUT

0 ς2(u, v)dv

1 − w
∫ KnUT

0 ς2(u, v)dv
du

=
1

KnUT

∫ nBS

0

∫ KnUT

0
ς2(u, v)dudv

nBS − w
∫ nBS

0

∫ KnUT

0 ς2(u, v)dudv

= q(ΣM)
1

1 − KnUT

nBS
wq(ΣM)

= Rq(ΣM) 1
N

GM
†GM

(w). (31)

where

q(ΣM ) � ‖ΣM‖2
/
(

KN2nUT nBS

)

(32)

is the Frobenius norm of the ΣM matrix ‖ΣM‖ �
√

tr{ΣM
†ΣM} normalized with the matrix dimensions and

‖ΣM‖2
= tr

{

Σ
†
MΣM

}

= tr
{

(Σ ⊗ J)
†
(Σ ⊗ J)

}

= tr
{(

Σ† ⊗ J†) (Σ ⊗ J)
}

= tr
{

Σ†Σ⊗ J†J
}

= tr
{

Σ†Σ
}

tr
{

J†J
}

= tr
{

Σ†Σ
}

nUT nBS

= ‖Σ‖2
nUT nBS. (33)

Using Equations (32) and (33), it can be seen that

q(ΣM ) = q(Σ) = ‖Σ‖2
/
(

KN2
)

(34)

In the asymptotic case, q(Σ) is given by

lim
N→∞

q(Σ) =
1

K

∫ K

0

ς2(u, v)dv. (35)

The probability density function (p.d.f.) of the limiting eigen-

value distribution of 1
N H†H follows a scaled version of

the Marčenko-Pastur law and hence the Shannon transform

of the limiting eigenvalue distribution of 1
N H†H can be

approximated by

V 1
N

H†H

(

γ̃

KnUT

)

≃ VMP

(

q(Σ)
γ̃

KnUT
,
KnUT

nBS

)

. (36)

3) UT-side Correlated Cellular Channel : Assuming that

there is no receive correlation at the BS side i.e RR = I, the

channel matrix of Equation (17) can be rewritten as follows:

1√
N

H =
(

W
(

IKN ⊗ RT

1
2

))

≍
(

W
(

IKN ⊗ DT

1
2

))

, (37)
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where W = 1√
N

ΣM ⊙ GM and therefore

1

N
H†H =

NnBS
∑

i=1

h
†
ihi

≍
NnBS
∑

i=1

(

IKN ⊗ DT

1
2

)

w
†
iwi

(

IKN ⊗ DT

1
2

)

=

NnBS
∑

i=1

((

1KN ⊗ λ
1
2

T

)

⊙ wi

)† ((
1KN ⊗ λ

1
2

T

)

⊙ wi

)

,

(38)

where wi denotes the ith 1 × KNnUT row vector of W,

1KN is a 1×KN row vector of ones and λT is a row vector

containing the eigenvalues of RT. Hence, the R-transform can

be written as

lim
N→∞

R 1
N

H†H(w) = lim
N→∞

NnBS
∑

i=1

Rhi
†hi

(w)

= lim
N→∞

1

KnUT N

NnBS
∑

i=1

‖hi‖2

1 − w ‖hi‖2

=
q (Ω)

1 − KnUT

nBS
wq (Ω)

= Rq(Ω) 1
N

GM
†GM

(ω), (39)

where

q (Ω) =
‖hi‖2

KNnUT
=

∥

∥

∥

(

1KN ⊗ λ
1
2

T

)

wi

∥

∥

∥

2

KNnUT

=
1

nUT

nUT
∑

j=1

λT(j) · 1

K

∫ K

0

ς2
(

u, v
)

dv

=
1

K

∫ K

0

ς2
(

u, v
)

dv. (40)

It can be seen that the scaling of the Marčenko-Pastur law is

identical for the cases of uncorrelated and UT-side correlated

antennas, i.e. q (Σ) = q (Ω). As a result, the per-cell capacity

for UT-side correlation is given by (50) which coincides with

the case of uncorrelated multiple antennas. Therefore, we

can conclude for large values of K (K ≫ nUT ) UT-side

correlation has no effect on the system’s performance. This

ascertainment is expected, since the capacity scaling is dictated

by the rank of the channel matrix H, which depends only on

the number of BS antennas in a cellular scenario.
4) BS-side Correlated Cellular Channel: Assuming that

there is no transmit correlation at the UT side i.e. RT = I, the

channel matrix of Equation (17) can be rewritten as follows:

1√
N

H =
((

IN ⊗ RR

1
2

)

W
)

≍
((

IN ⊗ DR

1
2

)

W
)

(41)

and therefore

1

N
H†H =

1

N

N
∑

i=1

H
†
iHi

=

N
∑

i=1

W
†
iDRWi =

nBS
∑

j=1

λR(j)

N
∑

i=1

w
†
iwi, (42)

where Hi and Wi are submatrices of H and W respectively

with dimensions nBS ×KNnUT and λR is a row vector con-

taining the eigenvalues of RR. Based on the previous analysis,

the asymptotic eigenvalue distribution of A =
∑N

i=1 w
†
iwi

follows a scaled version of the Marčenko-Pastur law. Hence,

the R-transform of A can be written as

RA(w) ≍ Rq(Σ) 1
N

G̃†G̃(w) =
q(Σ)

1 − KnUT wq(Σ)
(43)

where G̃ is a N × KNnUT matrix distributed as CN (0, I)
and

q(Σ) =
‖wi‖2

KNnUT
=

1

K

∫ K

0

ς2
(

u, v
)

dv (44)

The R-transform of 1
N H†H is calculated based on [18,

Theorems 2.31 and 2.64]

R 1
N

H†H(w) =

nBS
∑

j=1

λR(j)RA(λR(j)w). (45)

The asymptotic eigenvalue pdf (AEPDF) of 1
N H†H is ob-

tained by determining the imaginary part of the Cauchy

transform G for real arguments

f∞
1
N

H†H
(x) = lim

y→0+

1

π
I

{

G 1
N

H†H(x + jy)
}

(46)

considering that the Cauchy transform is derived from the R-

transform [42] as follows

G−1
1
N

H†H
(w) = R 1

N
H†H(−w) − 1

w
. (47)

The AEPDF of 1
N HH† can be also derived as follows:

nBS

KnUT
f∞

1
N

H†H
(x) + (1 − nBS

KnUT
)δ(x) = f∞

1
N

H†H
(x) (48)

since the matrices 1
N HH† and 1

N H†H have the same non zero

eigenvalues, but their sizes differ by a factor of nBS/KnUT .

5) Double-side Correlated Cellular Channel: By combin-

ing the two previous cases, it can be easily seen that the a.e.d.

for the double-side Kronecker correlation model coincides

with the BS-side correlation case, since UT-side correlation

has no effect on the asymptotic eigenvalue distribution of
1
N H†H. Figure 2 illustrates the AEPDF of 1

N H†H varying

the level of correlation at the BS antennas ρR. As it can be

seen, by increasing the level of fading correlation, the plot of

the eigenvalue distribution is gradually decomposing into two

segments.

C. Optimal Capacity

According to [18], the per-cell asymptotic Optimal Joint

Decoding sum-rate capacity Copt assuming a very large num-

ber of cells and no CSI available at the UT-side (e.g. uniform
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Fig. 2. Asymptotic Eigenvalue Probability Distribution Function (AEPDF) of
1

N
H

†
H (omitting the zero eigenvalues) while varying the level of correlation

at the BS antennas ρR . Parameters: K = 4, nUT = 2, nBS = 2, η = 2, γ =
10.

power allocation), is given by:

Copt(γ, N, nBS , K, nUT )

= lim
N→∞

1

N
I (x;y | H )

= lim
N→∞

1

N
E

[

log det

(

I +
γ

nUT
HH†

)]

= lim
N→∞

E

[

1

N

NnBS
∑

i=1

log

(

1 +
γ̃

KnUT
λi

(

1

N
HH†

))

]

= nBS

∫ ∞

0

log

(

1 +
γ̃

KnUT
x

)

f∞
1
N

HH†(x)dx

= KnUT

∫ ∞

0

log

(

1 +
γ̃

KnUT
x

)

f∞
1
N

H†H
(x)dx, (49)

where γ̃ = KNγ is the system transmit power normalized

by the receiver noise power respectively and λi (X) denotes

the eigenvalues of matrix X. Equation (49) can be utilized

in combination with Equation (46) and (47) for the case of

correlated BS antennas. For uncorrelated BS antennas, the

optimal per-cell sum-rate capacity is given by:

Copt(γ, N, nBS , K, nUT )

= nBSV 1
N

HH† (γ̃/KnUT )

= nBSKnUTV 1
N

H†H (γ̃/KnUT )

≃nBSKnUTVMP

(

q (Σ)
γ̃

KnUT
,
KnUT

nBS

)

, (50)

where VMP is calculated based on Equation (21). It should be

noted that if CSI is available at the UT-side, multiuser iterative

waterfilling [43] can be employed to optimize the transmitter

input and thus the produced capacity.

D. MMSE Capacity

A global joint decoder will be extremely demanding in

terms of computational load as the complexity of symbol-

by-symbol multiuser detection increases exponentially as the

number of users to be detected in the system increases

[36]. However, for a coded system MMSE in combination

with Successive Interference Cancellation(SIC) yields linear

complexity in the number of users, or at least polynomial

if one considers that the computation of the MMSE filters,

matrix-vector multiplications and subtraction are quadratic or

cubic in the number of users [44, Chap. 8]. Based on this

argument, the following equations describe the sub-optimal

capacity achieved by a linear MMSE filter followed by single-

stream decoding. Based on the arguments in [18, Equation

1.9][36], [45], [46], the MMSE and the Signal to Interference

and Noise Ratio (SINR) for the kth date stream, assuming no

CSI available at the UT-side (e.g. uniform power allocation),

can be written as:

mmsek =

[

(

IKNnUT
+

γ

nUT
H†H

)−1
]

k,k

,

1 + SINRk = 1 +
1 − mmsek

mmsek
= mmse−1

k . (51)

Considering single-stream decoding, the per-cell asymptotic

MMSE capacity is given by the mean individual stream

rate multiplied by the number of streams per cell (Equation

(52) at the top of the next page) which can be utilized in

combination with Equation (46) and (47) for the case of

correlated BS antennas. For uncorrelated BS antennas, the

asymptotic MMSE capacity is given by:

Cmmse(γ, N, nBS , K, nUT )

= −KnUT log

(

η 1
N

H†H

(

γ̃

KnUT

))

= −KnUT log

(

ηMP

(

q (Σ)
γ̃

KnUT
,
KnUT

nBS

))

, (53)

where ηMP is calculated based on Equation (22). In this

point, it should be noted that MMSE filtering exhibits an

interference-limited behavior, when the number of transmitters

is larger than the number of receive antennas [4]. More

specifically, in the previous transmission strategies the signals

of all system UTs have been superpositioned on the shared

time-frequency medium, which is sensible if optimal decoding

is in place. However, if MMSE filtering is applied, the

performance can be enhanced by orthogonalizing the intra-

cell UTs so that only a single UT per cell transmits using the

shared medium. This scenario resembles to cellular systems

employing intra-cell TDMA, FDMA or orthogonal CDMA

and its performance is evaluated in section V-A by means

of Monte Carlo simulations.

V. NUMERICAL RESULTS

The analytical results (Equations (49),(50),(52),(53)) have

been verified by running Monte Carlo simulations over 100
random instances of the system and by averaging the pro-

duced capacity results. More specifically, for each system

instance the complex matrix (IN ⊗ RR

1
2 )GM is constructed

by randomly generating correlated fading coefficients accord-

ing to the exponential model with ρR being the BS-side

correlation coefficient. UT-side correlation is not considered

in the numerical results, since it does not have an effect on

capacity for large K . Subsequently, the variance profile matrix
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Cmmse(γ, N, nBS, K, nUT ) = lim
N→∞

KnUT E

[

log

(

1

NKnUT

NKnUT
∑

k=1

(1 + SINRk)

)]

(50)
= − lim

N→∞
KnUT E

⎡

⎣log

⎛

⎝

1

NKnUT

NKnUT
∑

k=1

[

(

INKnUT
+

γ

nUT
H†H

)−1
]

k,k

⎞

⎠

⎤

⎦

≥ − lim
N→∞

KnUT log

(

1

NKnUT
E

[

Tr

{

(

INKnUT
+

γ

nUT
H†H

)−1
}])

= − lim
N→∞

KnUT log

⎛

⎝E

⎡

⎣

1

NKnUT

KNnUT
∑

j=1

1

1 + γ̃
KnUT

λj

(

1
N H†H

)

⎤

⎦

⎞

⎠

= −KnUT log

(

∫ ∞

0

1

1 + γ̃
KnUT

x
f∞

1
N

H†H
(x)dx

)

= −KnUT log

(

∫ ∞

0+

1

1 + γ̃
KnUT

x
f∞

1
N

H†H
(x)dx + 1 − nBS

KnUT

)

(52)

Σ is constructed by randomly placing the UTs according to

a uniform distribution in the planar coverage area and by

calculating the variance profile coefficients using Equation

(11). It should be noted that the simulated system includes

N = 7 BSs, which is adequately large to converge with the

asymptotic analysis results. In the context of the mathematical

analysis, the distance dnm
k can be calculated assuming that the

UTs are positioned on a uniform planar grid as in Fig. 1 [47].

The numerical results presented in this section refer to the

optimal and MMSE per-cell sum-rate capacity averaged over

a large number of fading realizations and UT positions. After

constructing the channel matrix H, the optimal per-cell sum-

rate capacity is calculated by evaluating the formula in [20]

Copt =
1

N
E

[

logdet

(

INnBS
+

γ

nUT
HH†

)]

, (54)

while the MMSE per-cell capacity is calculated by summing

all the individual stream rates and normalizing by the number

of cells [18]

Cmmse = (55)

− 1

N
E

⎡

⎣

NKnUT
∑

k=1

log

[

(

IKNnUT
+

γ

nUT
H†H

)−1
]

k,k

⎤

⎦ ,

where [X]k,k denotes the kth diagonal element of the X

matrix. In this context, Figures 3 and 4 depict the optimal

and MMSE per-cell sum-rate capacity respectively versus

the normalized cell radius R varying the level of receive

correlation ρR = [0, 0.9, 0.99, 1]. As it can be observed in

both cases, the BS-side correlation decreases the degrees of

freedom due to the multiple receive antennas and therefore

compromises the capacity performance of the system. In the

no-correlation extreme ρR = 0, the optimal capacity curve is

identical to the curve derived in [3] for multicell processing

cellular systems with multiple antennas. In the full-correlation

extreme ρR = 1, the capacity curve degrades to the single-

antenna capacity [2], since no multiplexing gain is achieved

by the multiple BS antennas. In the MMSE-receiver case,
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Fig. 3. Optimal per-cell sum-rate capacity vs. the normalized cell radius
R varying the level of BS-side correlation ρR = [0, 0.9, 0.99, 1] in a planar
cellular system with uniformly distributed UTs. Analysis curve and simulation
points are marked using a solid line and circle points respectively. Parameters:
K = 16, γ = 10, nBS = 2, nUT = 1, η = 2.

it can be seen that the achieved capacity is much lower

than the optimal due to the lack of interference-suppressing

dimensions, but the effect of correlation is less grave especially

for short cell radii. It should be noted that in Figures 3 and 4

the analysis curve and the simulation points are marked using

a solid line and circle points respectively in order to verify

their close agreement.

Subsequently, Figure 5 illustrates the per-cell sum-rate

capacity versus the level of BS-side correlation for a fixed cell

size. It can be observed that the optimal capacity degradation

becomes detrimental for high correlation levels, whereas the

MMSE receiver appears to be much more resistant to fading

correlation. Finally, Figure 6 depicts the per-cell sum-rate

capacity versus the normalized cell radius R varying the

number of BS antennas nBS for two values of correlation

ρR = [0, 0.8]. By observing the figure, it becomes clear

that the linear capacity scaling with the number of receive
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Fig. 4. MMSE per-cell sum-rate capacity vs. the normalized cell Radius
R varying the level of BS-side correlation ρR = [0, 0.9, 0.99, 1] in a planar
cellular system with uniformly distributed UTs. Analysis curve and simulation
points are marked using a solid line and circle points respectively. Parameters:
K = 16, γ = 10, nBS = 2, nUT = 1, η = 2.
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antennas nBS remains in spite of the degrading effect of fading

correlation.

A. Practical Results

This section aims at denormalizing the cellular system

parameters employed in the analysis in order to present more

practical numerical results. These results can be used to

evaluate the capacity enhancement which BS cooperation can

provide in the context of real-world cellular infrastructure. In

this direction, if L0 is the power loss at the reference distance

d0, the scaled variance profile function is given by

ς(d(t)) =

√

L0

(

1 + d̂(t)/d0

)−η

. (56)

The values of L0 and η have been fitted to the path loss model

defined in the “Urban Macro” scenario of [48]. Furthermore,
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Fig. 6. Optimal per-cell sum-rate capacity vs. the normalized cell Radius R
varying the number of BS antennas nBS for two values of receive correlation
ρR = [0, 0.8] (solid and dashed line respectively) in a planar cellular system
with uniformly distributed UTs. Parameters: K = 16, γ = 10, nUT =
1, η = 2.

TABLE I
PARAMETERS FOR PRACTICAL CELLULAR SYSTEMS

Parameter Symbol Value/Range (units)
Cell Radius R 0.1 − 3 Km

Reference Distance d0 1 m
Reference Path Loss L0 34.5 dB
Path Loss Exponent η 3.5

Antennas per BS nBS 2
BS Correlation Level ρR 0.8624

Antennas per UT nUT 2
UTs per Cell K 16

UT Transmit Power PT 200 mW
Thermal Noise Density N0 −169 dBm/Hz

Channel Bandwidth B 5 MHz

the BS correlation level was selected according to [48] as-

suming 2 degrees angle spread, 50 degrees angle of arrival

and an antenna spacing of 4λ, where λ is the communication

wavelength. Table I includes a concise list of the nominal

parameter values used for producing the results in Figure 7.

In addition, this section evaluates the performance of MMSE

filtering in combination with intra-cell UT orthogonalization,

so that it can be compared with the aforestudied wideband

transmission cases. In this direction, a UT is randomly selected

for each cell and their channel vectors are concatenated in

order to construct the square NnUT × NnUT matrix Horth.

Subsequently, the per-cell MMSE capacity is evaluated in

accordance to equation (55):

Corth
mmse = (57)

− 1

N
E

⎡

⎣

NnUT
∑

k=1

log

[

(

INnUT
+

γ

nUT
H

†
orthHorth

)−1
]

k,k

⎤

⎦ .

It is interesting that in the considered parameter range, the

effect of both BS-side correlation and cell density on the

MMSE capacity is negligible due to the interference-limited

behavior which has also been observed in [4], [29]. On the

contrary, the optimal capacity performance is degraded by 1
bit/sec/Hz due to correlation, which is acceptable considering
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Fig. 7. Optimal and MMSE per-cell sum-rate capacity vs. the cell Radius
R in Km considering the practical parameters in Table I.

the high spectral efficiency enhancement due to multicell pro-

cessing. Furthermore, it can be observed that for nBS ≥ nUT

the performance of MMSE filtering combined with intra-

cell orthogonalization is no longer interference-limited, since

there are sufficient degrees of freedom to suppress inter-cell

interference.

VI. CONCLUSION

In this paper, we have considered a multicell processing

system with MIMO links and distributed UTs. In this context,

we have investigated the effect of antenna correlation on the

capacity performance of the system. The presented results has

been derived considering that the variances of the Gaussian

channel gains are scaled by a generic variance profile which

incorporates both path loss and antenna correlation. In this

direction, we have presented two analytical approaches: a

finite Random Matrix Theory approach and an asymptotic

Free Probability approach. The former approach is useful for

reducing the complexity of capacity calculation in finite sys-

tems, whereas the latter provides closed forms and interesting

insights on the system performance. The main findings can

be summarized as follows: antenna correlation degrades the

capacity performance of the system, especially if it appears

on the BS side. What is more, for large number of UTs per

cell, the effect of UT-side correlation is negligible. Finally, it is

shown that the MMSE performance is greatly suboptimal but

more resilient to fading correlation in comparison to optimal

decoding.
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